苏教版初二(一次函数)(教案)

合集下载

初中数学八年级上册苏科版6.4一次函数的应用教学设计

初中数学八年级上册苏科版6.4一次函数的应用教学设计
初中数学八年级上册苏科版6.4一次函数的应用教学设计
一、教学目标
(一)知识与技能
1.让学生掌握一次函数的定义,能够准确识别和描述一次函数的一般形式,即y=kx+b(k≠0,k、b为常数),理解其中k、b分别代表的意义。
2.使学生能够运用一次函数解决实际问题,如直线运动物体的速度与时间关系、单价与数量的关系等,提高学生将数学知识应用于实际生活的能力。
c.课堂练习:设计有针对性的练习题,让学生运用一次函数知识解决问题,巩固所学内容。
d.课堂小结:总结一次函数的性质、图像特征,以及解决实际问题的方法。
3.教学策略:
a.关注学生的个体差异,针对不同学生的学习需求,提供个性化的指导。
b.鼓励学生积极参与课堂讨论,培养他们的表达能力、合作精神。
c.及时反馈学生的学习情况,调整教学进度和策略,确保教学效果。
3.小组合作:引导学生相互讨论,共同解决问题,鼓励学生发表自己的观点。
4.汇报:每个小组汇报自己的讨论成果,其他小组进行评价,教师点评并总结。
(四)课堂练习
1.练习题设计:针对一次函数的知识点,设计不同难度的练习题,包括选择题、填空题、解答题等。
2.学生独立完成:要求学生在规定时间内独立完成练习题,巩固所学知识。
1.激发学生兴趣,引导学生主动参与课堂,通过实例分析,让学生体会一次函数在实际生活中的应用。
2.注重培养学生的抽象思维能力,帮助学生将实际问题转化为数学模型,提高学生解决问题的能力。
3.针对学生对截距、斜率等概念的理解困难,设计具有针对性的教学活动,采用直观演示、互动讨论等方式,帮助学生深入理解。
4.鼓励学生积极思考,勇于提问,充分调动学生的学习积极性,提高课堂效果。在此基础上,关注学生的个体差异,给予每个学生个性化的指导,使他们在原有基础上得到提高。

苏科版数学八年级上册 6.2 一次函数 教案 (1).docx

苏科版数学八年级上册 6.2 一次函数 教案  (1).docx

6.2 一次函数(1)一、教学目标(1)能结合具体情境理解一次函数和正比例函数的概念及其意义;(2)能根据实际问题列出简单的一次函数的表达式;(3)经历由实际问题引出一次函数表达式和由已知信息写一次函数表达式的过程,体会数学与现实生活的联系,体会建立函数模型的思想,发展学生的抽象思维能力.二、教学重点一次函数、正比例函数的概念及关系.会根据所给条件写出简单的一次函数表达式.三、教学过程设计(一)情境屋1.小树现有高度120cm,平均每年长高30cm。

完成下面的表格(1)y是x的函数吗?(2)如何表示y与x之间的关系?2.光头强和熊大熊二结伴出游,在普通公路上行驶了30km后,由于赶时间,光头强上高速以100km/h的速度匀速行驶了x小时.(1)在高速公路上行驶了y千米,那么y与x的函数表达式为(2)此时他们离森林的家s千米,那么s与x的函数表达式为_____________(3)行驶到途中,他们去加油站加油,油价为7.65元/升,加油m升,付费Q元,那么Q与m 的函数表达式为_______________(4)汽车的油箱里加满了60L汽油,发现汽车每行驶50千米耗油9L。

