《实数》教材分析

合集下载

《实数》教材分析(修改稿 )

《实数》教材分析(修改稿 )
• 自然数的产生,起源于人类在生产和生活中计数的需要。
• 分数
• 在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量。在 测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然
产生自然数不够用的矛盾。
• 大英博物馆的埃及纸草书中记有关于分数的问题,其成文年代约在公元前1700 年。
第六章《实数》 教材分析
数在数学学科中的作用
1. 从具体的事物中抽象出数,是人类第一次学会抽象,而抽象是数学研 究的基础和本质。 2. 数是数学发展史中最先出现的,是后面整个的数学大厦的基石。 3. 数的性质为后面的代数学、分析学提供了思想的源头和推广的基础。 4. 数是方程中变量的具体实现,通过数,可以将抽象的变量和实际问题 联系起来,这里数起到了具象和抽象之间的桥梁作用。 5. 数形结合使得代数学在几何学中的作用也十分重要。
结合律,四元数系又可扩充为八元数系(1958)等等。
• 在现代数学中,通常总是把“数”理解为复数或实数,只有在个别情况,
经特别指出,才用到四元数。至于八元数的使用就更罕见了。
数系扩充(教材顺序)
中、小学数学教学中,为了适应学生的年龄特征和接受能力,关 于数系的扩充,主要是渗透近代数学观点,采用添加元素并强调运 算的方法来进行的。其扩充过程是
数的理论的建立
• 从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,
1845~1918)、戴德金(R.Dedekind,1831~1916)、威尔斯特拉斯
(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑 工作。
近代数学关于数的理论
数的发展
•零

实数教材分析

实数教材分析

第六章《实数》教材分析一、本章主要内容及地位、作用:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算.本章内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备.二、本章知识结构框图:1.本章知识的内在结构如下图所示:2.本章知识的展开顺序如下图所示:“本章知识结构图”展示了本章知识的内在结构:由于乘方与开方互为逆运算,所以开平方和开立方运算是以平方和立方运算为基础的,因此平方根和立方根的概念离不开平方和立方的概念.无理数的引入使得数的范围由有理数扩大到了实数.三、本章课程学习目标:1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,概念、运算等的一致性及其发展变化;4.能用有理数估计一个无理数的大致范围.四、本章重点、难点:重点:算术平方根、平方根、立方根的概念和运算;实数的认识。

难点:算术平方根与平方根联系与区别;有理数与无理数的区别。

学情分析绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,从课堂上看,他们的注意力不能长时间集中,很容易分心,作业错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。

部分学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。

但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,学困生抄作业现象比较严重。

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。

通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。

同时,实数的分类和性质也需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。

2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。

3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。

四. 教学重难点1.实数的概念和分类。

2.实数的性质。

五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。

通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。

六. 教学准备3.练习题。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。

呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。

2.引导学生通过观察和思考,总结实数的性质。

操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。

2.每组选一名代表进行汇报,其他组进行评价和补充。

巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。

2.教师选取部分学生的作业进行点评,指出错误并进行讲解。

拓展(10分钟)1.让学生思考:实数和数轴之间的关系。

2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。

小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。

2.学生分享学习收获和感受。

家庭作业(5分钟)1.完成课后练习题。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

《实数》教材分析

《实数》教材分析

第三章《实数》教材分析一、教材地位和作用分析《实数》是浙教版义务教育课程标准实验教科书数学七年级上册的第三章。

本章从《数学课程标准》看,是关于数的内容,初中阶段主要学习有理数和实数,是“数与代数“的重要内容.本章的主要内容有数的开方、平方根、立方根、无理数和实数及其运算。

经本章的学习,学生对数的认识从有理数的范围扩大到实数的范围,是数的第二次扩展,且已全部完成了初中阶段数的扩展。

本章之前的数学内容都是在有理数范围内讨论的.从本章开始,除特殊说明,都将在整个实数范围内讨论。

本章避开了涉及二次根式的内容,数系进过扩展,数的运算法则和运算律都没有发生变化,所以学生学习上不会有困难。

本章是进一步二次根式、一元二次方程以及函数等知识的基础。

因此,让学生正确而深刻地理解实数是非常重要的。

无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,本章不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。

