苏教版初二(一次函数)(教案)

合集下载

初中数学八年级上册苏科版6.4一次函数的应用教学设计

初中数学八年级上册苏科版6.4一次函数的应用教学设计
初中数学八年级上册苏科版6.4一次函数的应用教学设计
一、教学目标
(一)知识与技能
1.让学生掌握一次函数的定义,能够准确识别和描述一次函数的一般形式,即y=kx+b(k≠0,k、b为常数),理解其中k、b分别代表的意义。
2.使学生能够运用一次函数解决实际问题,如直线运动物体的速度与时间关系、单价与数量的关系等,提高学生将数学知识应用于实际生活的能力。
c.课堂练习:设计有针对性的练习题,让学生运用一次函数知识解决问题,巩固所学内容。
d.课堂小结:总结一次函数的性质、图像特征,以及解决实际问题的方法。
3.教学策略:
a.关注学生的个体差异,针对不同学生的学习需求,提供个性化的指导。
b.鼓励学生积极参与课堂讨论,培养他们的表达能力、合作精神。
c.及时反馈学生的学习情况,调整教学进度和策略,确保教学效果。
3.小组合作:引导学生相互讨论,共同解决问题,鼓励学生发表自己的观点。
4.汇报:每个小组汇报自己的讨论成果,其他小组进行评价,教师点评并总结。
(四)课堂练习
1.练习题设计:针对一次函数的知识点,设计不同难度的练习题,包括选择题、填空题、解答题等。
2.学生独立完成:要求学生在规定时间内独立完成练习题,巩固所学知识。
1.激发学生兴趣,引导学生主动参与课堂,通过实例分析,让学生体会一次函数在实际生活中的应用。
2.注重培养学生的抽象思维能力,帮助学生将实际问题转化为数学模型,提高学生解决问题的能力。
3.针对学生对截距、斜率等概念的理解困难,设计具有针对性的教学活动,采用直观演示、互动讨论等方式,帮助学生深入理解。
4.鼓励学生积极思考,勇于提问,充分调动学生的学习积极性,提高课堂效果。在此基础上,关注学生的个体差异,给予每个学生个性化的指导,使他们在原有基础上得到提高。

苏科版数学八年级上册 6.2 一次函数 教案 (1).docx

苏科版数学八年级上册 6.2 一次函数 教案  (1).docx

6.2 一次函数(1)一、教学目标(1)能结合具体情境理解一次函数和正比例函数的概念及其意义;(2)能根据实际问题列出简单的一次函数的表达式;(3)经历由实际问题引出一次函数表达式和由已知信息写一次函数表达式的过程,体会数学与现实生活的联系,体会建立函数模型的思想,发展学生的抽象思维能力.二、教学重点一次函数、正比例函数的概念及关系.会根据所给条件写出简单的一次函数表达式.三、教学过程设计(一)情境屋1.小树现有高度120cm,平均每年长高30cm。

完成下面的表格(1)y是x的函数吗?(2)如何表示y与x之间的关系?2.光头强和熊大熊二结伴出游,在普通公路上行驶了30km后,由于赶时间,光头强上高速以100km/h的速度匀速行驶了x小时.(1)在高速公路上行驶了y千米,那么y与x的函数表达式为(2)此时他们离森林的家s千米,那么s与x的函数表达式为_____________(3)行驶到途中,他们去加油站加油,油价为7.65元/升,加油m升,付费Q元,那么Q与m 的函数表达式为_______________(4)汽车的油箱里加满了60L汽油,发现汽车每行驶50千米耗油9L。

那么行驶过程中油箱内剩余油量Q(L)与行驶的路程s千米之间的函数表达式:________________(二)探究园师:让我们一起来观察刚刚得到的几个函数关系式,请你仔细观察并思考,它们在结构上有什么共同特征吗?(可以左右两边分别进行思考,对于右边的代数式,你可以从哪些方面去找它的共性呢?)生:右边的自变量的指数都是1,且都是整式.师:那左边呢?生:右边就只有应变量.师:很好,还有要补充的吗生:k≠0师:为何k≠0?生:因为当k=0了,那右边就不是关于自变量的一次整式了.师:那我们可以这样认为,关系式的左边是因变量,右边是关于自变量的一次整式。

那你能根据你观察到的它们的共同特点自己创造一个它们的一般形式吗?可以回忆我们在学习一元一次方程时是怎么表示它的一般形式的.师:刚刚同学们创造出的这个一般形式其实就是我们今天要学习的一次函数。

苏科版八年级数学上册一次函数教案2

苏科版八年级数学上册一次函数教案2

一次函数【目标预测】一、知识与能力。

了解一次函数的概念。

二、过程与方法。

1、会写出实际问题中的函数关系式。

2、会判断一个函数是否是一次函数。

三、情感、态度、价值观。

通过实际问题用函数关系式表示出来,提高学生学习数学的兴趣。

【教学重难点】重点:一次函数的概念难点:会写出实际问题中的函数关系式。

【教学过程】一、创设情景,谈话导入。

问题:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

二、精讲点拨、质疑问难。

1、例题:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20∽25℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差。

(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。

(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取。

(4)把一个长10cm,宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。

2、一次函数的概念。

一般地,形如y=kx+b (k、b是常数,k≠0) 的函数,叫做一次函数。

当b=0时,y=kx+b 即 y=kx,所以说正比例函数是一种特殊的一次函数。

3、下列函数中哪些是一次函数?哪些是正比例函数?Y=2x+1, y=3x, y=2x2-3, y= -xY=x 3-1, x=y, y=3x 2-2x+1, xy=y-1三、课堂活动、强化训练。

1、课本练习2、某工厂加工一批产品,为了提前完成任务,规定每个工人完成150以内,按每个产品3元付酬;超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分除按以上规定付酬外,每个产品增付0.3元,求某个工人:(1)完成150个以内产品得到的报酬y (元)与产品个数x (个)之间的函数关系式;(2)完成150个以上但不超过250个产品得到的报酬y(元)与产品个数x (个)之间的函数关系式;(3)完成250个以上产品得到报酬y (元)与产品个数x (个)之间的函数关系式。

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。

教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。

但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。

因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。

三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。

2.能够运用一次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点。

3.运用一次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。

3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。

4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。

六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。

2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。

3.教学工具:准备黑板、粉笔、直尺等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。

通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。

6.2一次函数-苏科版八年级数学上册教案

6.2一次函数-苏科版八年级数学上册教案

6.2 一次函数-苏科版八年级数学上册教案一、教学目标1.理解一次函数的定义和特点;2.掌握一次函数的基本图像与性质;3.能够根据实际问题建立相应的一次函数模型;4.能够用函数图象解答相应的实际问题。