那么行驶过程中油箱内剩余油量Q(L)与行驶的路程s千米之间的函数表达式:________________(二)探究园师:让我们一起来观察刚刚得到的几个函数关系式,请你仔细观察并思考,它们在结构上有什么共同特征吗?(可以左右两边分别进行思考,对于右边的代数式,你可以从哪些方面去找它的共性呢?)生:右边的自变量的指数都是1,且都是整式.师:那左边呢?生:右边就只有应变量.师:很好,还有要补充的吗生:k≠0师:为何k≠0?生:因为当k=0了,那右边就不是关于自变量的一次整式了.师:那我们可以这样认为,关系式的左边是因变量,右边是关于自变量的一次整式。

那你能根据你观察到的它们的共同特点自己创造一个它们的一般形式吗?可以回忆我们在学习一元一次方程时是怎么表示它的一般形式的.师:刚刚同学们创造出的这个一般形式其实就是我们今天要学习的一次函数。

苏科版八年级数学上册一次函数教案2

苏科版八年级数学上册一次函数教案2

一次函数【目标预测】一、知识与能力。

了解一次函数的概念。

二、过程与方法。

1、会写出实际问题中的函数关系式。

2、会判断一个函数是否是一次函数。

三、情感、态度、价值观。

通过实际问题用函数关系式表示出来,提高学生学习数学的兴趣。

【教学重难点】重点:一次函数的概念难点:会写出实际问题中的函数关系式。

【教学过程】一、创设情景,谈话导入。

问题:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

二、精讲点拨、质疑问难。

1、例题:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20∽25℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差。

(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。

(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取。

(4)把一个长10cm,宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。

2、一次函数的概念。

一般地,形如y=kx+b (k、b是常数,k≠0) 的函数,叫做一次函数。

当b=0时,y=kx+b 即 y=kx,所以说正比例函数是一种特殊的一次函数。

3、下列函数中哪些是一次函数?哪些是正比例函数?Y=2x+1, y=3x, y=2x2-3, y= -xY=x 3-1, x=y, y=3x 2-2x+1, xy=y-1三、课堂活动、强化训练。

1、课本练习2、某工厂加工一批产品,为了提前完成任务,规定每个工人完成150以内,按每个产品3元付酬;超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分除按以上规定付酬外,每个产品增付0.3元,求某个工人:(1)完成150个以内产品得到的报酬y (元)与产品个数x (个)之间的函数关系式;(2)完成150个以上但不超过250个产品得到的报酬y(元)与产品个数x (个)之间的函数关系式;(3)完成250个以上产品得到报酬y (元)与产品个数x (个)之间的函数关系式。

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。

教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。

但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。

因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。

三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。

2.能够运用一次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点。

3.运用一次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。

3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。

4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。

六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。

2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。

3.教学工具:准备黑板、粉笔、直尺等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。

通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。

6.2一次函数-苏科版八年级数学上册教案

6.2一次函数-苏科版八年级数学上册教案

6.2 一次函数-苏科版八年级数学上册教案一、教学目标1.理解一次函数的定义和特点;2.掌握一次函数的基本图像与性质;3.能够根据实际问题建立相应的一次函数模型;4.能够用函数图象解答相应的实际问题。

二、教学重点1.一次函数的定义和特点;2.一次函数的基本图像与性质。

三、教学难点1.根据实际问题建立相应的一次函数模型;2.用函数图象解答相应的实际问题。

四、教学内容及步骤1. 一次函数的定义和特点1.引入学生们已经学过线性方程和直线,对于直线的特征和区分方法已经有了一定的认识。

那么,如何把已有的知识与新学的知识进行联系,达到知识的无缝衔接,这是我们需要重点关注的。

2.探究通过生活中常见的例子,引导学生认识一次函数的定义和特点:y=kx+b(k eq0),其中k为斜率,b为截距,直线上所有的点都满足这个规律。

3.小结通过一次函数的探究,让学生了解一次函数的定义、斜率和截距的概念,以及一次函数图像的特点。

2. 一次函数的基本图像与性质1.引入学习一次函数,图像是必不可少的,通过图像的形状和特点,可以更好地理解和掌握函数的性质。

2.学习通过画图,让学生了解一次函数的基本图像,即一条直线。

进一步探究一次函数图像的特点:当k>0时,图像向上倾斜,当k<0时,图像向下倾斜,当b>0时,图像在y轴上方和下方的距离相等,当b<0时,图像在y轴上方和下方的距离不相等。

