利用导数解直线与圆锥曲线相切问题
直线与圆锥曲线的位置关系(总结归纳)
y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
圆锥曲线解题技巧之八利用曲线的导数解题
圆锥曲线解题技巧之八利用曲线的导数解题圆锥曲线解题技巧之八:利用曲线的导数解题圆锥曲线是高中数学中重要的内容之一,解题时我们常常会遇到需要利用曲线的导数进行求解的情况。
本文将介绍一些常见的圆锥曲线解题技巧,帮助读者更好地理解和掌握这一知识点。
一、圆锥曲线的导数概念回顾在解题之前,我们首先对圆锥曲线的导数概念进行回顾。
圆锥曲线的导数,可以理解为曲线在某点处的切线斜率。
利用导数,我们可以求解曲线的切线方程,进而分析曲线的性质和特点。
二、利用导数求解直线与圆锥曲线的交点有时我们需要求解直线与圆锥曲线的交点,可以利用导数来进行求解。
假设直线方程为y=kx+b,圆锥曲线方程为y=f(x),我们可以通过以下步骤进行求解:1. 将直线方程代入圆锥曲线方程,得到一个关于x的方程f(x)-kx-b=0。
2. 求解方程f(x)-kx-b=0,得到曲线与直线的交点的横坐标x。
3. 将求得的横坐标x代入直线方程,得到交点的纵坐标y。
三、利用导数求解切线方程在解题过程中,有时我们需要求解曲线某点处的切线方程。
我们可以利用导数来求解切线方程,具体步骤如下:1. 求取曲线方程的导数,得到导函数。
2. 将导函数的值与给定点的坐标代入切线方程的公式y-y₁=k(x-x₁),其中k为导函数的值。
通过以上步骤,我们可以得到曲线某点处的切线方程,进而分析曲线在该点的切线斜率和特性。
四、利用导数求解曲线的凹凸性和拐点曲线的凹凸性和拐点是研究曲线特性的重要内容。
我们可以利用导数来求解曲线的凹凸性和拐点:1. 求取曲线方程的二阶导数,得到二阶导函数。
2. 判断二阶导函数的正负性:若二阶导函数大于0,则曲线在该点凹向上;若二阶导函数小于0,则曲线在该点凹向下。
3. 求解二阶导函数等于0的点,这些点即为曲线的拐点。
通过以上步骤,我们可以分析曲线的凹凸性和拐点,进一步掌握曲线的性质以及解题过程中的一些特殊情况。
结语本文介绍了利用圆锥曲线的导数进行解题的一些技巧和方法。
(完整版)解圆锥曲线问题常用的八种方法与七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知---—-—--这类问题一般可用待定系数法解决. 2.曲线的形状未知-———-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1〉r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法",即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M (x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法
专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法 【微点综述】圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的方法及常用结论. 一、圆锥曲线切线方程方法 1.向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程. 例11.已知圆O 的方程是()()222x a y b r -+-=,求经过圆上一点()00,M x y 的圆的切线l 的方程. 2.变换法设椭圆方程为22221x y a b +=,我们作变换:,,x au y bv =⎧⎨=⎩则可把椭圆化为单位圆:221u v +=,从而可将求椭圆的切线方程问题转化为求圆的切线问题. 例22.求过椭圆221169x y +=上一点M ⎛ ⎝⎭的切线l 方程. 3.判别式法可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.思维导图:设切线方程⇒联立切线与椭圆的方程⇒消去y (或x )得到关于x (或y )的一元二次方程⇒Δ0=求切线斜率⇒写出切线方程. 注意:过双曲线的对称中心不可能作出直线与双曲线相切. 例33.求经过点()2,1M 的双曲线:2222x y -=的切线l 的方程. 4.导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程. 例44.设为,A B 曲线2:4x C y =上两点,,A B 的横坐标之和为4.设M 为曲线C 上一点,C在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 例55.证明:过椭圆C :22221x y m n+=(m >n >0)上一点Q (x 0,y 0)的切线方程为00221x x y y m n +=.5.几何性质法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:(1)若焦点为12,F F 的椭圆或双曲线上有一点M ,则12F MF ∠的平分线一定与圆锥曲线相切;(2)若焦点为F 的抛物线上有一点M ,过M 作准线的垂线,垂足为N ,则FN 的中点P 与M 的连线PM 必与抛物线相切.据此,我们也可以利用圆锥曲线的几何性质作出其切线,然后再求出切线的方程. 例66.求抛物线2:8C y x =上经过点()8,8M 的切线l 的方程. 例77.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 例8(2022乙卷理科)8.已知抛物线C :()220x py p =>的焦点为F ,且F 与圆M :()2241y x ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 【强化训练】(2022桃城区校级模拟)9.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭(2022聊城一模)10.已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B .则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫- ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭(2022迎泽区校级月考)11.已知圆()22:14C x y -+=.动点P 在直线280x y +-=上,过点P 引圆的切线,切点分别为,A B ,则直线AB 过定点______.12.过圆2216x y +=外一点P (4,2)向圆引切线. (1)求过点P 的圆的切线方程;(2)若过点P 的直线截圆所得的弦长为(3)若过P 点引圆的两条切线,切点分别为1P 、2P ,求过切点1P 、2P 的直线方程. (2021春·黑龙江期中)13.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y+= B .111099x y += C .11133x y += D .199110x y += (2020.新课标△)14.已知△M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作△M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=(2022宿州期末)15.定义:若点()00,P x y 在椭圆()222210x y a b a b+=>>上,则以 P 为切点的切线方程为:00221x x y y a b +=.已知椭圆 22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线 MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11,23⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .12,23⎛⎫- ⎪⎝⎭D .12,23⎛⎫- ⎪⎝⎭(2022金安区校级期末)16.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1BCD .2(2022吉安期末理)17.过圆222x y r +=上一定点(),o o P x y 的圆的切线方程为20o x x y y r +=.