二、教学目标分析1、《数学课程标准》中所提出的实数的课程目标:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。

(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方根运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。

(4)能用有理数估计一个无理数的大致范围.(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。

三、教学内容分析本章的主要内容有数的开方、平方根、立方根、无理数和实数及其运算。

课本从典型的实际问题的需要,首先引出平方根的概念。

即已知正方形的面积求边长的问题,这是一个典型的求算术平方根的问题,这与学生以前熟悉的已知边长求面积是一个互逆的过程.通过这类问题的探讨,引出了平方根的概念.学习了平方根后,课本安排了实数这一节。

苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1一. 教材分析苏科版数学八年级上册 4.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的认识和理解。

本节课主要内容包括实数的分类、实数与数轴的关系、实数的运算等。

通过本节课的学习,学生能够更好地理解实数的内涵和外延,为后续的数学学习打下坚实的基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数和无理数有一定的了解。

但是,学生对实数的认识还比较片面,对于实数与数轴的关系、实数的运算等知识点的理解还不够深入。

因此,在教学过程中,需要教师引导学生从实际问题出发,通过观察、思考、操作、交流等活动,深化对实数概念的理解。

三. 教学目标1.理解实数的定义,掌握实数的分类。

2.理解实数与数轴的关系,能正确地在数轴上表示实数。

3.掌握实数的运算方法,能熟练地进行实数的运算。

4.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。

2.数形结合法:利用数轴直观地表示实数,帮助学生理解实数与数轴的关系。

3.合作学习法:引导学生分组讨论,培养学生的团队协作能力。

4.练习法:通过适量练习,巩固所学知识,提高学生的实际操作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.数轴教具:准备数轴教具,方便学生直观地理解实数与数轴的关系。

3.练习题:准备适量练习题,用于课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考实数的概念,例如:“小明家距离学校2.5公里,小红家距离学校3公里,小明和小红家分别位于学校的哪个方向?他们两家之间的距离是多少?”2.呈现(10分钟)教师利用课件呈现实数的定义和分类,实数与数轴的关系,实数的运算等知识点,引导学生初步认识实数。

3.操练(10分钟)教师引导学生分组讨论,利用数轴表示实数,并进行实数的运算。

人教版七年级数学下册第六章《实数》小结与复习说课稿

人教版七年级数学下册第六章《实数》小结与复习说课稿
3.数学游戏:设计实数运算相关的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣;
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1一. 教材分析冀教版数学八年级上册14.3《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统地认识和理解。

本节内容主要包括实数的定义、实数的分类、实数的性质等。

通过本节课的学习,使学生掌握实数的概念,了解实数的分类,理解实数的性质,为学生进一步学习函数、几何等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数、无理数的相关知识,对数的运算、性质有一定的了解。

但是,学生对实数的认识还比较模糊,对实数的分类和性质的理解还有待提高。

此外,学生的数学思维能力、逻辑表达能力等方面也有待提高。

三. 教学目标1.了解实数的概念,掌握实数的分类,理解实数的性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的数学思维能力、逻辑表达能力。

四. 教学重难点1.实数的定义、分类和性质。

2.实数与实际问题的结合。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学思维能力和逻辑表达能力。

六. 教学准备1.教材、教案、课件。

2.相关实数的学习资料。

3.投影仪、白板等教学设备。

七. 教学过程导入(5分钟)教师通过引入生活中实际问题,如身高、体重等,引导学生认识到实数在生活中的重要性。

然后,教师提问:“你们已经学习了有理数和无理数,那么,实数与有理数、无理数有什么关系呢?”从而引出本节课的主题——实数。

呈现(15分钟)教师通过课件展示实数的定义、分类和性质,让学生初步了解实数的概念。

接着,教师通过举例说明实数的性质,如实数的大小比较、实数的加减乘除运算等。

在此过程中,教师引导学生积极参与,提问解答,确保学生对实数的理解。

操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

题目包括实数的分类、实数的性质等。

完成后,教师选取部分学生的作业进行讲评,指出其中的错误和不足,帮助学生巩固实数知识。

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。

但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。

因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数的概念解决实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。