二、教学重点1.一次函数的定义和特点;2.一次函数的基本图像与性质。

三、教学难点1.根据实际问题建立相应的一次函数模型;2.用函数图象解答相应的实际问题。

四、教学内容及步骤1. 一次函数的定义和特点1.引入学生们已经学过线性方程和直线,对于直线的特征和区分方法已经有了一定的认识。

那么,如何把已有的知识与新学的知识进行联系,达到知识的无缝衔接,这是我们需要重点关注的。

2.探究通过生活中常见的例子,引导学生认识一次函数的定义和特点:y=kx+b(k eq0),其中k为斜率,b为截距,直线上所有的点都满足这个规律。

3.小结通过一次函数的探究,让学生了解一次函数的定义、斜率和截距的概念,以及一次函数图像的特点。

2. 一次函数的基本图像与性质1.引入学习一次函数,图像是必不可少的,通过图像的形状和特点,可以更好地理解和掌握函数的性质。

2.学习通过画图,让学生了解一次函数的基本图像,即一条直线。

进一步探究一次函数图像的特点:当k>0时,图像向上倾斜,当k<0时,图像向下倾斜,当b>0时,图像在y轴上方和下方的距离相等,当b<0时,图像在y轴上方和下方的距离不相等。

3.总结通过绘制一次函数的图像,带领学生总结一次函数图像的特点和性质,进一步加深对一次函数性质的理解。

3. 根据实际问题建立相应的一次函数模型1.引入通过实际问题的引入,让学生了解一次函数在实际生活中的应用。

如何根据实际问题建立相应的一次函数模型,是本环节的主要目标。

2.学习通过教师的指导,学生们自己动手解决实际问题,从中掌握建立一次函数模型的方法和技巧。

例如,给出一个直线坡度的问题,通过规律总结出公式,建立相应的一次函数模型。

苏教版八年级上学期教案第五章一次函数

苏教版八年级上学期教案第五章一次函数

第五章一次函数5.1函数(1)[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

如果学生没有乘坐火车的经历,可改用汽车或创设其他类似情境.情境二:分别用表格、关系式和语言等方式给出不同的实际问题,让学生从这些情境中,发现在各种变化过程中,往往存在着两个相互联系的变量,从而引入函数的概念.2.探索活动活动一:展示一幅列车行驶或车厢内的图片.用下列问题引导学生加入小明、小丽、小亮和小华的讨论,感受常量与变量的意义:(1)列车在行驶,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮、小华所说的那些变化的数量外,在这个问题中还有变化的数量吗?活动二:可以用下列问题引导学生展开活动,体会函数的意义:(1)你从水库工作人员制作的表格里获得哪些信息?水位高低与水库容量有什么关系?(2)小鱼的条数n与所需火柴棒的根数S的关系为S=8+6(n—1),说说你从中获得的信息;(3)变化中的圆面积与半径的大小密切相关,你能大致描述它们之间的关系吗?(4)上述问题有共同之处吗?说说你的看法.5.1函数[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

最新苏科版八年级数学上册《一次函数》1教学设计(精品教案).docx

最新苏科版八年级数学上册《一次函数》1教学设计(精品教案).docx

6.2 一次函数一、教材分析:一次函数是属于《新课标》“数与代数”领域,是最基本、最简单的函数,一次函数是本章内容的重点。

本节课是苏科版八年级上册教材第六章第二节内容,是在学习了变量、常量和函数后的学习内容,是二元一次方程的再学习再认识,是后面有函数观点解尔元一次方程和一次不等式的基础,本节教材再本章起着承上启下的作用,同时也为后面的反比例函数和二次函数学习做了一个铺垫。

教材首先从汽车加油这一生活情境出发,引出函数问题,通过列函数关系式的共同特征得出一次函数的概念,随后的练习交流时学生加深对一次函数概念的理解,使学生明白一次函数也是刻画实际的有效模型。

二、教学目标:1、理解一次函数和正比例函数的概念,并能根据函数关系的特点判断该函数关系式是否是一次函数。

2、通过列函数关系式,进一步提高学生分析问题解决问题的能力。

3、经历一次函数关系概念的探索过程,使学生体会一次函数是刻画实际的又一有效数学模型。

4、经历探索交流一次函数概念学习过程,进一步培养学生的合作学习能力和探究能力。

三、教学重点:理解一次函数和正比例函数的概念四、教学难点:能运用一次函数的概念,对函数是否是一次函数进行判断。

五、教学过程:1、问题情境问题1:给汽车加油的加油枪流量为25L/min。

如果加油前油箱里没有油,油箱里的油量与加油时间之间有怎样的函数关系?请写出此函数关系式。

问题2:如果问题1中的“加油前油箱里没油”改成“加油前油箱里有6L油”则油箱里的油量与加油时间之间又有怎样的函数关系?请写出函数关系式。

问题3:汽车加满40L油后,开始行驶,已知汽车每行驶100km消耗油10L,请写出油箱油量Q与行驶路程s的函数关系式。

(设计目的:通过是学生生活中常见的实例,激发学生学习的兴趣,通过学生动手操作,为后面的学习提供学习新知的素材,能更好的然学生投入数学学习。

)2.探索一次函数、正比例函数的概念(1)观察以上的3个函数关系式,有什么共同特征,你有什么猜想呢?(2)类比一元一次方程、一元一次不等式的概念,你能给以上函数起个名字吗?(3)你能抽象出此类函数的一般形式吗?(4)讨论总结:(设计意图:通过学生知思考、分析、类比,学生很容易得出一次函数的概念,告诉学生对于一个新的知识或陌生的知识怎么去解决的方法——有学过的知识区解决,看它与学过知识的相同点,再联系所学来解决)3、针对性练习(1)下列函数关系式中那些是一次函数那些是正比例函数?x-4 ; ③s=5t;①y=x+1 ; ②y=23x;④q=-53+2; ⑥y=kx+b⑤y=x(设计意图:通过题组练习判别,达到对一次函数、正比例函数概念的理解和巩固)(2)(设计意图:通过这题组训练,让学生写出函数关系式,进一步提高学生的分析问题解决问题的能力。

苏科版数学八年级上册 6.2 一次函数 教案 (1)

苏科版数学八年级上册 6.2 一次函数  教案 (1)

6.2 一次函数【教学目标】1.能用适当的表示法刻画实际问题中的函数关系.2.能结合具体情景理解一次函数和正比例函数的意义.3.通过探索和讨论,体验函数是处理和解决实际问题的有力工具.【教材及学情分析】《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。

从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。

通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。

本课的知识起到了承前启后的作用,也符合学生的认知规律。

八年级的学生好奇、好动、好表现。

因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。

就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系。

在教学过程中教师要充分借助设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

【重点难点】重点:理解一次函数和正比例函数的意义.难点:一次函数、正比例函数的概念及关系.【教学过程】一、复习导入师:同学们,上节课,我们学习了函数,你能说说什么是函数吗?函数通常有哪几种表示方法吗?答:一般地,如果在一个变化的过程中有两个变量x与y,并且对于变量x 的每一个值,变量y都有惟一的值与它对应,那么我们称y是x的函数.其中,x是自变量。