此结论可推广到圆锥曲线上.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l .则过A 点且与直线l 垂直的直线方程为( ) A .20?x y +-= B .30x y --= C .2330x y +-= D .3100x y --=(2022大连期末)18.已知()11,M x y 为圆22:1C x y +=上一点,则过C 上点M 的切线方程为________,若()22,N x y 为椭圆2222:1(0)x y E a b a b+=>>上一点,则过E 上点N 的切线方程为_____________. (2022泸县校级一模)19.椭圆223144x y +=上点P (1,1)处的切线方程是______.(2022金安区校级模拟)20.一般情况下,过二次曲线Ax2+By2=C (ABC ≠0)上一点M (x0,y0)的切线方程为Ax0x+By0y=C ,.若过双曲线22221(0,0)x y a b a b -=>>上一点M (x0,y0)(x0<0)作双曲线的切线l ,已知直线l 过点N 0,2b ⎛⎫⎪⎝⎭,且斜率的取值范围是⎣,则该双曲线离心率的取值范围是______. (2022兴庆区校级一模)21.已知()00,P x y 是抛物线()220y px p =>上的一点,过P 点的切线方程的斜率可通过如下方式求得在22y px =两边同时求导,得:2'2yy p =,则'py y=,所以过P 的切线的斜率0p k y =.试用上述方法求出双曲线22y x 12-=在P 处的切线方程为_________.(2022亳州期末)22.已知椭圆C 的方程为()222210x y a b a b+=>>,离心率12e =,点P (2,3)在椭圆上.(1)求椭圆C 的方程(2)求过点P 的椭圆C 的切线方程(3)若从椭圆一个焦点发出的光线照到点P 被椭圆反射,证明:反射光线经过另一个焦点.(2022福州二模)23.已知椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t R ∈,切点分别是A 、B ,试利用结论:在椭圆22221x y a b+=上的点()00,x y 处的椭圆切线方程是00221x x y y a b +=,证明直线AB 恒过椭圆的右焦点2F ;(3)试探究2211AF BF +的值是否恒为常数,若是,求出此常数;若不是,请说明理由. (2022香坊区校级三模)24.已知点1(,2)2D -,过点D 作抛物线21:C x y =的两切线,切点为,A B .(1)求两切点,A B 所在的直线方程;(2)椭圆22221(0)x y a b a b +=>>(1)中直线AB 与椭圆交于点P ,Q ,直线,,PQ OP OQ 的斜率分别为k ,1k ,2k ,若123k k k +=,求椭圆的方程. (2022渝中区校级月考)25.已知椭圆22122:1x y C a b+=()0a b >>的离心率为12,过点)E的椭圆1C 的两条切线相互垂直.(△)求椭圆1C 的方程;(△)在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由. (2022杭州模拟)26.已知曲线1C 上任意一点到()0,1F 的距离比到x 轴的距离大1,椭圆2C 的中心在原点,一个焦点与1C 的焦点重合,长轴长为4.(1)求曲线1C 和椭圆2C 的方程;(2)椭圆2C 上是否存在一点M ,经过点M 作曲线1C 的两条切线,MA MB (,A B 为切点)使得直线AB 过椭圆的上顶点,若存在,求出切线,MA MB 的方程,不存在,说明理由.参考答案:1.()()()()200x a x a y b y b r --+--=【分析】设切线l 上任意一点N 的坐标是(),x y ,利用0OM ON ⋅=化简整理可得. 【详解】设切线l 上任意一点N 的坐标是(),x y ,由已知得圆心(),O a b ,()()0000,,,OM x a y b MN x x y y ∴=--=--,又0OM ON ⋅=,即()0000()()()0x x x a y y y b --+--= 所以()()()()()()00000x a x a x a y b y b y b ----+----=⎡⎤⎡⎤⎣⎦⎣⎦, △过圆上的点()00,M x y 的圆的切线l 的方程是:()()()()()()220000x a x a y b y b x a y b --+--=-+-,又()()22200x a y b r -+-=,△所求圆的切线l 的方程为()()()()200x a x a y b y b r --+--=.2.340x y +-=【分析】令,43yx u v ==,利用伸缩变换求得椭圆和点M 在新坐标系下的方程和坐标,然后由圆的切线方程和伸缩变换公式可得.【详解】令,43y x u v ==,则椭圆在新坐标系uOv 下的方程是:221u v +=,点M ⎛ ⎝⎭在新坐标系uOv 下的坐标是:⎝⎭,设过圆221u v +=上的点⎝⎭的切线方程为(22v k u -=-(易得斜率必存在),即(v k u =221u v +=整理得2221(1)(1)(21)02k u k u k k +-+--=由题意可知,22222(1)2(1)(21)0k k k k k =--+--=Δ,整理得2(1)0k +=即1k =-,所以切线方程为(v u =-,即:u v +=∴过椭圆上一点M 的切线l的方程是:43x y+340x y +-=. 3.10x y --=【分析】设直线,与双曲线联立,结合判别式分析,即得解【详解】若直线斜率不存在,过点()2,1M 的直线方程为:2x =,代入2222x y -=可得21y =,与双曲线有两个交点,不是切线;若直线斜率存在,设l 的方程是:()12y k x -=-,即:21y kx k =-+,将它代入方程2222x y -=整理得:()()()222214218840k x k k x k k ---+-+=,由已知20210,k -∆=≠,即()()()2224214218840k k k k k -----+=⎡⎤⎣⎦,解得:1k =,故所求切线l 的方程为:21y x =-+,即:10x y --=. 4.7y x =+【分析】在求得直线AB 的斜率后,便可运用导数法对抛物线的方程求导,得出点M 的坐标,再根据韦达定理和弦长公式求得切线的方程.【详解】设()()1122,,,A x y B x y ,则2212121212,,,444x x x x y y x x ≠==+=,于是直线AB 的斜率为121212121212()()14()4y y x x x x x x k x x x x -+-+====--, 由24x y =,得2x y '=. 设()33,M x y ,由题意可知:312x =,解得32x =,()2,1M ∴. 设直线AB 的方程为y x m =+,故线段的中点为()2,2N m +,1MN m =+将y x m =+代入24x y =得2440x x m --=,当()1610m ∆=+>,即当1m >-时,12x =+22x =-从而可得12AB x =-= 因为AM BM ⊥,且BN AN =,因为直角三角形斜边上的中线等于斜边的一半, 所以BN AN MN ==,所以2AB MN =,即()21m =+, 解得7m =,直线AB 的方程为7y x =+. 5.证明见解析【分析】方法一:分0y >,0y <和0y =,当0y >,0y <时,利用导数求切线方程可得; 方法二:设直线方程联立椭圆方程,利用判别式等于0求切点横坐标,然后可得切线方程. 【详解】法一:由椭圆C :22221x y m n+=,则有22221y x n m =-当0y >时,y =2nx y m '=-,△当00y >时,2000222001x n n n k x x y mm m y n =-=-=-⋅. △切线方程为()200020x n y y x x m y -=-⋅-,整理为:222222220000n x x m y y m y n x m n +=+=,两边同时除以22m n 得:00221x x y ym n+=. 同理可证:00y <时,切线方程也为00221x x y ym n+=. 当0=0y 时,切线方程为x m =±满足00221x x y ym n+=. 