六. 教学准备1.教材、教案、PPT。

2.练习题。

3.数轴教具。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。

2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。

3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。

4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。

5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。

6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。

7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。

8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。

八年级数学实数教案5篇

八年级数学实数教案5篇

八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。

华师大版数学八年级上册11.2《实数》教学设计1

华师大版数学八年级上册11.2《实数》教学设计1

华师大版数学八年级上册11.2《实数》教学设计1一. 教材分析华东师范大学版数学八年级上册11.2《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统地学习。

本节内容主要包括实数的定义、实数的分类以及实数与数轴的关系。

通过本节的学习,使学生能更好地理解实数的内涵,提高他们分析问题和解决问题的能力。

二. 学情分析学生在七年级时已经学习了有理数和无理数,对数的运算、大小比较等有一定的基础。

但学生对实数的理解还停留在表面,对实数的内涵和实数与数轴的关系认识不够深入。

因此,在教学过程中,要注重引导学生深入理解实数的内涵,建立实数与数轴的联系。

三. 教学目标1.理解实数的定义,掌握实数的分类。

2.理解实数与数轴的关系,能正确表示实数在数轴上的位置。

3.提高学生分析问题和解决问题的能力。

四. 教学重难点1.实数的定义和分类。

2.实数与数轴的关系。

五. 教学方法采用问题驱动法、案例分析法、数形结合法等教学方法,引导学生主动探究、积极思考,提高学生分析问题和解决问题的能力。

六. 教学准备1.教学课件。

2.数轴道具。

3.练习题。

七. 教学过程1.导入(5分钟)利用数轴道具,引导学生回顾有理数和无理数的概念,提出问题:“有理数和无理数能否包含所有的数呢?”引发学生思考,引出本节课的主题——实数。

2.呈现(15分钟)讲解实数的定义,呈现实数的分类,包括正实数、负实数和零。

同时,通过数轴展示实数与数轴的关系,让学生直观地感受实数在数轴上的表示。

3.操练(15分钟)让学生分组讨论,分析实数与数轴的关系,每组选取一个实数,在数轴上表示出来。

然后,各组进行交流,总结实数与数轴的关系。

4.巩固(10分钟)出示一些判断题,让学生判断实数的分类,如“2是正实数”、“-3是负实数”等。

同时,让学生在数轴上表示出这些实数,加深对实数的理解。

5.拓展(10分钟)让学生举例说明实数在实际生活中的应用,如温度、长度等。

实数说课稿

实数说课稿

13.3《实数》说课稿一、教材分析1.教材的地位与作用《实数》是义务教育课程标准实验教科书数学八年级上册第13章的3节的概念课。

本节课在学生学习了平方根、立方根以后,接触了如“ ”与“π”等具体的无理数的基础上,引入了无理数的概念,使学生把数的概念从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且也是进一步学习方程、函数等知识的基础。

另外,无理数的引入,数集的扩充的教学中充满着对立与统一的辨证关系,实数和数轴上的点一一对应蕴含着数形结合的思想,通过这节课的学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯。

2、教学目标依据本节教材的特点,并结合学生的年龄特点和认知水平,确定本节课的教学目标:知识与技能目标——让学生了解无理数,实数的概念,了解实数与数轴上的点一一对应,初步学会实数的大小比较,了解实数的相反数和绝对值的意义,并会求一个实数的相反数的绝对值;能对实数的分类进行初步的辩认。

过程与方法目标——经历无理数、实数概念的生成以及实数的分类过程,培养学生归纳和初步分类意识;经历用数轴上的点来表示无理数、实数过程,将数和图形联系在一起,让学生进一步领会数形结合的数学思想方法。

态度与情感目标——通过学生合作探究,让学生经历无理数的产生过程;并向学生渗透“数形结合”及分类的数学思想,感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。

3、教学重点和难点重点:无理数、实数的有关概念以及实数与数轴上的点一一对应。

难点:无理数在数轴上的表示,如:“ ”与“π” 需要比较复杂的几何作图,是本节教学中的难点。

二、教学方法和手段本节课通过创设问题情境,从一个探究活动开始,帮助学生建立有意义的知识22联结通过合作探索,经历无理数的产生过程以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