通常,表示函数关系可用三种方法:表格、图像和函数表达式。

师:今天我们结合生活实际,探索一种特殊的函数——一次函数。

二、新课教学一、探索概念情景一给汽车加油的加油枪流量为25L/min.如果加油前油箱里没有油,那么在加油过程中,用y(L)表示油箱中的油量,x(min)表示加油时间.(1)y 是x 的函数吗?说说你的理由.(2)y 与x 之间有怎样的函数表达式?(3)如果加油前油箱里有6L 油,y 与x 之间有怎样的函数表达式?分析:(1)因为对于变量 x (min )的每一个值,变量 y (L )都有唯一的值与它对应,所以y 是x 的函数.(2)y 与x 之间的函数关系为y =25x .(3)y 与x 之间的函数关系为y =25x +6.情境二某种汽油6.27元/L 。

苏科版数学八年级上册 6.2 一次函数(1) 教案

苏科版数学八年级上册 6.2 一次函数(1)  教案

6.2一次函数(1)一、内容与内容解析1.内容苏科版数学八年级上册6.2一次函数(第一课时)2.内容解析一次函数是初中阶段研究的第一个函数,是学生难以建立的一个抽象数学概念,它的研究方法具有一般性和代表性,关系到后续函数(二次函数、反比例函数)的研究和学习.同时,整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中,三者相互依存,紧密联系.学好本节内容尤为重要.教学重点是:一次函数、正比例函数的概念及关系.教学难点是:会根据所给条件写出简单的一次函数表达式.二、教学目标(1)能结合具体情境理解一次函数和正比例函数的概念及其意义;(2)能根据实际问题列出简单的一次函数的表达式;(3)经历由实际问题引出一次函数解析式和由已知信息写一次函数表达式的过程,体会数学与现实生活的联系,体会建立函数模型的思想,发展学生的抽象思维能力.三、教学过程设计1. 创设情境问题1今天早上,老师开车来学校,假设汽车的行驶的平均速度是60千米/小时,则汽车的行驶路程与时间有怎样的关系?追问1 设汽车的行驶路程为y(千米),行驶时间为x(小时),你能写出y与x之间的关系式吗?设计意图:由老师生活入手,符合学生的心智特征,激发学生的学习兴趣,用行驶路程问题,作为新知导入的问题情境,比较符合学生的认知特点.问题2老师在行驶途中进入一加油站加油,给汽车加油的加油枪流量为25L/min,如果加油前油箱里没有油,那么在加油过程中,油箱里的油量Q (L)与加油时间t (min)之间有怎样的函数关系?追问1 如果加油前油箱里有6L油,那么加油过程中你能随时说出油箱中的油量吗?追问2 在加油过程中,油箱里的油量Q (L)与加油时间t (min)之间有怎样的函数关系?设计意图:通过问题2使学生逐步加深对函数概念的理解,也为导出一次函数、正比例函数概念做好铺垫.问题3 老师到了学校,看见我们校内池塘准备换水.水池中有水450 m3,每小时放水15 m3.放水t h后,水池中还有水y m3,则y (m3)与t (h)之间有怎样的函数关系?追问1 放完后重新加水,每小时进水10 m3,进水t h后,水池中有水y m3,则y(m3)与t(h)之间有怎样的函数关系?设计意图:1.数学源于生活,以现实生活为学习素材,创设情境引入有关数学概念,易于学生接受,可激发学生的学习兴趣,让学生感受生活中处处有数学.2.学生利用已有的知识解决五个问题串得到五个函数表达式,学生能够体会到成功的喜悦,同时这一过程也体现出一种“问题情境----数学模型----概念归纳“的模式,有计划地逐步展示知识的产生过程,渗透函数的思想.2.归纳概念问题 4 请同学们观察上述得到的函数表达:(1)y=60x(2)Q=25t(3)Q=25t+6 (4)y=450−15t (5)y=10t,这些函数表达式有什么共同和不同之处?追问1 你能否将他们分类?追问2 你能再写两个类似的式子吗?师生总结:一般地,如果两个变量x与y之间的函数关系,可以表示为y=kx+b(k、b为常数,且k≠0)的形式.那么称y是x的一次函数(linear function).特别地,当b=0时,y叫做x的正比例函数.所以正比例函数是特殊的一次函数.设计意图:使学生在思考、对比、分析、类比、迁移中,亲身经历一次函数的概念的构建过程.同时也让学生体会到类比、归纳的思想,体现一种“特殊---猜想---归纳----一般”的模式,让学生分析问题和解决问题的能力在无形中得到提高.3. 辨析概念判断下列函数是否为一次函数或正比例函数.y=6x-8, h=t2,y=-9t,s=50-3t,m=,y=πx设计意图:深化学生对一次函数概念的理解.4. 巩固练习例1 用函数表达式表示下列变化过程中两个变量之间的关系,并指出是否是一次函数?是否是正比例函数.(1)正方形周长l 与边长x之间的函数关系;(2)正方形面积S 与边长x之间的函数关系;(3)长方形的长为常量a 时,面积S与宽x 之间的函数关系;(4)如图,高速列车以300 km/h的速度驶离A站,在行驶过程中,这列火车离开A 站的路程y (km)与行驶时间x (h)之间的函数关系;思考:如图,A、B两地相距200 km,一列火车从B 地出发沿BC 方向以120 km/h 的速度行驶,在行驶过程中,设火车行驶时间为x (h).请你提出一个问题.例2 一个长方形的长为15 cm,宽为10 cm.若长方形的长减少x cm,宽不变,则长方形的面积y (cm2)与x (cm)之间的函数关系.追问1 如果宽增加x cm呢?设计意图:通过“具体——抽象——具体”的过程,使学生进一步加深对一次函数概念的认识,并在这个过程中,体会一次函数是刻画现实世界变化规律的重要数学模型,感悟函数的思想.引导在学习交流中,认识到函数是解决现实问题的重要工具,提高学习数学的自信心. 增强应用数学的意识.5. 小结反思,归纳提升通过本节课,你有哪些收获?设计意图:小结归纳,总结反思.6.布置作业评价手册。