综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 法二:当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,△由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 化简可得:2222t m k n =+,△式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m k y n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n+=在点00(,)x y 处的切线方程为00221x x y y m n +=.6.280x y -+=【分析】根据线段NF 的垂直平分线经过点M 即可求得切线方程.【详解】由抛物线2:8C y x =可得其焦点()2,0F , 准线方程为:2x =-, 过点()8,8M 作准线的垂线,设垂足为N ,则N 的坐标为()2,8-, 又设FN 的中点为P ,则P 的坐标为()0,4,如图所示:故直线PM 的方程为:84480y x --=-, 即280x y -+=,△切线l 的方程为280x y -+=. 7.答案见解析.【分析】根据两切线方程分别为:()11y y p x x =+,()22y y p x x =+,且均过均过点P ,可知弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭.【详解】以22y px =(p >0)为例说明.设点00(,)Q x y 是抛物线22y px =上的任意一点,则过点00(,)Q x y 且与抛物线相切的直线方程为00()y y k x x -=-,联立2002()y pxy y k x x ⎧=⎨-=-⎩得:222222000000(222)20k x k x p ky x k x y kx y -+-++-=,因为二者相切,所以Δ0=,即222222000000(222)4(2)0k x p ky k k x y kx y +--+-=,化简得:0p k y =,又2002y px =, 代入00()y y k x x -=-得:()00y y p x x =+,即抛物线22y px =在00(,)Q x y 处的切线方程为()00yy p x x =+. 设准线上任一点0,2p P y ⎛⎫- ⎪⎝⎭,切点分别为()11,A x y 、()22,B x y ,则切线方程分别为:()11y y p x x =+,()22y y p x x =+两切线均过点P ,则满足1012p y y p x ⎛⎫=-+ ⎪⎝⎭,2022p y y p x ⎛⎫=-+ ⎪⎝⎭.故过两切点的弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭,则弦AB 过焦点.【点睛】(1)点()00,P x y 是抛物线()220y mx m =≠上一点,则抛物线过点P 的切线方程是:()00y y m x x =+;(2)点()00,P x y 是抛物线()220x my m =≠上一点,则抛物线过点P 的切线方程是:()00x x m y y =+.8.(1)p =2(2)【分析】(1)先求42pFM =+,点F 到圆M 上的点的距离的最小值即为FM r -. (2)求出AB =和点P 到直线AB的距离d =322(6)2144PABb S ⎛⎫--+= ⎪⎝⎭△,根据b 的范围即可求最大值.(1)0,2p F ⎛⎫⎪⎝⎭到圆心4(0,)M -的距离42p FM +,所以点F 到圆M 上的点的距离的最小值为4142pFM r -=+-=, 解得p =2; (2)由(1)知,抛物线的方程为24x y =, 即214y x =,则12y x '=, 设切点()11,A x y ,()22,B x y , 则易得PA l :21124x x y x =-,△PB l :22224x x y x =-,△联立△△可得1212,24x x x x P +⎛⎫⎪⎝⎭,设AB l :y kx b =+,联立抛物线方程,消去y 并整理可得2440x kx b --=, △216160k b ∆=+>,即20k b +>, 且124x x k +=,124x x b =-, △(2,)P k b -△AB ==点P 到直线AB 的距离d =△()322142PABS AB d k b ==+△△,又点(2,)P k b -在圆M :()2241y x ++=上, 故()22144b k --=,代入△得,332222(6)2112154444PAB b b b S ⎛⎫--+⎛⎫-+-== ⎪ ⎪⎝⎭⎝⎭△, 而[]5,3p y b =-∈--,△当b =5时,()max=PAB S【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 9.A【分析】设(2,)P t ,圆心C 的坐标为(0,0),可得以线段PC 为直径的圆N 的方程,两圆方程作差,得两圆公共弦AB 的方程可得答案. 【详解】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 10.A【分析】由P A △AC ,PB △BC 可知点A 、B 在以PC 为直径的圆上,设点P 坐标,写出以PC 为直径的圆的方程,然后可得直线AB 方程,再由直线方程可确定所过定点. 【详解】根据题意,P 为直线l :20x y ++=上的动点,设P 的坐标为(),2t t --, 过点P 作圆C 的两条切线,切点分别为A ,B ,则P A △AC ,PB △BC , 则点A 、B 在以PC 为直径的圆上,又由C (0,0),(),2P t t --,则以PC 为直径的圆的方程为:()()20x x t y y t -+++=,变形可得:()2220x y tx t y +-++=,则有22221(2)0x y x y tx t y ⎧+=⎨+-++=⎩,联立可得:()120tx t y -++=,变形可得:()120y t x y +--=, 即直线AB 的方程为()120y t x y +--=,变形可得:()120y t x y +--=,则有1200y x y +=⎧⎨-=⎩,解可得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故直线AB 过定点11,22⎛⎫-- ⎪⎝⎭. 故选:A . 11.118,77⎛⎫ ⎪⎝⎭【分析】根据题意,设P 的坐标为(82,)t t -,由圆的切线的性质分析可得则A 、B 在以CP 为直径的圆上,进而可得该圆的方程,进而分析可得直线AB 为两圆的公共弦所在直线的方程,由圆与圆的位置关系分析可得直线AB 的方程,据此分析可得答案. 【详解】根据题意,动点P 在直线280x y +-=上,设P 的坐标为(82,)t t -, 圆22:(1)4C x y -+=,圆心为(1,0),过点P 引圆的切线,切点分别为A ,B ,则PA CA ⊥,PB CB ⊥,则A 、B 在以CP 为直径的圆上,该圆的方程为(1)[(82)](0)()0x x t y y t ---+--=, 变形可得:22(92)(82)0x y t x ty t +---+-=,又由A 、B 在圆C 上,即直线AB 为两圆的公共弦所在直线的方程,则有2222230(92)(82)0x y x x y t x ty t ⎧+--=⎨+---+-=⎩, 则直线AB 的方程为(711)(22)x t x y -=--,则有7110220x x y -=⎧⎨--=⎩,解可得:11787x y ⎧=⎪⎪⎨⎪=⎪⎩;故直线AB 恒过定点11(7,8)7;故答案为:11(7,8)7.【点睛】本题考查直线与圆的位置关系、公共弦方程求法、直线过定点问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两圆相减可得公共弦直线方程的应用. 12.(1)x =4或34200x y +-= (2)y =2或43100x y --= (3)280x y +-=【分析】(1)分k 不存在和k 存在两种情况讨论,利用圆心到直线距离等于半径,求解即可;(22,结合圆心到直线距离公式,可得解; (3)由题意12,,,P O P P 四点共圆,且PO 为直径,写出圆的方程,过切点1P 、2P 的直线即为圆22420x y x y +--=与圆2216x y +=的交线,求解即可. (1)当切线斜率不存在时,过点P (4,2)的直线为x =4,圆心到直线距离等于半径,故x =4为切线;当切线的斜率存在时,设切线方程为()24y k x -=-,即420kx y k --+=.4=,即430k +=解得:34k =-,此时切线方程为34200x y +-=.