三、学法指导学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。

冀教版数学八年级上册14.3《实数》教学设计2

冀教版数学八年级上册14.3《实数》教学设计2

冀教版数学八年级上册14.3《实数》教学设计2一. 教材分析冀教版数学八年级上册14.3《实数》是学生在掌握了有理数和无理数的基础上,进一步学习实数的相关知识。

本节内容主要包括实数的定义、实数的分类、实数与数轴的关系等。

通过本节的学习,使学生能够理解实数的意义,掌握实数的分类,了解实数与数轴的关系,为后续学习函数、方程等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数和无理数,对数的运算、大小比较等有一定的基础。

但是,对于实数的定义、分类和实数与数轴的关系等概念,还需要进一步引导和讲解。

因此,在教学过程中,要注意通过实例、图形等方式,帮助学生直观地理解实数的意义,建立实数与数轴的联系。

三. 教学目标1.知识与技能:理解实数的定义,掌握实数的分类,了解实数与数轴的关系。

2.过程与方法:通过实例、图形等方式,培养学生直观理解实数的能力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:激发学生学习实数的兴趣,培养学生的抽象思维能力,感受数学的严谨性和美。

四. 教学重难点1.实数的定义和分类。

2.实数与数轴的关系。

五. 教学方法1.情境教学法:通过实例、图形等方式,引导学生直观地理解实数的意义,建立实数与数轴的联系。

2.问题驱动法:引导学生主动提出问题,分析问题,解决问题,培养学生的思维能力。

3.小组合作学习法:鼓励学生分组讨论,共同完成任务,提高学生的合作能力。

六. 教学准备1.准备相关的实例和图形,以便引导学生直观地理解实数的意义。

2.准备一些练习题,以便在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)利用实例或图形,引导学生回顾有理数和无理数的概念,提出问题:“有理数和无理数能否包含所有的数呢?”引发学生的思考,引出实数的概念。

2.呈现(10分钟)介绍实数的定义、实数的分类和实数与数轴的关系。

通过实例和图形,使学生直观地理解实数的意义,建立实数与数轴的联系。

3.操练(10分钟)让学生分组进行讨论,共同完成一些关于实数的练习题。

人教版数学七年级下册6.3《实数》教学设计3

人教版数学七年级下册6.3《实数》教学设计3

人教版数学七年级下册6.3《实数》教学设计3一. 教材分析人教版数学七年级下册 6.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统地认识和理解。

本节课的主要内容是实数的分类,实数与数轴的关系,以及实数的运算性质。

教材通过丰富的例题和练习题,帮助学生掌握实数的概念,提高学生的数学思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数和无理数有了初步的认识。

但是,对于实数的系统理解和运用,还存在一定的困难。

因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生理解和掌握实数的概念和性质。

三. 教学目标1.了解实数的概念,掌握实数的分类和实数与数轴的关系。

2.掌握实数的运算性质,能够熟练地进行实数的运算。

3.培养学生的数学思维能力,提高学生解决问题的能力。

四. 教学重难点1.实数的分类和实数与数轴的关系。

2.实数的运算性质。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的概念和性质。

2.利用数轴辅助教学,帮助学生直观地理解实数与数轴的关系。

3.运用例题和练习题,巩固学生对实数的理解和运用。

六. 教学准备1.教学课件:制作课件,包括实数的分类、实数与数轴的关系、实数的运算性质等内容。

2.练习题:准备一些有关实数的练习题,用于巩固学生的学习成果。

3.数轴:准备数轴教具,用于辅助教学。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。

2.呈现(15分钟)呈现实数的分类,讲解实数与数轴的关系,以及实数的运算性质。

通过例题和练习题,让学生直观地理解实数的概念和性质。

3.操练(15分钟)让学生在课堂上进行实数的运算练习,巩固学生对实数的理解和运用。

4.巩固(10分钟)通过练习题,巩固学生对实数的理解和运用。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)引导学生运用实数的概念和性质解决实际问题,提高学生解决问题的能力。