苏科版八年级上一次函数复习教学案

苏科版八年级上一次函数复习教学案

苏科版八年级上一次函数复习教学案1.知识与技能(1)知道一次函数与正比例函数的意义.掌握一次函数的概念,了解一次函数和正比例函数的关系.(2)能写出实际问题中正比例关系与一次函数关系的解析式.(3)能结合图象理解一次函数(含正比例函数)的性质.2.过程与方法(1)初步掌握用待定系数法确定一次函数的解析式.(2)会选取两个适当点画一次函数(含正比例函数)的图象;(3)由函数的图象及性质进一步理解和掌握正比例函数与一次函数的概念.(4)培养分析、类比和综合、归纳的能力和用“数形结合”的思想与方法解决数学问题.3.情感、态度与价值观(1)渗透数学建模的思想,体会到数学的抽象性和广泛的应用性.(2)激发学习数学的兴趣,培养分析问题、解决问题的能力.培养应用、创新意识.二、知识结构三、要点梳理1.正比例函数如果y=kx(k是常数,k≠0),那么,y叫做x的正比例函数.正比例函数y=kx的图象是过(0,0),(1,K)两点的一条直线.性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小2.常数函数函数y=b,(b是常数)叫做常数函数即对自变量x不管取它的允值范围内的任何一个值,函数值都取同一个常数值,这样的函数叫常函数.3.一次函数如果y=kx+b(k,b是+常数,k≠0),那么y叫做x的一次函数.直线y=kx+b,与y轴的交点是(o,b),与x轴的交点是线在x轴上的截距,叫做横截距.即直线与y轴的交点的纵坐标叫做纵截距.直线与x轴的交点的横坐标叫做横截距.4.一次函数y=kx+b的图象两个一次函数y1=k1x+b1,y2=k2x+b2的图象当一次项系数相等(k1=k2)且常数项不等(b1≠b2)时,它们平行.反之,若它们的图象平行,必有k1=k2,且b1≠b2已知:L1∥L2结论:k1=k2,b1≠b2反之,已知:k1=k2,b1≠b2L1∥L2.四.重难点重点:一次函数(含正比例函数)的图象的画法及性质.因为函数图象是研究性质的前提,而函数性质又是研究其图象的基础.一次函数的图象虽然比较简单,但同学们对函数图象不太熟悉,在画图过程中还会出现一些问题.在不断的探索实践中,促成学生对规律性的总结.难点:①选取适当两点画一次函数y=Kx+b 的图象;②结合一次函数(含正比例函数)图象说出它们的性质.五.思想方法本章主要的数学思想方法有数形结合、联系与转化、待定系数法、分类讨论、图象的平移等方法. 六、典例解析 1.有关函数的概念对有关函数概念的考查,主要是考查考生是否理解正比例函数、一次函数等有关概念.有时单独命题专门考查,有时则结合其他题目来考查.【例1】 已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是图中的 ( )1.一次函数y=2x+3的图象不经过的象限是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知一次函数y=kx+b 的图象如图所示,则 ( ) A.k>0,b>0 B. k<0,b<0 C. k>0,b<0 D.k<0,b>03.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( )A.m>0B. m<0C. m>1D. m<1 4.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )xy 0xyyyy5.有下列函数:①y =6x-5, ②y =5x,③y =x +4, ④y =-4x +5。

苏科版数学八年级上册教案-6.2 一次函数

苏科版数学八年级上册教案-6.2 一次函数

《一次函数》教学设计与反思教材分析:本课是一次函数相关的内容,主要讲解的是列一次函数、正比例函数的解析式。

一次函数是学生刚刚接触的初等函数,是中考必考的知识点。

学情分析:学生在上一节课学习了函数的概念及表示方法,为本节的学习奠定了知识基础。

但从实际问题中发现问题,并提出问题建立数学模型还是存在一些困难。

因此,本节的教学中要注意培养和提高学生分析问题和解决问题的能力。

教学目标:知识与技能目标:1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

3、能正确辨别一个函数是否为一次函数。

过程与方法目标:1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

3、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

情感、态度与价值观目标:感受数学来源于生活,让学生树立学好数学的自信心。

教学重点:1、正确理解一次函数的概念。

2、正确理解一次函数与正比例函数的关系。

教学难点:根据实际问题列出一次函数的关系式。

教学方法:引导发现法,自主探究法教学过程:(一)情境引入问题1:某种汽油6.2元/L,加油x(L),应该付费y元,那么y与x之间的函数关系式为_____________问题2:如果加油前,油箱里还剩6L汽油,已知加油枪的流量为10L/min,y(L)表示油箱中的汽油量,x(min)表示时间,则y与x之间的函数关系式为______________问题3:电信公司推出无线市话服务,收费标准为月租费25元,本地网通话费为每分钟0.1元。

如果用y(元)表示每月的应缴费用,用x(min)表示通话时间(不足1min按1min计算),那么y与x之间的函数关系式为__________ 问题4:水池中有水465m3,每小时排水15m3,排水t小时后,水池中还有水ym3.试写出y与t的函数关系式问题5:一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后这棵树的高度为y 厘米,试写出y与x的函数关系式讨论:上述函数关系式有什么共同特点?你能用一个一般的式子来表示它们吗?【设计意图】从实际问题出发,用函数的角度写出函数关系式,用过对比与总结,发现共同点,感受代数概念定义的技巧。

苏科版数学八年级上册6.3《一次函数的图象》教学设计1

苏科版数学八年级上册6.3《一次函数的图象》教学设计1

苏科版数学八年级上册6.3《一次函数的图象》教学设计1一. 教材分析苏科版数学八年级上册6.3《一次函数的图象》是学生在学习了《一次函数》的基础上,进一步研究一次函数的图象和性质。

本节内容通过探究一次函数的图象,帮助学生理解一次函数与坐标系的关系,掌握一次函数图象的性质,提高学生分析问题、解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了《一次函数》的基本概念和性质,具备一定的代数基础。

但学生对函数图象的理解和绘制还较为薄弱,需要通过本节内容的学习,提高学生绘制和分析一次函数图象的能力。

三. 教学目标1.了解一次函数图象的性质,能够绘制一次函数图象。

2.能够通过一次函数图象分析问题,解决问题。

3.培养学生的观察能力、分析能力和动手能力。

四. 教学重难点1.一次函数图象的性质。

2.一次函数图象的绘制方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、分析、实践,掌握一次函数图象的性质和绘制方法。

六. 教学准备1.教学PPT。

2.坐标纸。

3.函数计算器。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考一次函数与坐标系的关系,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT展示一次函数图象的性质,包括:斜率、截距、图象的形状和位置等。

引导学生观察、分析,理解一次函数图象的性质。

3.操练(10分钟)让学生分组合作,利用坐标纸和函数计算器,绘制一次函数图象。

在实践中掌握一次函数图象的绘制方法。

4.巩固(5分钟)学生分组讨论,总结一次函数图象的性质和绘制方法。

教师进行点评,巩固所学知识。

5.拓展(5分钟)出示一些拓展问题,让学生利用一次函数图象进行分析,解决问题。

提高学生的分析问题和解决问题的能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。

7.家庭作业(5分钟)布置一些有关一次函数图象的练习题,让学生课后巩固所学知识。

8.板书(5分钟)教师在黑板上板书一次函数图象的性质和绘制方法,方便学生复习和记忆。

苏科版数学八年级上册 6.2 一次函数 教案

苏科版数学八年级上册 6.2 一次函数 教案

6.2一次函数(1)教学目标1、理解一次函数和正比例函数的概念,以及它们之间的关系.2、能根据所给条件写出简单的一次函数表达式.3、经历一般规律的探索过程、发展学生的抽象思维能力.4、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力.5、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.教学重点:1、一次函数、正比例函数的概念及关系.2、会根据已知信息写出一次函数的表达式.教学过程:一、复习旧知1、函数的定义2、函数的形式指名口答二、自主先学根据题意列出函数关系式:1、某种汽油6.8元/L,加油aL,应付费b元,写出b与a之间的函数关系式;2、给汽车加油的加油枪流量为25L/min. 如果加油前油箱里没有油,那么加了xmin油后,油箱中的油量y(L)与x之间的函数关系式是什么?3、在2的条件下,如果加油前汽车的油箱里还剩有6L汽油,则y与x之间的函数关系式是什么?4、某种矿泉水,每瓶1.8元,总销售额n(元)与售出瓶数m(瓶)之间的关系.5、计算成人体重的一种常用方法:体重(kg)等于身高(cm)减105,体重y (kg)与身高x(cm)之间关系.6、小明用50元买练习本,练习本1.5元/本,买了p本,还剩q元,试写出q 与p之间的函数表达式.7、正方形面积S(cm2)与边长x(cm) 之间的函数表达式学生课前先做,课堂中小组讨论,答疑释惑。

