抽屉原理知识点总结 抽屉原理复习知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理知识点总结抽屉原理复习知识点

抽屉原理是组合数学中一个重要的原理,也是小学数学的一个重点知识。以下是本人为你整理的抽屉原理知识点总结,希望你喜欢。

抽屉原理知识点总结

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。

抽屉原理知识点总结:抽屉原则一

如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原理知识点总结:抽屉原则二

如果把n个物体放在m个抽屉里,其中n>m,那么必

有一个抽屉至少有:

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理知识点总结:抽屉原理练习

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉,要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保

证其中至少有2张牌有相同的点数?

解:点数为1(A)、2、3、4、5、6、7、8、9、10、

11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2

张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作

10个“抽屉”,把11个学生看作11个“苹果”。如果谁借

哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没

有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有0、1、2、3……48,只有49种可能,以

这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班

50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2

个球,问至少有几名同学所拿的球种类是一致的?

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这

50个同学看作苹果50÷9 =5 (5)

由抽屉原理2:k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。

看了“抽屉原理知识点总结”的人还看了:

1.数学知识梳理手抄报

2.小学数学期末的复习技巧

3.小学生如何复习数学

4.数学知识点手抄报

5.数学小知识手抄报内容

;

相关文档
最新文档