实数教材分析

实数教材分析

第六章《实数》教材剖析一、本章主要内容及地位、作用:本章的主要内容是平方根、立方根的观点和求法,实数的相关观点和运算.本章内容不单是后边学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及分析几何等的大多数知识作好准备.二、本章知识构造框图:1.本章知识的内在构造以下列图所示:2.本章知识的睁开次序以下列图所示:“本章知识构造图”展现了本章知识的内在构造:因为乘方与开方互为逆运算,所以开平方和开立方运算是以平方和立方运算为基础的,所以平方根和立方根的观点离不开平方和立方的观点.无理数的引入使得数的范围由有理数扩大到了实数.三、本章课程学习目标:1.认识算术平方根、平方根、立方根的观点,会用根号表示数的平方根、立方根;2.认识开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;3.认识无理数和实数的观点,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;认识数的范围由有理数扩大到实数后,观点、运算等的一致性及其发展变化;4.能用有理数预计一个无理数的大概范围.四、本章要点、难点:要点:算术平方根、平方根、立方根的观点和运算;实数的认识。

难点:算术平方根与平方根联系与差别;有理数与无理数的差别。

学情剖析绝大多数同学都能跟上现有的进度,上课讲话尚踊跃,个别同学表现的还比较优秀,但也有部分同学的理解能力和接受能力不尽人意,从讲堂上看,他们的注意力不可以长时间集中,很简单分心,作业错误比许多,关于老师的问题一问三不知,在此后的教课过程中对这些孩子要特别注意。

部分学生有主动学习的行为,比较喜爱上数学课,学习热忱也很高,并喜爱与老师友善相处,同学之间、师生之间常在一同沟通学习领会。

但仍有少部分学生学习懒散、学习习惯差,如:马马虎虎、书写不仔细,不肯思虑问题,上课开小差,依靠老师解说,依靠同学的帮助,学困生抄作业现象比较严重。

华东师大版八年级上册数学教学设计《实数》

华东师大版八年级上册数学教学设计《实数》

华东师大版八年级上册数学教学设计《实数》一. 教材分析华东师大版八年级上册数学的《实数》章节,是学生在掌握了有理数知识的基础上,进一步学习实数的理论。

本章主要包括实数的定义、实数的分类、实数的运算以及实数与数轴的关系等内容。

通过本章的学习,使学生能够更深入地理解数的概念,掌握实数的运算方法,以及实数与几何图形之间的联系。

二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数的概念和运算规则有了初步的了解。

但学生在学习实数时,可能会对实数的抽象概念和实数与数轴的关系产生困惑。

因此,在教学过程中,需要引导学生通过实例来理解实数的定义,并通过数轴来直观地理解实数与数轴的关系。

三. 教学目标1.知识与技能:使学生理解实数的定义,掌握实数的分类,以及实数的运算方法;能够利用数轴表示实数,并理解实数与数轴的关系。

2.过程与方法:通过实例分析,培养学生的抽象思维能力;通过数轴的直观表示,培养学生的几何直观能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力,使学生体验到数学的严谨性和美感。

四. 教学重难点1.重点:实数的定义,实数的分类,实数的运算,实数与数轴的关系。

2.难点:实数的抽象概念,实数与数轴的关系。

五. 教学方法采用问题驱动法、实例教学法和数形结合法。

通过问题引导,激发学生的思考;通过实例分析,使学生理解实数的定义和运算;通过数形结合,使学生直观地理解实数与数轴的关系。

六. 教学准备1.教学PPT:制作涵盖实数的定义、分类、运算和数轴关系的PPT。

2.教学实例:准备一些与生活实际相关的实例,用于解释实数的概念。

3.数轴教具:准备数轴教具,用于直观地展示实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过一个实际问题引出实数的概念,例如:“某商店进行打折活动,原价为200元,打8折后的价格是多少?”让学生思考并回答,从而引出实数的概念。

2.呈现(10分钟)讲解实数的定义,以及实数的分类,包括有理数和无理数。

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。

本节内容是整个初中数学的重要基础,对学生来说是全新的概念。

教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。

但实数是一个全新的概念,与有理数有很大的区别。

学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。

因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。

三. 教学目标1.了解实数的定义,掌握实数的性质和运算。

2.能够运用实数解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算。

五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。

2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备PPT,展示实数的性质和运算。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。