3.总结通过绘制一次函数的图像,带领学生总结一次函数图像的特点和性质,进一步加深对一次函数性质的理解。

3. 根据实际问题建立相应的一次函数模型1.引入通过实际问题的引入,让学生了解一次函数在实际生活中的应用。

如何根据实际问题建立相应的一次函数模型,是本环节的主要目标。

2.学习通过教师的指导,学生们自己动手解决实际问题,从中掌握建立一次函数模型的方法和技巧。

例如,给出一个直线坡度的问题,通过规律总结出公式,建立相应的一次函数模型。

苏教版八年级上学期教案第五章一次函数

苏教版八年级上学期教案第五章一次函数

第五章一次函数5.1函数(1)[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

如果学生没有乘坐火车的经历,可改用汽车或创设其他类似情境.情境二:分别用表格、关系式和语言等方式给出不同的实际问题,让学生从这些情境中,发现在各种变化过程中,往往存在着两个相互联系的变量,从而引入函数的概念.2.探索活动活动一:展示一幅列车行驶或车厢内的图片.用下列问题引导学生加入小明、小丽、小亮和小华的讨论,感受常量与变量的意义:(1)列车在行驶,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮、小华所说的那些变化的数量外,在这个问题中还有变化的数量吗?活动二:可以用下列问题引导学生展开活动,体会函数的意义:(1)你从水库工作人员制作的表格里获得哪些信息?水位高低与水库容量有什么关系?(2)小鱼的条数n与所需火柴棒的根数S的关系为S=8+6(n—1),说说你从中获得的信息;(3)变化中的圆面积与半径的大小密切相关,你能大致描述它们之间的关系吗?(4)上述问题有共同之处吗?说说你的看法.5.1函数[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。

最新苏科版八年级数学上册《一次函数》1教学设计(精品教案).docx

最新苏科版八年级数学上册《一次函数》1教学设计(精品教案).docx

6.2 一次函数一、教材分析:一次函数是属于《新课标》“数与代数”领域,是最基本、最简单的函数,一次函数是本章内容的重点。

本节课是苏科版八年级上册教材第六章第二节内容,是在学习了变量、常量和函数后的学习内容,是二元一次方程的再学习再认识,是后面有函数观点解尔元一次方程和一次不等式的基础,本节教材再本章起着承上启下的作用,同时也为后面的反比例函数和二次函数学习做了一个铺垫。

教材首先从汽车加油这一生活情境出发,引出函数问题,通过列函数关系式的共同特征得出一次函数的概念,随后的练习交流时学生加深对一次函数概念的理解,使学生明白一次函数也是刻画实际的有效模型。