△过点P 的圆的切线方程为x =4或34200x y +-=; (2)由(1)知,所求切线斜率存在,设直线方程为420kx y k --+=.△r =4,且弦长为△圆心到直线420kx y k --+=的距离2d ==,即2340k k -= 解得k =0或43k =.△所求直线方程为y =2或43100x y --=; (3)由题意,1122,OP PP OP PP ⊥⊥ 故12,,,P O P P 四点共圆,且PO 为直径 △P (4,2),△以PO 为直径的圆圆心为(2,1),半径||2PO r == 故圆的方程为()()22215x y -+-=,由于12,P P 也在圆2216x y +=上,故过切点1P 、2P 的直线为圆22420x y x y +--=与圆2216x y +=的公共弦 两圆方程作差可得过1P 、2P 的直线方程为280x y +-=. 13.C【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上, 故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099x y +=,整理可得11133x y+=. 故选:C.【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 14.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小. △()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 15.C【解析】设()26,M t t +,()11,A x y ,()22,B x y ,即可表示出MA 的方程,又M 在MA 上,即可得到()1126132x t y t++=,即可得到直线AB 的方程,从而求出直线AB 过的定点; 【详解】解:因为点M 在直线260x y --=上,设()26,M t t +,()11,A x y ,()22,B x y ,所以MA 的方程为11132x x y y+=,又M 在MA 上,所以()1126132x t y t ++=△,同理可得()2226132x t y t ++=△; 由△△可得AB 的方程为()26132x t yt++=,即()22636x t yt ++=,即()()431260x y t x ++-=,所以4301260x y x +=⎧⎨-=⎩,解得1223x y ⎧=⎪⎪⎨⎪=-⎪⎩,故直线恒过定点12,23⎛⎫- ⎪⎝⎭故选:C 16.C【解析】设1111(,),(0,0)B x y x y >>,根据题意,求得过点B 的切线l 的方程,即可求得C 、D 坐标,代入面积公式,即可求得OCD 面积S 的表达式,利用基本不等式,即可求得答案. 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x y y x =,即111,x y ==时等号成立, 所以OCD. 故选:C【点睛】解题的关键是根据题意,直接写出过点B 的切线方程,进而求得面积S 的表达式,再利用基本不等式求解,考查分析理解,计算化简的能力,属基础题. 17.A【解析】根据类比推理,可得直线l 的方程,然后根据垂直关系,可得所求直线方程.【详解】过椭圆221124x y +=上的点()3,1A -的切线l 的方程为31124x y-+=, 即40x y --=,切线l 的斜率为1, 与直线l 垂直的直线的斜率为-1, 过A 点且与直线l 垂直的 直线方程为(13)y x +=-一, 即20x y +-=. 故选:A【点睛】本题考查类比推理以及直线的垂直关系,属中档题. 18. 111x x y y +=22221x x y ya b+= 【分析】由OM 垂直切线可求出切的斜率,再利用点斜式可求出过C 上点M 的切线方程;利用导数的几何意义在点()22,N x y 处切线的斜率,再利用点斜式求出直线方程 【详解】解:因为11OM y k x =,切线与直线OM , 所以所求切线的斜率为11x y -, 所以所求的切线方程为1111()x y y x x y -=--,即221111y y y x x x -=-+,得221111x x y y x y +=+,因为点()11,M x y 为圆22:1C x y +=上一点,所以22111x y +=,所以过C 上点M 的切线方程为111x x y y +=; 当20y >时,设0y >,由22221x y a b +=得22221y x b a=- 22222y a x b a -= △22222()b y a x a =-△y = △1'222()(2)2b y a x x a-=-⋅-1222()bx a x a -=--=△过点()22,N x y的切线的斜率为△过点()22,N x y的切线的方程为22)y y x x -=-△点()22,N x y 在椭圆上,△2222221x y a b+=,222222222,a y a y b x a b b=+=, △2222()bx b y y x x a ay -=-⋅-, 即222222()b xy y x x a y -=-- 2222222222a y y a y b x x b x -=-+,2222222222a y y b x x a y b x +=+,△222222a y y b x x a b +=,△所求的切线方程为22221x x y ya b+=, 当20y <时,同理可得其切线方程为22221x x y ya b+=所以过E 上点()22,N x y 的切线方程为22221x x y ya b+=, 故答案为:111x x y y +=;22221x x y ya b+= 【点睛】此题考查圆锥曲线的切线方程的求法,属于中档题 19.340x y +-=【分析】由导数的几何意义即可求得切线方程.【详解】△椭圆223144x y +=,△y >0时,y △23xy -'=, △x =1时,13y '=-,即切线斜率13k =-,△椭圆223144x y +=上点P (1,1)处的切线方程是()1113y x -=--,即340x y +-=. 故答案为:340x y +-=. 20.【分析】求得切线方程,将N 代入切线方程,即可求得M 点坐标,求得切线方程,根据斜率公式及离心率公式即可求得答案. 【详解】双曲线在M (x 0,y 0)的切线方程为00221x x y ya b-=,将N 代入切线方程, 解得y 0=﹣2b ,代入双曲线方程解得:x 0,21y b =,即y2bx +,由斜率的取值范围是⎣1≤b a ≤2, 由双曲线的离心率e =c a1≤22b a ≤4,∴双曲线离心率的取值范围, 故答案为:.【点睛】本题考查双曲线的切线方程的应用及离心率公式,考查转化思想,属于中档题.21.20-=x y【详解】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对2212y x =-两边同时求导得,22x yy x y y '∴'==,,0002|2x x x k y y =∴='=, △切线方程为2(y x ,整理为一般式即:20x y -.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 22.(1)2211612x y +=;(2)280x y +-=; (3)证明见解析.【分析】(1)根据已知条件列方程组即可求出,,a b c .(2)由直线与椭圆相切,根据判别式Δ0=即可求出直线斜率k . (3)利用向量数量积证明直线1PF 与2F P 关于直线m 对称即可;【详解】(1)由题意可得:2222212491c a a b c a b ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得216a =,212b =,△椭圆C 的方程为:2211612x y +=;(2)显然,过点P (2,3)的切线存在斜率, 设切线l 的斜率为k ,则l :3(2)y k x -=-,由22116123(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得()()222348231648120k x k kx k k +--+--=, 因为直线l 与椭圆C 相切,∴()()()2222Δ64234341648120k k k k k =--+--=,化为:24410k k ++=,解得12k =-.