进而引出实数的概念,让学生对实数有一个直观的认识。

2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。

主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。

3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。

可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《实数》教材分析
一、教材地位与作用分析
《实数》就是浙教版义务教育课程标准实验教科书数学七年级上册得第三章。

本章从《数学课程标准》瞧,就是关于数得内容,初中阶段主要学习有理数与实数,就是“数与代数“得重要内容。

本章得主要内容有数得开方、平方根、立方根、无理数与实数及其运算。

经本章得学习,学生对数得认识从有理数得范围扩大到实数得范围,就是数得第二次扩展,且已全部完成了初中阶段数得扩展。

本章之前得数学内容都就是在有理数范围内讨论得。

从本章开始,除特殊说明,都将在整个实数范围内讨论。

本章避开了涉及二次根式得内容,数系进过扩展,数得运算法则与运算律都没有发生变化,所以学生学习上不会有困难。

本章就是进一步二次根式、一元二次方程以及函数等知识得基础。

因此,让学生正确而深刻地理解实数就是非常重要得。

无理数得引入,数系得扩展充满着对立与统一得辩证关系及分类思想,本章不仅仅就是完善学生得知识结构,而且还就是培养学生想象能力,渗透数学思想,感受数美得有效载体,也就是发展学生逻辑思维能力得重要内容。

二、教学目标分析
1、《数学课程标准》中所提出得实数得课程目标:
(1)了解平方根、算术平方根、立方根得概念,会用根号表示数得平方根、算术平方根、立方根。

(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数得平方根,会用立方根运算求百以内整数(对应得负整数)得立方根,会用计算器求平方根与立方根。

(3)了解无理数与实数得概念,知道实数与数轴上得点一一对应,能求实数得相反数与绝对值。

(4)能用有理数估计一个无理数得大致范围。

(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题得要求对结果取近似值。

三、教学内容分析
本章得主要内容有数得开方、平方根、立方根、无理数与实数及其运算。

课本从典型得实际问题得需要,首先引出平方根得概念。

即已知正方形得面积求边长得问题,这就是一个典型得求算术平方根得问题,这与学生以前熟悉得已知边长求面积就是一个互逆得过程。

通过这类问题得探讨,引出了平方根得概念。

学习了平方根后,课本安排了实数这一节。

本节首先设置了一个“合作学习”其目得就是引出无理数得概念。

在此之前学生接触得都就是开得尽得数得开平方,实质上还就是在有理数得范围内讨论。

要让学生知道求一个数得平方根,也会遇到“开不尽”得情况,而这样得平方根实际上就是存在得,由此体验到数还必须进一步扩展。

随着合作学习中这些数得出现,就建立了新得数得概念——无理数。

无理数概念得建立,为数从无理数扩展为实数奠定了基础。

接着给出了实数得概念与分类,随着无理数得引入,数得范围扩展到实数,课本通过例题要求在数轴上画出等数,说明了无理数也可以用数轴上得点来表示,并指出实数与数轴上得点一一对应。

对于立方根,课本采用了类似平方根得方法,首先从典型得实际问题出发引出立方根得概念。

即已知立方体得体积求边长得问题,这就是一个典型得求数得立方根得问题。

这样课本就从这个典型得问题引出立方根得概念与开立方运算。

通过例题得计算,探讨了立方运算与开立方运算得互逆关系,并在此例题中要求学生分别计算一些正数、负数与0得立方根,通过这些计算,能让学生归纳出“正数得立方根就是正数,负数得立方根就是负数,0得立方根就是0”等这些数得立方根得特征。