学生展示三、小组讨论1、小组之间交流答疑解惑(1)列出七个代数式,指出其中一个与其它几个不同的地方。

2、小组讨论(1)这些函数表达式中,自变量是什么?(2)这些函数表达式是关于自变量的几次式?(3)比较式子①②④与③⑤⑥,有什么共同和不同之处.(4)关于x的一次式的一般形式是什么?每小组写出三个共同特征:_____________________________________________小组展示,其他小组补充,得到一次函数和正比例函数定义四、交流展示默读一次函数定义和正比例定义,默写在导学案上。

5.2《一次函数》教案(苏科版八年级上)(6套)-一次函数 教案 2doc

5.2《一次函数》教案(苏科版八年级上)(6套)-一次函数 教案 2doc

5.2一次函数
[教学目标]
1.能用适当的表示法刻画实际问题中的函数关系.
2.能结合具体情境理解一次函数和正比例函数的意义.
3.能根据已知条件确定一次函数关系式.
[教学过程(第二课时)]
].情境创设
展示—盘蚊香,让学生测算蚊香的长度,然后根据说明书上的说明,告诉学生该盘蚊香可以连续使用多少时间,让:学生算出该蚊香平均每小时缩短多长.—方面帮助学生理解例1题意,另一方面让学生感受学生如何从现实生活问题中提炼数学问题.
展示一根弹簧(如自行车上用的旧弹簧等),让一名学生用—定的力量将它逐渐拉伸,感受弹簧的长度随着拉力的增大而增大、拉力消失弹簧即恢复原状;让另—名学生持续用力拉伸弹簧,直至弹簧不能恢复原状,感受弹簧的弹性范围有一定的限度.帮助学生理解例2题意.
2.例题教学
例1先分析问题中的变量及变量间的关系,将用语言描述的函数关系表示为一次函数,然后根据函数值,求与之对应的自变量的值.
例2是一道与“章头活动”相呼应、探索弹簧长度与力的大小关系的问题,是一次函数的一个物理模型.要求通过实验及记录的数据确定一次函数的解析式,求解过程示范了待定系数法的应用.。

苏科版数学八年级上册6.6《一次函数、一元一次方程和一元一次不等式》教学设计

苏科版数学八年级上册6.6《一次函数、一元一次方程和一元一次不等式》教学设计

苏科版数学八年级上册6.6《一次函数、一元一次方程和一元一次不等式》教学设计一. 教材分析苏科版数学八年级上册6.6《一次函数、一元一次方程和一元一次不等式》是本册教材的重要内容,它帮助学生建立数学模型的初步概念,培养学生解决实际问题的能力。

本节课的内容包括一次函数的图像与性质,一元一次方程的解法,以及一元一次不等式的解法。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、方程等基本知识,具备了一定的逻辑思维和解决问题的能力。

但部分学生对于一次函数、一元一次方程和一元一次不等式的联系和应用还不够清晰,需要通过本节课的学习进一步巩固和提高。

三. 教学目标1.理解一次函数的图像与性质,掌握一次函数的解析式。

2.学会解一元一次方程,掌握解题方法。

3.学会解一元一次不等式,掌握解题方法。

4.能够运用一次函数、一元一次方程和一元一次不等式解决实际问题。

四. 教学重难点1.一次函数的图像与性质。

2.一元一次方程和一元一次不等式的解法。

3.一次函数、一元一次方程和一元一次不等式的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置问题,引导学生探究一次函数、一元一次方程和一元一次不等式的性质和关系;通过案例分析,让学生学会解决实际问题;通过小组合作,培养学生的团队协作能力。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.笔记本电脑、投影仪等教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数、一元一次方程和一元一次不等式的概念,激发学生的学习兴趣。

2.呈现(15分钟)讲解一次函数的图像与性质,展示一次函数的解析式,让学生理解一次函数的斜率和截距的含义。

3.操练(20分钟)让学生通过解一元一次方程和一元一次不等式,巩固所学的知识。

提供一些练习题,让学生独立完成,教师进行讲解和指导。

4.巩固(10分钟)通过小组合作,让学生运用一次函数、一元一次方程和一元一次不等式解决实际问题。

最新苏科版八年级数学上册《一次函数》·教学设计(精品教案)

最新苏科版八年级数学上册《一次函数》·教学设计(精品教案)

最新苏科版八年级数学上册《一次函数》·教学设计(精品教案)6.2 一次函数一、教学目标:1.知道一次函数和正比例函数的概念,以及它们之间的关系。

2.能根据所给条件写出简单的一次函数表达式。

3.通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力,体会利用数学解决实际问题的乐趣。

二、教学重、难点:一次函数和正比例函数的概念及关系,会根据已知信息写出一次函数的表达式。

三、教学过程:(一)创设情境:双休日,小明和朋友们从上海家里出发开车去天目湖游玩,在普通公路上行驶了30km后,由于赶时间,小明等人上高速以100km/h 的速度匀速行驶了x小时.1.在高速公路上行驶了y千米,那么y与x的函数表达式为。

2.此时小明离家s千米,那么s与x的函数表达式为。

3.行驶到途中,他们去加油站加油,油价为8.2元/L,加油mL,付费Q元,那么Q与m的函数表达式为。

若给汽车加油的加油枪流量为25L/min ,如果加油前油箱里有6L 油,加油tmin,油箱里的油量为VL, 那么V 与t 的函数表达式为。

4.到达天目湖后,小明去买票,票价为120元/位,进去n 人付费F 元,那么F 与n 的函数表达式为。

5.小明买完票后,找不到朋友,准备打电话,已知收费标准为月租费9元(含来电显示),本地网通话费为每分钟0.2元. (1)计算通话时间分别为1分钟、2分钟、3分钟、4分钟、5分钟时的费用,并填入下表:(2)此时y 与x 之间的函数表达式为。

【设计意图】:通过列函数表达式回顾函数的相关概念,为本节课的学习作铺垫。

(二)活动探究:活动一概念归纳:观察分析上述函数表达式的特点,引导学生将列举的函数分类揭示一次函数和正比例函数的概念以及它们的区别与联系:正比例函数是特x(分钟) 1 234 5应缴费用y(元)殊的一次函数。