△求过点P 的椭圆切线方程为280x y +-=. (3)证明:△椭圆C 的方程为:2211612x y +=, 则椭圆左右焦点分别为()12,0F -,()22,0F , △过点P 的椭圆切线方程为280x y +-=, △过点P 的椭圆法线方程为m :210x y --=, 法线的方向向量()1,2m =--, △()14,3PF =--,()20,3PF =-, △1112cos ,PF mPF m PF m⋅==-,2222cos ,PF mPF m PF m⋅==- △直线1PF ,2F P 关于直线m 对称;△从椭圆一个焦点发出的光线照到点P ,被椭圆反射后,反射光线一定经过另一个焦点. 【点睛】求椭圆的标准方程有两种方法:△定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.△待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 23.(1)22143x y +=(2)证明见解析(3)是,常数为43【分析】(1)代入点坐标,结合2221b e a=-求解即可;(2)根据结论设出切线方程,两条切线交于点M (4,t ),可得点A 、B 的坐标都适合方程13tx y +=,求出定点坐标即可; (3)联立直线AB 与椭圆,点点距公式表示22,AF BF ,结合韦达定理化简即得解【详解】(1)△椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.△222314b e a =-=,△221914a b +=,△, 由△△得:24a =,23b =,△椭圆C 的方程为22143x y +=. (2)证明:设切点坐标()11,A x y ,()22,B x y ,则切线方程分别为11143x x y y+=,22143x x y y +=. 又两条切线交于点M (4,t ),即1113t x y +=,2213tx y +=,即点A 、B 的坐标都适合方程13tx y +=,令0y =,可得1x = 故对任意实数t ,点(1,0)都适合这个方程,故直线AB 恒过椭圆的右焦点()21,0F .(3)将直线AB 的方程13tx y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, △122612t y y t +=+,1222712y y t =-+, 不妨设10y >,20y <,21AF y =,同理22BF y =,△211212221111y y y y y y AF BF -⎫+=-=⎪⎭1243==,△2211AF BF +的值恒为常数43. 24.(1)2y x =+;(2)2214812x y +=. 【分析】(1)设出切点,利用切点处的导数是斜率,表示出切线方程,1(,2)2D -在切线上,求出两解,分别对应切点,A B 坐标,则方程可求. (2a b 、的一个关系;联立直线和椭圆方程,用上韦达定理,结合123k k k +=,再建立a b 、的一个关系,则椭圆方程可求. 【详解】解:(1)设切点11(,)A x y 22(,)B x y ,则221122,x y x y ==切线的斜率为2y x '=,所以抛物线上过11(,)A x y 点的切线的斜率为12x ,切线方程为()2111112,2y y x x x y x x x -=-=-,1(,2)2D -在切线上,所以21120x x --=,12x =或11x =-, 当12x =时,2114y x ==;当11x =-,2111y x ==,不妨设()(2,4),1,1A B -,1AB k =, 所以两切点,A B 所在的直线方程2y x =+.(2)由e =2234c a =,又222c a b =-,所以224a b =.222244y x x y b=+⎧⎨+=⎩,得225161640x x b ++-=, 21651645P Q P Q x x b x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, 21,Q PP Qk k y y x x ==, 1k =,又因为123k k k +=,()()3,3,223P Q P Q Q P Q Q P P P Q P Q P Qx x x x y y x y x y x x x x x x ++++===+,()2P Q P Q x x x x +=,22161642,1255b b --⨯==,248a =, 所以椭圆的方程2214812x y +=.【点睛】以直线和抛物线、椭圆的位置关系为载体,考查求直线方程、椭圆方程的方法;中档题.25.(△)22143x y +=;(△)满足条件的点P 有两个.【详解】试题分析:(1) 结合椭圆的离心率可求得1c =,则椭圆方程为22143x y +=.(2)由题意首先求得切线方程的参数形式,据此可得直线BC 的方程为002x y x y =-,则点P 的轨迹方程为112y x =-,原问题转化为直线112y x =-与椭圆1C 的交点个数,即满足条件的点P 有两个. 试题解析:(△)由椭圆的对称性,不妨设在x 轴上方的切点为M ,x 轴下方的切点为N , 则1NE k =,NE的直线方程为y x =因为椭圆22122:1x y C a b+= ()0a b >>的离心率为12,所以椭圆22122:143x y C c c+=,所以22221,43y x x y c c ⎧=⎪⎨+=⎪⎩ 0∆=,则1c =, 所以椭圆方程为22143x y +=.(△)设点()11,B x y ,()22,C x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=,△抛物线2C 在点B 处的切线1l 的方程为()1112x y y x x -=-, 即2111122x y x y x =+-, △21114y x =,△112x y x y =-.△点()00,P x y 在切线1l 上,△10012x y x y =-.△ 同理,20022x y x y =-.△ 综合△、△得,点()11,B x y ,()22,C x y 的坐标都满足方程002xy x y =-. △经过()11,B x y ,()22,C x y 两点的直线是唯一的, △直线BC 的方程为002x y x y =-, △点()1,1A 在直线BC 上,△00112y x =-, △点P 的轨迹方程为112y x =-.又△点P 在椭圆1C 上,又在直线112y x =-上, △直线112y x =-经过椭圆1C 内一点()0,1-, △直线112y x =-与椭圆1C 交于两点. △满足条件的点P 有两个.26.(1)21:4C x y =,222:134x y C +=(2)2y =-【分析】(1)依据曲线1C 和椭圆的定义求方程.(2) 假设点M 存在,设切线方程,M 即在抛物线又在椭圆上找到等量关系.【详解】(1)由曲线1C 上任意一点到F (0,1)的距离比到x 轴的距离大1,根据抛物线的定义,曲线1C 为以F (0,1)为焦点的抛物线,则曲线1C :24x y =;设椭圆2C 的方程()222210y x a b a b+=>>,由24a =,a =2,c =1,2223b a c =-=,△椭圆2C :22143y x +=;(2)若存在,由题意设AB 方程:y =kx +2代入24x y =,化简得2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,△ 由于12y x '=,△切线MA 方程为:()11112y y x x x -=-,即2111124y x x x =-,△同理切线MB 方程为:2221124y x x x =-,△ 由△△得1212,24x x x x M +⎛⎫⎪⎝⎭,△M (2k ,-2), 又M (2k ,-2)在椭圆上,24113k +=可得:k =0,△M (0,-2)k =0代入△有:1x =2x =-△椭圆2C 上存在一点M (0,-2)符合题意,此时两条切线的方程为2y =-. 【点睛】本题要证明切点弦过定点,设切点弦的直线方程,得到韦达定理,然后通过切点写出两条切线方程,可以得到交点M 的坐标,由点M 的特性可以求出M 坐标,进而求出切点,写出切线方程.。
运用参数方程知识巧解直线与圆锥曲线相切问题