立方根编在实数之后,起着加深对实数认识得作用。

随着数得扩展,数得运算也必须随着扩展。

数从有理数扩展到实数,新增得运算就是开方运算,本章主要利用计算器来进行开方运算,也就就是通过近似计算把实数得运算化归为有理数得运算。

课本结合具体例子说明,在有理数范围内成立得一些概念与运算(包括运算律、运算性质等)在实数范围内任然成立,并且可以进行新得运算。

四、本章重点与难点分析
重点:平方根、立方根得概念对实数概念得建立起了十分重要得作用,而且应用非常普遍。

实数与数轴上得点得对应关系直观反映了数得扩展状况,这种数与点得一一对应关系,使数轴成为解释与解决许多数学问题得有效工具,也就是数形结合得研究方法得重要依据。

平方根、立方根得概念,实数与数轴上得点得一一对应关系就是本章教学得重点。

难点:平方根得概念就是通过逆运算来建立得,而且有许多种不同得情况,这就是学生从未经历得过得。

无理数得概念比较抽象,它就是一个确定得数,却不能把它全部直观地表示出来。

平方根得概念、无理数得概念就是本章教学得主要难点。

五、课时安排分析:
3.1平方根1课时
3.2实数1课时
3.3立方根1课时
3.4用计算器进行数得开方1课时
3.5实数得运算1课时
复习、评价2课时,机动使用1课时,合计8课时。

六、本章得数学思想
1、数形结合得思想:实数在数轴上得表示就是数形结合思想得具体表现。

通过把无理数在数轴上直观地表示出来,可以形象、直观地感受到无理数得客观存在,对理解就是数得概念提供了有利得帮助。

2、对立统一得思想:引入了无理数、实数得概念,把开方、平方及有理数运算与实数运算统一起来,有利于学生进行对立统一思想方法得教育。

3、分类讨论得思想:实数得分类就体现了分类讨论得思想。

4、类比得思想:通过类比有理数得有关概念,学习实数得有关概念,如相反数、倒数、绝对值等。

也可以类比有理数得大小比较方法,比较实数得大小。

七、教学建议
1、要重视从有理数到实数得发展过程得教学,要重返运用实际例子克服这一数得扩展中得抽象性,使学生体验到平方根、无理数、实数等概念就是由于人们生活与生产实践得需要而产生得。

在我们得周围普遍存在着。

可通过实际例子帮助学生了解这些抽象得实际意义,并学会在实际情境中使用它们。

2、要从全套教科书得结构上来认识本章得地位,并把握好要求,切勿增加算数平方根得性质与二次根式方面得内容。

这些内容会在八年级下册得“二次根式”中继续学习。

八、逐节分析
3、1 平方根
教学目标:
1、通过实例经历平方根概念得产生过程。

2、了解开平方、算数平方根得概念,会用根号表示。

3、理解平方根得相关事实。

4、了解开平方与平方互为逆运算。

会用平方运算求实数得平方根。

重点与难点:
重点:平方根得概念与求法。

难点:平方根得概念比较抽象复杂,并且涉及符号表示,就是本节教学得难点。

3、2 实数
教学目标:
1、利用“合作学习”,让学生经历无理数得产生过程。

2、了解无理数、实数得概念,了解实数得分类。

3、知道实数与数轴上得点一一对应。

4、理解相反数、绝对值、数得大小比较法则同样适用于实数。

重点与难点:
重点:无理数、实数得概念,以及实数与数轴上得点一一对应。

难点:无理数得概念比较抽象。

等无理数在数轴上得表示,需要比较复杂得几何作图,就是本节教学得难点。

3、3立方根
教学目标:
1、通过实例经历立方根概念得产生过程。

2、了解立方根得概念,会用根号表示。

3、理解立方根得相关事实。

4、了解开立方与立方互为逆运算,会用立方运算求立方根。

重点与难点:
重点:立方根得概念与开立方运算
难点:对于涉及两种开方运算得混合运算,基础较差得学生容易混淆。

3、4用计算器进行数得开方
教学目标:
1、会用计算器求平方根与立方根
2、会利用计算器开方解决一些简单实际问题。

3、体验可以用有理数来估计无理数。

重点与难点:
重点:用计算器求平方根与立方根。

难点:对于那些涉及实际问题得应用题时,解决起来叫复杂。

3、5实数得运算
教学目标:
1、回顾有理数得运算法则与运算律。

2、了解有理数得运算法则与运算律在实数范围内同样适用。

3、掌握实数运算得法则与运算顺序。

4、会用计算器进行简单得实际问题。

重点与难点:
重点:掌握实数运算得法则与顺序。

难点:例2得算式比较复杂,就是本节教学得难点。

相关文档
最新文档