2018中考复习解直角三角形专题训练

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考复习解直角三角形专题训练

1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60° 以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高 (精确到0.1千米)

2.施工队准备在一段斜坡上铺上台阶方便通行.现测 得斜坡上铅垂的两棵树间水平距离AB =4米,斜面

距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);

(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?

3. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮

船位于A 的北偏东60°,且与A 相距83的C 处.

(1)求该轮船航行的速度(保留精确结果);

(2)如果该轮船不改变航向继续航行,那么轮船能否正

好行至码头MN 靠岸?请说明理由.

4. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.

(1)求新传送带AC 的长度;

N

M 东

B

C

A

l

17cm

(第2题)

A

B C

F

A B

12千

P

C

D

G 60

图1

A

B

E F Q

P

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走。

(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)

5.如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BF Q=60°,EF=1km.

(1)判断ABAE的数量关系,并说明理由;

(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)

6.如图为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.

7.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.

(1)试通过计算,比较风筝A与风筝B谁离地面更高?

(2)求风筝A与风筝B的水平距离.

(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,

tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)

A

B

45°

60°

C

E D

8. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.

求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,结果保留整数).

9. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户

C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离C

D 的长度.(结果保留整数)

(参考数据:o o o o 33711

sin37tan37sin 48tan48541010

≈≈≈≈,,,)

10. 如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货。此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问:B 处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应在多少小时内卸完货?

(214317≈,≈..)。

A

45°

60° 第(8)题

B 37° 48°

D

C A

11.小明想知道西汉胜迹中心湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道l上某一观测点M处,测得亭A在点M的北偏东30°, 亭B在点M的北偏东60°,当小明由点M沿小道l向东走60米

时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A、B之间的距离.

相关文档
最新文档