运用参数方程知识巧解直线与圆锥曲线相切问题江西省高安中学数学教研组章勇生本文“运用参数方程知识巧解直线与圆锥曲线相切问题”是我在运用几何画板作椭圆和双曲线时的一点感悟,运用这种方法解题,使运算量大大减少,学生易接受,并且解题成功率大大提高。
关键词:一一对应、参数方程、三角变换一、再现如何运用参数方程作椭圆和双曲线1、用几何画板作椭圆:①、以原点为圆心,分别以a,b长为半径作圆。
②、在以a为半径的圆上任取一点M,连结OM,交以b为半径的圆于点N。
③、过点M作X轴的垂线,再过点N作前垂线的垂线交于点H。
④、同时点M和H点,再从菜单选项中选择轨迹便可得所需要的椭圆。
理论根据:设∠AOM=θ,则|OC|=|OM|cosθ=a cosθ, |CH|=|ND|=|ON|sinθ=bsinθ, 根据椭圆的参数方程知,点H的轨迹是一个椭圆。
2、用几何画板作双曲线:①.以坐标原点O为圆心,分别以a=OA、b=OB(a, b>0)为半径画两个圆;②.圆OB与x轴的正方向交于点C,过C作x轴的垂线,③.在圆OA上取一点P,连接OP,直线OP与过点C且和x轴垂直的直线交于点N,过点N作x轴的平行线NM;④.过点P作PR垂直于OP,交x轴于点R;⑤.过点R在x轴的垂线交直线NM于点M;⑥.分别选中点M和点P,用"作图"菜单中的"轨迹"功能,画出双曲线。
理论根据:设∠xOP=θ,则|OR|=|OP|secθ=asecθ, |RM|=|NC|=|OC|tanθ=btanθ, 根据双曲线的参数方程知,点M的轨迹是一个双曲线。
二、从作图中得到的启示从作图中我们发现,椭圆中的θ(0°≤θ<360°)与点M的位置,应该是一一对应的关系,即一个θ的值对应一个M的位置,当θ的值有两个,则说明对应着两个M点。
同样,在双曲线中的θ(0°≤θ<360°)与点P的位置,也应该是一一对应的关系,一个θ的值也对应一个P的位置,而θ的值不同,对应的P值也不同。
专题14 圆锥曲线的切线问题
专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
【素材】直线与圆锥曲线相切的问题
直线与圆锥曲线相切的问题一、创设情景二、复习引入圆的切线的求法引例:求过点)20(,且与圆122=+y x 相切的直线l 的方程。
方法一:设直线l 的方程为2+=kx y 直线l 与圆相切,即1122=+k∴ 直线l 的方程为23+=x y 或23+-=x y方法二:设直线l 的方程为2+=kx y直线l 与圆相切∴ 直线l 与圆只有一个公共点∴⎩⎨⎧=++=1222y x kx y 则034)1(22=+++kx x k ∴)1(121622k k +-=∆令0=∆,则3±=k∴ 直线l 的方程为23+=x y 或23+-=x y三、例题讲解例1、求过点A )20(,且与椭圆1422=+y x 相切的直线l 的方程。
分析:能否用圆的切线的求法来求解呢?解: 1 若直线l 的斜率不存在,则显然直线l 与椭圆有两个公共点,不符合题意。
2 若直线l 的斜率存在,设为k ,则直线l 的方程为2+=kx y直线l 与椭圆相切∴ 直线l 与椭圆只有一个公共点∴⎩⎨⎧=++=14222y x kx y 则034)4(22=+++kx x k ∴484)4(1216222-=+-=∆k k k 令0=∆,则32±=k∴ 直线l 的方程为232+=x y 或232+-=x y小结:研究直线与圆、椭圆只有一个公共点的时候,设直线方程、联立方程组、化简为一元二次方程、令0=∆即可;但要注意若直线的斜率k 不存在时的特殊情况,此时0=∆的方法不适用。
从上面的两个例子,可以看出利用0=∆可以解决直线与曲线相切的问题。
问题:直线与曲线相切,它们只有一个公共点,那么直线与曲线只有一个公共点,它们一定相切吗?例2、求过点)01(,P 且与抛物线y x 82=仅有一个公共点的直线l 的方程。
(给出网格图,学生先探究)解:设过点P 且与抛物线仅有一个公共点的直线l 的方程为)1(-=x k y 令⎩⎨⎧=-=yx x k y 8)1(2 则0882=+-k kx x ∴k k 32642-=∆令0=∆,则0=k 或21=k ∴ 直线l 的方程为0=y 或2121-=x y ∴ 直线l 的方程为1=x ,0=y 或2121-=x y (提醒学生注意考虑图形)小结:“仅有一个公共点”的情况,除了考虑相切的情形,还要结合图形进行分析。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
新高考 核心考点与题型 圆锥曲线 第4讲 直线与圆锥曲线相交 - 解析
第4讲 直线与圆锥曲线相交基础知识:(一)直线与椭圆位置关系1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点)2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定,下面以直线y kx m =+和椭圆:()222210x y a b a b+=>>为例(1)联立直线与椭圆方程:222222y kx mb x a y a b=+⎧⎨+=⎩ (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:()222222b x a kx m a b ++=,整理可得:()22222222220a kb x a kxm a m a b +++-=(3)通过计算判别式∆的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0∆>⇒方程有两个不同实根⇒直线与椭圆相交 ② 0∆=⇒方程有两个相同实根⇒直线与椭圆相切 ③ 0∆<⇒方程没有实根⇒直线与椭圆相离3、若直线上的某点位于椭圆内部,则该直线一定与椭圆相交(二)直线与双曲线位置关系1、直线与双曲线位置关系,相交,相切,相离2、直线与双曲线位置关系的判定:与椭圆相同,可通过方程根的个数进行判定以直线y kx m =+和椭圆:()222210x y a b a b-=>>为例:(1)联立直线与双曲线方程:222222y kx mb x a y a b=+⎧⎨-=⎩,消元代入后可得: ()()22222222220ba k x a kxm a m ab ---+=(2)与椭圆不同,在椭圆中,因为2220a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为222b a k -,有可能为零。
所以要分情况进行讨论 当2220bb a k k a-=⇒=±且0m ≠时,方程变为一次方程,有一个根。
用导数方法求圆锥曲线的切线
用导数方法求圆锥曲线的切线求解函数图象上过某点的函数图象的切线的方程,是导数的一个重要应用。
有心圆锥曲线一般情形下都不是函数图象,所以习惯上,一般我们不用导数方法求解圆锥曲线的切线问题,而是利用传统的方法,即判断直线和圆锥曲线方程所组成的方程组的解的情况来解决,但是有时候这种解法会比较烦琐,特别是含有参数的时候计算量较大。
而我们可以将圆锥曲线分成“几个函数”来分别讨论,这样就可以实现用导数的方法来求曲线的切线了。
本文将用导数的方法证明一个有心圆锥曲线的性质。
引理1:过椭圆)0(12222>>=+b a by a x 上任意一点),(00y x P 的该椭圆的切线方程为12020=+by y a x x ; 证明:我们先考虑当的情形;0>y,022x a a b y y -=>时,,22'x a a bx y --=,20200|'x a a bx y x x --==bay x a x a a b y 0202220,=--=所以而 ,,|'0002020的斜率)的切线(即为椭圆过l y x P y a x b y x x -=∴= )(:002020x x y a x b y y l --=-∴切线 .1,20202202202020222022020202=++=++=+by y a x x b y a x b y y a x x b a y a x b y y a x x b ,即得两边同除以化简得 当0<y 时,22x a a b y --=,同理可得其过)(00,y x P 的切线方程为.12020=+b y y a x x时,或在点)0,()0,(a a P -,以上结论仍然成立或其切线方程为a x a x -==,从而引理1得证!引理2:过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的该双曲线的切线方程为12020=-by y a x x ; 证明:2200a x a b y y y -=>>时,的情形,先考虑, 2200220|','a x a bx y a x a bxy x x -=-== 而bay a x a x a b y 02202200=-∴-=, 02020|'y a x b y x x =∴=即为过)(00,y x P 的切线的斜率, 所以切线方程为)(002020x x y a x b y y -=- 整理得2022020202y a x b y y a x x b -=- 进而有1,20202202202020=--=-by y a x x b y a x b y y a x x 即; 类似的,当0<y 时,22a x ab y --=,其过点)(00,y x P 的切线方程仍然为12020=-by y a x x , 时,或在点)0,()0,(a a P -,或其切线方程为a x a x -==以上结论仍然成立 ,从而 引理2成立!对于焦点在y 轴上的椭圆和双曲线,类似的可以得到相同的结论。