【设计意图】:让学生自主观察、分析得出结论,体现学生是课堂的主体。

活动二概念辨析1.下列说法不正确的是()A .一次函数不一定是正比例函数。

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.1函数(1)一、自主先学列车从甲地驶往乙地,在16:17到16:22这个时段,列车在匀速行驶的过程中,有哪些量是没有变化的?哪些量是不断变化的?变化的量:没有变化的量:常量:变量:你还能举出生活中的某些变化过程,并说明其中的常量和变量吗?归纳:在各种变化过程中往往存在着两个互相联系的变量.二、合作助学问题1:一石激起千层浪,水滴泛起层层波.变化中的波纹可以看作是一个不断向外扩展的圆.问题2:已知水库的水位变化与蓄水量变化情况如下表所示问题3:如图,搭一条小鱼需要8根火柴,每多搭一条小鱼就要增加6根火柴,请说出搭小鱼过程中的常量和变量.提问:找出问题中的变量,并说出变量之间的关系.函数的概念:三、拓展导学1、把一根2m长的铁丝围成一个长方形.(1)当长方形的宽为0.1m时,长为多少?(2)当长方形的宽为0.2m时,长为多少?(3)这个长方形的长是宽的函数吗?为什么?四、检测促学1、“沙漏”是我国古代一种计量时间的仪器,它根据一个容器里的细沙漏到另一个容器中的数量来计算时间.请说出该变化过程中有哪几个变量,自变量什么?数吗?为什么?五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.1函数(2)一、自主先学汽车以100km/h 的速度匀速行驶,在这一变化过程中, (1)有哪些变量?哪些常量? (2)变量之间是函数关系吗?为什么?(3)若汽车行驶的时间为t(h),汽车行驶的路程为y(km).怎样表示函数y 与自变量t 的关系?方式一、列表.方式二、画图方式三、列式函数关系式的定义: 二、合作助学1、汽车油箱内存油40L,每行驶100km耗油10L.(1)求行驶过程中油箱内剩余油量Q (L)与行驶路程s (km) 的函数表达式.(2)汽车行驶250km时,油箱里还有多少油?(3)你认为这辆汽车现有油量够它行驶多远?(4)s的值最小取多少?s的取值范围是什么?归纳:在实际问题中,自变量的取值通常有一定的范围.2、在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐,涨落的水位称为潮位.如图是我国某港某天的实时潮位图.在图中,潮位仪绘制的平滑曲线,揭示了潮位y(m)与时间t(h)之间的函数关系.在图中你读到了什么信息?归纳:在直角坐标系中,以函数的自变量的值为横坐标、相应的函数值为纵坐标的点所组成的图形叫做这个函数的图像.三、拓展导学1、小明骑自行车从甲地到乙地,图中的折线表示小明的行程s (km)与途中所花时间t(h)之间的函数关系.(1)小明从甲地到乙地用了多少时间?(2)小明出发5h时,距离甲地有多远?(3)折线中有一条平行于t轴的线段,它的意义是什么?(4)你还能从图中获得哪些信息?请与同伴交流.四、检测促学1、商店有100支铅笔.(1)如果卖出x支,还剩y 支,那么y =(2)当x越来越大时,y会发生什么变化?(3)请写出自变量取值范围..(2)按1-12月的顺序,顺次连接各点.(3)与上月相比,哪些月份产量上升、下降或不升不降?3、求下列函数的自变量取值范围:(1)4+=x y ; (2)131-=x y ; (3)3-=x y .4、甲、乙两人出去散步,用20 min 走了900 m 后,甲随即按原速返回.乙遇到一位朋友,并与朋友交谈了10min 后,用15min 时间回到家里.下面4个图像中,哪一个表示甲离家的路程s (m )与时间t (min )的函数关系?哪一个表示乙离家的路程与时间之间的函数关系?五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.2一次函数(1)一、自主先学给汽车加油的加油枪流量为25L/min. 如果加油前油箱里没有油,那么在加油过程中,用y(L)表示油箱中的油量,x (min)表示加油时间. (1)y 是x 的函数吗?说说你的理由. (2)y 与x 之间有怎样的函数表达式?(3)如果加油前油箱里有6L 油,y 与x 之间有怎 样的函数表达式? 归纳:这些函数表达式有什么共同特点?定义:一般地,如果两个变量 x 与 y 之间的函数关系,可以表示为y = k x + b (k 、b 为常数,且 k ≠0) 的形式.那么称 y 是 x 的一次函数(linear function). 特别地,当 b =0 时,y 叫做 x 的正比例函数. 说明:正比例函数 y = k x 是特殊的一次函数同桌之间互写三个一次函数表达式,并指出其中的k 和b .二、合作助学下列变化过程中,变量 y 是变量 x 的一次函数吗?是正比例函数吗? (1)正方形面积 S 与边长 x 之间的函数关系; (2)正方形周长 l 与边长 x 之间的函数关系.(3)长方形的长为常量 a 时,面积 S 与宽x 之间的函数关系;(4)高速列车以 300 km /h 的速度匀速驶离 A 站,在行驶过程中,这列火车离开 A 站的路程 y (km)与行驶时间 x (h)之间的函数关系;.、、、、10100104062525-==-=+==h g t y sQ x y x yB200 km三、拓展导学如图, A 、B 两地相距 200 km ,一列火车从B 地出发沿 BC 方向以 120 km/h 的速度行驶,在行驶过程中,这列火车离A 地的路程 y (km)与行驶时间 x (h)之间的函数关系.四、检测促学1、下列函数:①6-=x y ;②x y 2=;③8xy =;④x y -=7.其中y 是x 的一次函数的是 ( )A.①②③B.①③④C.①②③④D.②③④2、水池中有水 4653m ,每小时排水153m ,排水 t h 后,水池中还有水 y 3m .试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数;写出自变量的取值范围.3、 一个长方形的长为15 cm ,宽为10 cm .如果将长方形的长减少x cm ,宽不变,那么长方形的面积y cm 2与x cm 之间有怎样的函数表达式?判断 y 是否为 x 的一次函数,是否为 x 的正比例函数.五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.2一次函数(2)一、自主先学写出下列各题中y与x之间的函数表达式,并判断:y是否为x的一次函数?是否为正比例函数?(1)摩托车以50千米/时的速度匀速行驶,行驶路程y km与行驶时间x h之间的关系;(2)正方体的表面积y cm2与它的棱长x cm 之间的关系;(3)一棵树现在高40 cm,每个月长高3 cm,x月后这棵树的高度为y cm;(4)多边形的内角和s与边数n的函数关系.二、合作助学1、填空(1)已知函数y=4x+5,当x=-3时,y=;当y=5时,x=.(2)已知函数y=-3x+1,当x=2时,y=____;当y=0时,x=.2、一盘蚊香长105cm,点燃时每小时缩短10 cm.(1)写出蚊香点燃后的长度y cm与点燃时间t h之间的函数表达式;(2)该盘蚊香可以燃烧多长时间?三、拓展导学在弹性限度内,弹簧长度y(cm)是所挂物体的质量x(g)的一次函数.已知一根弹簧挂10g物体时的长度为11cm,挂30g物体时的长度为15cm,试求y与x的函数表达式.归纳:先写出含有未知系数的函数表达式,再根据条件求出这些未知系数的值,从而确定函数表达式,这样的方法叫做待定系数法。