二、教学目标:1、理解一次函数和正比例函数的概念,并能根据函数关系的特点判断该函数关系式是否是一次函数。

2、通过列函数关系式,进一步提高学生分析问题解决问题的能力。

3、经历一次函数关系概念的探索过程,使学生体会一次函数是刻画实际的又一有效数学模型。

4、经历探索交流一次函数概念学习过程,进一步培养学生的合作学习能力和探究能力。

三、教学重点:理解一次函数和正比例函数的概念四、教学难点:能运用一次函数的概念,对函数是否是一次函数进行判断。

五、教学过程:1、问题情境问题1:给汽车加油的加油枪流量为25L/min。

如果加油前油箱里没有油,油箱里的油量与加油时间之间有怎样的函数关系?请写出此函数关系式。

问题2:如果问题1中的“加油前油箱里没油”改成“加油前油箱里有6L油”则油箱里的油量与加油时间之间又有怎样的函数关系?请写出函数关系式。

问题3:汽车加满40L油后,开始行驶,已知汽车每行驶100km消耗油10L,请写出油箱油量Q与行驶路程s的函数关系式。

(设计目的:通过是学生生活中常见的实例,激发学生学习的兴趣,通过学生动手操作,为后面的学习提供学习新知的素材,能更好的然学生投入数学学习。

)2.探索一次函数、正比例函数的概念(1)观察以上的3个函数关系式,有什么共同特征,你有什么猜想呢?(2)类比一元一次方程、一元一次不等式的概念,你能给以上函数起个名字吗?(3)你能抽象出此类函数的一般形式吗?(4)讨论总结:(设计意图:通过学生知思考、分析、类比,学生很容易得出一次函数的概念,告诉学生对于一个新的知识或陌生的知识怎么去解决的方法——有学过的知识区解决,看它与学过知识的相同点,再联系所学来解决)3、针对性练习(1)下列函数关系式中那些是一次函数那些是正比例函数?x-4 ; ③s=5t;①y=x+1 ; ②y=23x;④q=-53+2; ⑥y=kx+b⑤y=x(设计意图:通过题组练习判别,达到对一次函数、正比例函数概念的理解和巩固)(2)(设计意图:通过这题组训练,让学生写出函数关系式,进一步提高学生的分析问题解决问题的能力。

苏科版数学八年级上册 6.2 一次函数 教案 (1)

苏科版数学八年级上册 6.2 一次函数  教案 (1)

6.2 一次函数【教学目标】1.能用适当的表示法刻画实际问题中的函数关系.2.能结合具体情景理解一次函数和正比例函数的意义.3.通过探索和讨论,体验函数是处理和解决实际问题的有力工具.【教材及学情分析】《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。

从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。

通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。

本课的知识起到了承前启后的作用,也符合学生的认知规律。

八年级的学生好奇、好动、好表现。

因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。

就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系。

在教学过程中教师要充分借助设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

【重点难点】重点:理解一次函数和正比例函数的意义.难点:一次函数、正比例函数的概念及关系.【教学过程】一、复习导入师:同学们,上节课,我们学习了函数,你能说说什么是函数吗?函数通常有哪几种表示方法吗?答:一般地,如果在一个变化的过程中有两个变量x与y,并且对于变量x 的每一个值,变量y都有惟一的值与它对应,那么我们称y是x的函数.其中,x是自变量。