用导数探究圆锥曲线切线问题的方法
数学篇张淑滢用导数探究圆锥曲线切线问题的方法在高二年级第一学期,我们学习了圆锥曲线的一些基础知识,同时数学选修2-2课本上讲述了函数的导数工具,详细讲解了如何利用导数求解函数曲线的切线问题。
我们知道,函数有两种表达形式,一种是函数表达式,形如:y =ax 2+bx +c ;另一种是函数图像,是画在平面直角坐标系oxy 中的一条曲线,这条曲线的一个特点就是一个x 值对应唯一的一个y 值;而导数是从函数的图像观点出发,精确描述函数在一个点处的变化,从而也就可以描述函数的单调性与一点处曲线的切线,将图像上看到的现象用函数表达式的角度来刻画就是函数求导的相关计算了。
另一个方面,我们也知道,圆锥曲线也有两种表现形式,一个是曲线的方程,另一个就是字面上已经告诉我们的曲线了,只不过这条曲线和函数曲线略有不同,它的一个x 值可以对应多个y 值。
从图像上来看,导数是在一个点“附近”定义的,虽然圆锥曲线和函数曲线不同,但是,如果我们只看曲线的一小部分的话,并不能看出来这种差别,以此为出发点,我们完全可以利用导数工具求解圆锥曲线的切线。
具体来说,我们有两种方法来实现上述想法:一种是直接的,我们把圆锥曲线分成几段,每一段都可以解出它的函数表达式来,从而利用函数求导来完成,最后我们把结果总结写出;另一种是我们只是持有分段的想法,但是不真正去分段,也不直接写出函数表达式来,只是把方程看成是一段段的函数(只是没有解出来而已),这样把整体用复合函数处理,或者对方程求导。
接下来我们把两种方法具体写出,导出我们的结论,然后给出一些应用。
一、利用局部函数求切线局部函数的意思是说对于圆锥曲线方程,整体上看它不是一个函数,但是局部上可以看成函数,举例来说,椭圆方程:x 2a 2+y 2b 2=1(a ,b >0)这不是一个函数,但是在y >0部分(曲线上半部分),可以写成函数y =b 2(1-x 2a2)姨同样地,y <0部分,可以写成y =-b 2(1-x 2a2)姨;x >0y 2函数);x <0部分,可以写成x =-a 2(1-y 2b2)姨。
直线与圆锥曲线相交问题的两种特优解法
直线与圆锥曲线相交问题的两种特优解法直线与圆锥曲线相交问题是解析几何学习中的重要问题之一,通常采用解方程的方法求解相交点坐标。
然而,对于某些特殊情况,存在特优解法,可以更快地求出相交点坐标。
一种特优解法是利用直线斜率和圆锥曲线的导数的关系。
当直线的斜率与圆锥曲线导数值相等时,两者相交处的切线与直线重合,因此相交点坐标可以通过解一个一次方程求得。
这种方法适用于一些简单的圆锥曲线,如双曲线、抛物线等。
另一种特优解法是利用圆锥曲线的对称性质。
当直线与圆锥曲线关于某个点对称时,相交点坐标即为该点的坐标。
这种方法适用于一些具有对称性质的圆锥曲线,如椭圆、圆等。
这两种特优解法可以在求解直线与圆锥曲线相交问题时提高计算效率,使得计算更加简洁明了。
但需要注意的是,这些方法仅适用于特定情况,不能一概而论。
在具体问题中,需要根据情况选择最适合的方法来求解。
- 1 -。
直线与圆锥曲线相切的充要条件及其应用
由(
Z
) + ( 3) 得
0
,
·
,
j (
+ f(君+
)二
,
Z劣 一
( < 晶)
·
’
气
.
一
a <
”
·
<
(群
’
一’
、 一
·
(刹
。
” 一
’
3
,
3
了. 落
“ 一’
即Acs o 肠+ s n Z x ( 1 从 而夕 矛 干忑豆 B i 2 s n i ( 夕 + Z) x ` . 1 ( 6 ) ( 其 中口 角所 在 的 象 限 由 滩 B
由` , , + ` , , 得
s b
in 名+
2
,
,
`( 二 , 一 `
。
,
(晋 )
x
+
,
一
卜
·
_
5 1 0 b o戏 ) 衅一 c
s 即 ( b一 a ) i n
+
o ( a + 6) e s
一
,
,
参
,
=
二
2
.
x
一
/
二 趣 2 卜
i
i
招
一
2
2招 一
下 华 户巴
2
,
·
’
易见 当 > n
2时
,
《
n : 云 从 而 斌 移二可耳 了 千砰 污i ( 口 + 二 ) 《 2 … ( 4 ) ( 其 . a , a 中 口 角所在 的象限 由 ( b 一 ) ( + b ) 的 符号确定 0
导数一直线和曲线相切问题的基本策略
导数一直线和曲线相切问题的基本策略
生活中,作业中的微积分学习时常会遇到求导数函数一直线和曲线相切的问题。
和其他问题不同,它的求解需要考虑多项因素,解题需要借助一定的技巧和策略,不能仅仅停留在理论上的学习,而是要带动联系实际,以求达到锻炼对课程内容的全方面认识和理解。
针对这一问题,我们应该从以下几个方面来进行解决:</br>
首先,我们需要清楚地理解函数的性质,如是线性函数还是非线性函数,这里
要求你要有良好的数学基础,即要掌握函数的特性和性质,建立起函数解析式与变量之间的联系,如果要求导数交点的话,可以考虑着看一下数学中的拉格朗日乘数法,然后以综合考虑法为总准则,针对性地运用数学公式,一步步求解题目并应用到实际情况,有助于你将问题的理论与表达在一起。
其次,应通过绘图的方式,把各种形式的函数,将其拟合到实际应用环境中,通过图象观察,得出对应的数学模型,由数学模型得出解,更容易见结果,方便找准极值点和相应线段和曲线的交点。
最后,建议你采用独立求解法和综合求解法,将一个数学问题分解为多个小问题,然后由局部解得全局解,在解决实用问题时,很有用。
总之,解求导数函数一直线和曲线相切的问题,要求掌握基本的数学知识,把
学习的理论知识与实际应用结合起来,不断探索策略,以期获得更好的结果。
圆锥曲线切线方程的探索
() 椭圆 C 1求 的方程. ( ) 点 P在抛 物线 : = +h h∈R) , 2设 , , ( 上
图1
c 在点 P处 的切线 与 C 交 于点 , . 2 Ⅳ 当线 段 A P
中点与 k i l n中点的横坐标相等时, h的最小值. 求
(0 9年 浙 江省数 学高考试题 ) 20 解 () 1 由题 意得
由题 意得 。 , = 即
z +( h t : . 1+ ) +1 O
即
得
Y :一
Y o
+ 生
.
Y o
其中
解 得
A =( + ) 4 O 2 1 h 一 ≥ ,
≥1或 h 一 . ≤ 3
h+2<0, 一h 4 <0,
X =1 0
,
4
Y。=
.
当 h 一3时 , ≤ 有
C
解 得
o= , =1 2b ,
所求的椭圆方程为年+ = . 1
暮+ ’ + 丢
根 题 得 线 B 方 为 + =, 据 意 直 A的 程 手 手 1 即
Y: 一
二
() 2 不妨 设 M( ,1 , ,2 , ( , 1)) Ⅳ( 2Y ) P ft ) , +h ,
3 利 用公式 求切线
在近几 年 的高考试题 中 , 多切线 问题都涉 有很 及到 切点弦 , 利用切 点 弦的知识 可 以轻松地解 决一 些试题. 面的结论 在解题 中经 常用 到. 下
利用隐函数求导可以得到圆锥 曲线在点 P处
的切 线方程 , 以下结论 : 有
结论 1 过 椭 圆 + =1 o>6> ) 一点 ( o上
结 论4 经过 ≥+ 1口 b 0外一 椭圆 告= (> > ) 0 O
专题14 圆锥曲线切线方程 微点2 圆锥曲线切线方程的常用结论及其应用
(2)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: ;
(3)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: .
同理可得焦点在 轴上的情形.
【结论4】(1)过圆 上一点 切线方程为 ;
(2)当 在椭圆 的外部时,过M引切线有两条,过两切点的弦所在直线方程为 .