苏科版数学八年级上册 6.2 一次函数 教案

苏科版数学八年级上册 6.2 一次函数  教案

6.2一次函数(1)教学目标1、理解一次函数和正比例函数的概念,以及它们之间的关系.2、能根据所给条件写出简单的一次函数表达式.3、经历一般规律的探索过程、发展学生的抽象思维能力.4、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.教学重点:1、一次函数、正比例函数的概念及关系.2、会根据已知信息写出一次函数的表达式.教学过程:一、情景导入小明是个爱动脑筋的孩子,他经常提出一些让人思考的问题:情境一(多媒体呈现)比如:去商店买笔时,他提出了这样一个问题:商店有100支铅笔,如果卖出x支,还剩y支,那么y与x的函数关系式是(学生快速回答:找出y与x的关系式y=100-x)情境二(多媒体呈现)有一天,小明跟着爸爸开车去加油站加油,当他看见仪表上显示器有的价格是7.2元/L,引起了他的思考:加油后付款的多少与什么有关呢?假设加油x(L),应付费y(元),那么y与x之间的函数关系式为。

(学生快速回答:找出y与x的关系式y=7.2x)过了一会儿,开始加油了,小明注意到仪表上显示的加油枪的流量为10L/min,,爸爸告诉小明加油前油箱内还剩6L汽油,这又引起小明的思考:加油过程中,能随时说出油箱中的油量吗?它与什么有关呢?(学生独立思考:找出此题存在的等量关系油箱中油量=已有汽油(6L)+10L∕min的加油量)如果用y(L)表示油箱中的油量,x(min)表示加油时间,那么y与x之间的函数关系式是。

(学生快速回答:找出y与x的关系式y=6+10x)情景三(多媒体呈现)第二天,小明跟着妈妈去中国移动营业厅缴费。

他注意到,妈妈用的移动卡有月租费25元,同时话费为每分钟0.1元。

于是小明又想到这样一个问题:妈妈这个月到底应交费多少元呢?它又与什么有关呢?(学生独立思考:找出此题存在的等量关系月电话费=月租费(25元)+0.1元∕分钟的话费)如果用(y)元表示每月应缴费用,用x(min)表示通话时间,那么y与x之间的函数关系式为。

苏教版一次函数教案

苏教版一次函数教案

苏教版一次函数教案【篇一:苏科版数学八(上)一次函数教学案例】全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计一、教案背景1、面向学生:□√中学2、学科:数学3、课题5.2《一次函数》(第一课时)二、教材分析:本节课是江苏科技出版社义务教育课程标准实验教科书八年级上册第5章《一次函数》5.2一次函数,它是函数的继续,也是后面研究一次函数图像、应用等内容的基础,是“数与代数”中的重要组成部分。

三、学情分析:学生虽然已经学习了第四章数量变化、位置变化及5.1函数,但中学学生的抽象思维能力仍较低,所以一次函数是比较难以建立的一个抽象概念,本节课力图提供丰富多彩的生活素材,让学生通过实例,多角度、多层次地认识和理解一次函数的意义,并正确的建立正比例函数和一次函数的概念.在探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间.四、教学目标:1、理解一次函数和正比例函数的概念,以及它们之间的关系.2、能根据所给条件写出简单的一次函数表达式.3、学会从实际生活中发现变量间的特定的关系来掌握运动变化的本质.4、经历将具体问题数学化、一般规律的探索过程、发展学生的抽象思维能力.5、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.五、教学重、难点:能结合具体情景理解一次函数和正比例函数的意义,能根据所给的条件写出简单的一次函数表达式.六、教学方法:“引导发现法”与“自主探究法”七、教学媒体:教师课前准备:教学之前用百度在网上搜索儿歌《数青蛙》的相关教学材料,制作ppt课件,创设教学情境。

投影仪、多媒体课件八、教学过程:1、情景创设师:大家小时候都听过《数青蛙》的儿歌或是做过数青蛙的游戏吧,那下面让我们来重温一下那美好的童年??一只青蛙一张嘴,两只眼睛四条腿??看着青蛙可爱的演出,全班同学和老师一起数起来)师:你还能继续数下去吗?生:能.师:六只青蛙?生1:六张嘴.生2:十二只眼睛.生3:二十四条腿.生4:扑通、扑通、扑通、扑通、扑通、扑通跳下水.师:大家反应很快哦,那如果设青蛙的总数目为x只,则青蛙嘴的总数目为y张、眼的总数目z只、腿的总数目m条、落水声的总数目n与x有怎样的关系呢?(生七嘴八舌,议论纷纷,课堂气氛很好,)得到:y=x、z=2x、m=4x、n=x几个函数关系(师在黑板右侧板书:y=x、z=2x、m=4x、n=x)(创设情境采取从学生比较感兴趣的“数青蛙”这一贴近学生的生活实际问题情境入手方式,,让学生认识到数学来源于生活,又服务于生活,为下面将实际问题抽象成数学问题做铺垫,同时也大大的激发了学生的求知欲,调动了学生学习的积极性和主动性)师:那青蛙的烦恼我们解决了,生活中也会遇到很多的难题,让大家一起来帮忙解决一下:生课前预习完成学案①②①某种汽油4.5元/l,加油x(l),应付费y(元),那么y与x之间的函数关系式为. (y=4.5x)如果加油前,汽车的油箱里还剩6l汽油,已知加油枪的流量为10l/min,那么加油过程中,你能随时说出油箱中的油量吗?如果y(l)表示油箱中的油量,x(min)表示加油的时间,那么y与x之间的函数关系式为 .(y=10x +6)②电信公司推出无限市话服务,收费标准为月租费25元本地网通话费为每分钟0.1元.如果用y(元)表示每月应缴费用,用x(min)表示通话时间(不足1min按1min计算),那么y与x之间的函数关系式为 .(y=0.1x+25)(在前面由数青蛙把学生的积极性调动起来之后,再加上有函数的铺垫,这两道生活中的实例,而且课前已经预习了,学生做起来还是比较得心应手的,很容易得出y=4.5x 、y=10x+6、 y=0.1x+25几个函数关系式)师:你能还说出一些含有函数关系的实例吗?并且说出其中的函数关系式。

一次函数教学设计

一次函数教学设计

一次函数的教学设计一、教材分析内容解读一次函数是苏教版八年级上册第六章第2节第1课时内容.函数是近代数学最基本的概念之一,在数学发展过程中起着十分重要的作用,很多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数等)都是以函数为中心展开研究的。