【结论5】(1)过双曲线 上一点 处的切线方程为 ;
(2)当 在双曲线 的外部时,过M引切线有两条,过两切点的弦所在直线方程为: .
证明:(1) 的两边对x求导,得 ,得 ,由点斜式得切线方程为 ,即 ,又 所求的切线方程为 .
(1)求椭圆的方程;
(2)直线 与椭圆有唯一的公共点 ,与 轴的正半轴交于点 ,过 与 垂直的直线交 轴于点 .若 ,求直线 的方程.
例6.
6.已知椭圆 与直线 相切于点 ,且点 在第一象限,若直线 与 轴、 轴分别交于点 、 .若过原点O的直线 与 垂直交与点 ,证明: 定值.
【强化训练】
7.若椭圆 的焦点在x轴上,过点 作圆 的切线,切点分别为A、B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是()
下面的结论是从斜率的角度得到已知曲线的切线方程.
【结论8】(1)斜率为k的双曲线 的切线方程为 ;
(2)斜率为k的双曲线 的切线方程为 .
证明:(1)设切线方程为 ,联立 方程得:
,
若 即 , ,
令 化简可得: , ,故切线方程为 .
同理可证情形(2).
【评注】 , ,过双曲线的对称中心不可能作出直线与双曲线相切.
利用导数解决圆锥曲线中的切线问题
龙源期刊网
利用导数解决圆锥曲线中的切线问题
作者:陈建参
来源:《考试周刊》2013年第51期
摘要:文章认为,根据圆锥曲线特别是抛物线的全部或局部函数性,利用导数求导的方法,可以顺利解决圆锥曲线中的切线问题.
关键词:圆锥切线函数性导数切线斜率
圆锥曲线问题与导数的工具性的交叉渗透,很自然地做了一个知识点和能力上的交汇整合.在2012年的高考题中,总体的体现是题型新颖,难度跨度增大,特别是对考生的运算求解能力的要求提高,但如果能利用好导数,则可以使解题变得简捷巧妙.
【点评】化抛物线方程为函数形式,根据曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键.
(I)求抛物线E的方程;
(II)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明:以PQ为直径的圆恒过y轴上某定点.
【点评】本题考查的知识点为圆锥曲线的定义,直线和圆锥曲线的位置关系,以及定值的证明,关键是把抛物线方程化为函数形式,利用导数的几何意义求解.
【点评】开口向左或向右的抛物线方程不是函数形式,但如果只取轴的上方或下方部分,就是函数关系了,利用导数就可以解决相应切线问题.
【点评】该试题出题的角度不同寻常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,是该试题的创新之处.另外,在第二问中难度加大了,出现了另
外两条公共的切线,这样的问题在我们以后的学习中也是需要练习的.
利用导数求解圆锥曲线的切线问题,关键在于设切点求斜率,把解析几何和导数的工具性结合起来,作为一种思维方式,体现了数学的简捷、实用和综合性.。
圆锥曲线的直线切线定理解析
圆锥曲线的直线切线定理解析圆锥曲线是解析几何中的重要概念,它由一个固定点(焦点)和到该点距离与到一条直线(准线)距离之比等于常数的点所组成。
直线切线是在某一点上与曲线相切的直线。
本文将对圆锥曲线的直线切线定理进行解析。
一、圆锥曲线的类型在解析几何中,常见的圆锥曲线有椭圆、双曲线和抛物线。
它们的定义方式如下:1. 椭圆:椭圆是到两个焦点的距离和为定值的点的集合。
其标准方程为 $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$,其中 $a$ 和 $b$ 分别为椭圆的长半轴和短半轴。
2. 双曲线:双曲线是到两个焦点的距离差为定值的点的集合。
其标准方程为 $(\frac{x}{a})^2 - (\frac{y}{b})^2 = 1$,其中 $a$ 和 $b$ 分别为双曲线的长半轴和短半轴。
3. 抛物线:抛物线是到焦点的距离与到准线的距离相等的点的集合。
其标准方程为 $y^2 = 2px$,其中 $p$ 为抛物线的焦点到准线的距离。
二、直线切线定理的定义直线切线定理是指通过圆锥曲线上的一点,能且只能有一条直线与其相切。
也就是说,曲线上的每一点都有一条切线与其相切,并且切点是相切线上的唯一交点。
三、直线切线的求解方法1. 求解椭圆的直线切线:设椭圆的方程为 $(\frac{x}{a})^2 +(\frac{y}{b})^2 = 1$,曲线上一点为 $P(x_0, y_0)$。
由于切线与曲线相切,切线方程的斜率等于曲线在该点的导数。
因此,可以通过求解曲线方程和导数方程的联立方程组,来确定切线斜率 $k$。
之后,可以通过点斜式或一般式等方法,得出切线的方程。
2. 求解双曲线的直线切线:设双曲线的方程为 $(\frac{x}{a})^2 - (\frac{y}{b})^2 = 1$,曲线上一点为 $P(x_0, y_0)$。
与椭圆类似,可以通过求解曲线方程和导数方程的联立方程组,来确定切线斜率 $k$。
圆锥曲线的切线与法线方程求解技巧阐述
圆锥曲线的切线与法线方程求解技巧阐述圆锥曲线是解析几何中的重要内容,其中包括椭圆、双曲线和抛物线等。
在研究圆锥曲线的性质时,常常需要找到曲线上某点处的切线和法线方程。
本文将重点探讨圆锥曲线的切线和法线方程求解技巧。
1. 切线的求解技巧切线是曲线在某一点处的切线,它与曲线仅相交于该点。
我们可以通过求解切线的斜率和通过给定点的方程来确定切线方程。
为了求解切线,首先需要求曲线在某点处的导数。
以椭圆为例,其方程为x^2/a^2 + y^2/b^2 = 1(a > b)。
假设我们要求解椭圆上一点P的切线方程,P的坐标为(x0, y0)。
(1)求解切线斜率:椭圆的导数可以通过隐函数求导法求得。
对椭圆方程两边同时求导,得到2x/a^2 + 2yy'/b^2 = 0。
将点P的坐标代入上式,可得到斜率m = -xb^2/ya^2。
(2)切线的方程:切线方程的一般形式为y - y0 = m(x - x0)。
将m和P的坐标代入切线方程中,可得到椭圆上点P处的切线方程。
2. 法线的求解技巧法线是与切线垂直的直线。
与切线类似,我们可以通过求解法线的斜率和通过给定点的方程来确定法线方程。
为了求解法线,同样需要求曲线在某一点处的导数。
以抛物线为例,其方程为y^2 = 4ax(a > 0)。
假设我们要求解抛物线上一点P的法线方程,P的坐标为(x0, y0)。
(1)求解法线斜率:抛物线的导数可以通过隐函数求导法求得。
对抛物线方程两边同时求导,得到2yy' = 4a。
将点P的坐标代入上式,可得到斜率m = -1/(2a)。
(2)法线的方程:法线方程的一般形式为y - y0 = -1/m(x - x0)。
将m和P的坐标代入法线方程中,可得到抛物线上点P处的法线方程。
3. 切线和法线方程求解实例通过以上技巧,我们可以来解决一个具体的求解问题。
示例:求解椭圆x^2/4 + y^2/9 = 1上点P(2, 3)处的切线和法线方程。