一次函数属于是最基本的、最简单的函数.他的研究方法为今后的反比例函数,二次函数的研究奠定了基础,本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材。

学情分析学生在学习本节课之前对规律探索也形成了一定的方法,为本节课刚开始写出函数关系式提供了方法,另外本章的一开始对函数的概念的研究,使得学生对函数的概念及三种表示方法都有了一定的了解,为本节课的学习奠定了基础学习目标:知识与技能1、结合具体情境理解一次函数和正比例函数的概念,2、能根据所给条件写出简单的一次函数表达式。

过程与方法1、经历一般规律的探索过程、发展学生的抽象思维水平。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用水平。

情感与态度体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,从而培养学生对学习数学的兴趣。

学习重点:理解一次函数和正比例函数的概念.学习难点能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维水平.学习过程:一、创设情境,新课导入相关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相对应的会拉长,那么所挂物体的重量与弹簧的长度之间就存有某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y 增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:(2)你能写出y与x之间的关系式吗?2、某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版初二
一次函数的图象和性质(教案)
【目标导航】
1.理解一次函数的代数表达式与图象之间的对应关系,掌握一次函数y =kx +b (k ≠0)的性质; 2.能较熟练作出一次函数的图象;
3.结合图象体会一次函数k 、b 的取值和直线位置的关系,提高数形结合能力.
【要点回顾】
1、 一般地,形如y =kx +b (k 、b 是常数,k ≠0)的函数,•叫做 .当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种
特殊的一次函数.
2、一般地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过 的直线,我们称它为直线 y =kx .当k >0时,直线y =kx 经过第 象限,即y 随x 的增大而 ;当k <0时,直线y =kx 经过第 象限,即y 随x 的增大而 .画正比例函数图象时,一般只需描点 ,两点连线即可.
【要点梳理】
一次函数y =kx +b (k 、b 是常数,k ≠0•)具有下列性质:
1、当k >0时,y 随x 的增大而 ,这时函数的图象从左到右 ;
2、当k <0时,y 随x 的增大而 ,这时函数的图象从左到右 ;
3、当b >0时,直线与y 轴交于 半轴;
4、当b <0时,直线与y 轴交于 半轴;
5、当b =0时,直线与y 轴交于 ;
6、k >0,b >0时,直线经过 象限;
7、k >0,b <0时,直线经过 象限;
8、k <0,b >0时,直线经过 象限;
9、k <0,b <0时,直线经过 象限.
一次函数中k 与b 的正、负与它的图象经过的象限归纳列表为:
【典型问题】
一.由图象说性质:1 . 某个一次函数b kx y +=的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.
2.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )
A 、2.5米
B 、2米
C 、1.5米
D 、 1米
3.下列图形中,表示一次函数n mx y +=与正比例函数mnx y =(m 、n 为常数,且0≠mn )的图象的是( )
4.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值( ) (A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能 5.如图所示图象中,不可能是关于x 的一次函数y=mx-(m -3)的图象的是( )
6.两个一次函数a bx y b ax y +=+=,它们在同一坐标系中的图象可能是( )
二.由性质说图象:
7.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快
了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y •(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
8.从-2,-1,0,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经
过第四象限的有________条. 9.已知函数()m x
m y m
++=+231,
当m 为何值时,这个函数是一次函数.并且说出图象经过第几象限?与Y 轴的交点坐标是什么?
三.求直线解析式:
10.已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式.
11.已知一次函数的图象与y =-3x 平行,且与y=x+5的图象交于y 轴的同一个点,求此函数的解析式.
12.已知:函数y = (m +1) x +2 m -6
(1)若函数图象过(-1 ,2),求此函数的解析式.
(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式.
(3)求满足(2)条件的直线与直线y = -3 x +1 的交点,并求这两条直线 与y 轴所围成的三角形面积
13.直线y =2x +m 与直线y =3x -4的交点在x 轴上,则m 的值为_________. A O y x B O y x C O y x D
O y
x (A )
(D )
(B )
(C )
14.已知一次函数y =kx +b 中自变量x 的取值范围是-3≤ x ≤8,相应函数值的取值范围是-11≤ y ≤9,求此函数的解析式.
四.平移问题:
15.将函数y =x +2的图象向下平移3个单位,这时函数的解析式为 ( )
A. y = x +5
B. y = 3x +5
C. y =-3x +5
D.y =x -1
16.一次函数y = kx + b 的图象经过点A (0,2),B (-1,0)(1)若将该图象沿着y 轴向上平移2个单位,则新图象所对应的函数解析式是 .
(2)若将该图象沿着X 轴向右平移2个单位,则新图象所对应的函数解析式是 . 五.与一次函数有关的多解问题:
17.在直线y=
21x+2
1
上,到x 轴距离为1的点有 个. 18.(2005江阴)已知c b a ,, 为非零实数,且满足k b
c
a c
b a a
c b =+=+=+,则一次项函数)1(k kx y ++=的图象一定经过
A 、第一、二、三象限
B 、第二、四象限
C 、第一象限
D 、第二象限 19.(2006哈尔滨)在平面直角坐标系内,直线
34
3
+=
x y 与两坐标轴交于A 、B 点,点O 为坐标原点,若在该坐标平面内有以点P (不与点A 、B 、O 重合),为顶点的直角三角形与t R △ABO 全等,且这个以P 为顶点的直角三角形与t R △ABO 有一条公共边,则所有符合条件的P 点个数为( )
A 、9个
B 、7个
C 、5个
D 、3个
20.(2008南昌)如图,在平面直角坐标系中,有A (0,1),B (-1,0),C (1,0)三点坐标. (1)若点D 与A 、B 、C 三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 的解析式.
21.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y (元)是1吨水的价格(元)的一次函数.
⑴根据下表提供的数据,求y 与x 的函数关系式.当水价为每吨10元时,10吨水生产出的饮料所获的利润是多少? 1吨水的价格x (元) 4 6 用1吨水生产的饮料所获利润y (元)
200
198
⑵为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t 吨,当日所获利润为W 元,求W 与t 的函数关系式。

22.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......
为(km)y ,
图中的折线表示
y 与x 之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义。

(3)求慢车和快车的速度;
(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求
第二列快车比第一列快车晚出发多少小时?
六.体验中考:
23.(2008河南)如图,直线L1的解析式为,33+-=x y 且L1与X 轴交于点D .直线L2经过点A 、B ,直线L1、L2交于点C .
(1)求点D 的坐标; (2)求直线L2的解析式; (3)求△ADC 的面积;…
24.(2006黄冈)如图所示,在平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(4,0),(4,3),动点M 、N 分别从O 、
B 点同时出发,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿B
C 向终点C 运动,过点N 作NP ⊥BC 交于AC 于P ,
连接MP ,当两动点运动了ts 时,求P 点的坐标.(用含t 的代数式表示).…
(第22题)
A
B C
D
O
y /km
900 12 x /h
4 O
C
N
M
P
B (4,3)
A (4,0)
x
y。

相关文档
最新文档