通常,表示函数关系可用三种方法:表格、图像和函数表达式。

师:今天我们结合生活实际,探索一种特殊的函数——一次函数。

二、新课教学一、探索概念情景一给汽车加油的加油枪流量为25L/min.如果加油前油箱里没有油,那么在加油过程中,用y(L)表示油箱中的油量,x(min)表示加油时间.(1)y 是x 的函数吗?说说你的理由.(2)y 与x 之间有怎样的函数表达式?(3)如果加油前油箱里有6L 油,y 与x 之间有怎样的函数表达式?分析:(1)因为对于变量 x (min )的每一个值,变量 y (L )都有唯一的值与它对应,所以y 是x 的函数.(2)y 与x 之间的函数关系为y =25x .(3)y 与x 之间的函数关系为y =25x +6.情境二某种汽油6.27元/L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版初二
一次函数的图象和性质(教案)
【目标导航】
1.理解一次函数的代数表达式与图象之间的对应关系,掌握一次函数y =kx +b (k ≠0)的性质; 2.能较熟练作出一次函数的图象;
3.结合图象体会一次函数k 、b 的取值和直线位置的关系,提高数形结合能力.
【要点回顾】
1、 一般地,形如y =kx +b (k 、b 是常数,k ≠0)的函数,•叫做 .当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种
特殊的一次函数.
2、一般地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过 的直线,我们称它为直线 y =kx .当k >0时,直线y =kx 经过第 象限,即y 随x 的增大而 ;当k <0时,直线y =kx 经过第 象限,即y 随x 的增大而 .画正比例函数图象时,一般只需描点 ,两点连线即可.
【要点梳理】
一次函数y =kx +b (k 、b 是常数,k ≠0•)具有下列性质:
1、当k >0时,y 随x 的增大而 ,这时函数的图象从左到右 ;
2、当k <0时,y 随x 的增大而 ,这时函数的图象从左到右 ;
3、当b >0时,直线与y 轴交于 半轴;
4、当b <0时,直线与y 轴交于 半轴;
5、当b =0时,直线与y 轴交于 ;
6、k >0,b >0时,直线经过 象限;
7、k >0,b <0时,直线经过 象限;
8、k <0,b >0时,直线经过 象限;
9、k <0,b <0时,直线经过 象限.
一次函数中k 与b 的正、负与它的图象经过的象限归纳列表为:
【典型问题】
一.由图象说性质:1 . 某个一次函数b kx y +=的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.
2.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )
A 、2.5米
B 、2米
C 、1.5米
D 、 1米
3.下列图形中,表示一次函数n mx y +=与正比例函数mnx y =(m 、n 为常数,且0≠mn )的图象的是( )
4.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值( ) (A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能 5.如图所示图象中,不可能是关于x 的一次函数y=mx-(m -3)的图象的是( )
6.两个一次函数a bx y b ax y +=+=,它们在同一坐标系中的图象可能是( )
二.由性质说图象:
7.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快
了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y •(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
8.从-2,-1,0,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经
过第四象限的有________条. 9.已知函数()m x
m y m
++=+231,
当m 为何值时,这个函数是一次函数.并且说出图象经过第几象限?与Y 轴的交点坐标是什么?
三.求直线解析式:
10.已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式.
11.已知一次函数的图象与y =-3x 平行,且与y=x+5的图象交于y 轴的同一个点,求此函数的解析式.
12.已知:函数y = (m +1) x +2 m -6
(1)若函数图象过(-1 ,2),求此函数的解析式.
(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式.
(3)求满足(2)条件的直线与直线y = -3 x +1 的交点,并求这两条直线 与y 轴所围成的三角形面积
13.直线y =2x +m 与直线y =3x -4的交点在x 轴上,则m 的值为_________. A O y x B O y x C O y x D
O y
x (A )
(D )
(B )
(C )
14.已知一次函数y =kx +b 中自变量x 的取值范围是-3≤ x ≤8,相应函数值的取值范围是-11≤ y ≤9,求此函数的解析式.
四.平移问题:
15.将函数y =x +2的图象向下平移3个单位,这时函数的解析式为 ( )
A. y = x +5
B. y = 3x +5
C. y =-3x +5
D.y =x -1
16.一次函数y = kx + b 的图象经过点A (0,2),B (-1,0)(1)若将该图象沿着y 轴向上平移2个单位,则新图象所对应的函数解析式是 .
(2)若将该图象沿着X 轴向右平移2个单位,则新图象所对应的函数解析式是 . 五.与一次函数有关的多解问题:
17.在直线y=
21x+2
1
上,到x 轴距离为1的点有 个. 18.(2005江阴)已知c b a ,, 为非零实数,且满足k b
c
a c
b a a
c b =+=+=+,则一次项函数)1(k kx y ++=的图象一定经过
A 、第一、二、三象限
B 、第二、四象限
C 、第一象限
D 、第二象限 19.(2006哈尔滨)在平面直角坐标系内,直线
34
3
+=
x y 与两坐标轴交于A 、B 点,点O 为坐标原点,若在该坐标平面内有以点P (不与点A 、B 、O 重合),为顶点的直角三角形与t R △ABO 全等,且这个以P 为顶点的直角三角形与t R △ABO 有一条公共边,则所有符合条件的P 点个数为( )
A 、9个
B 、7个
C 、5个
D 、3个
20.(2008南昌)如图,在平面直角坐标系中,有A (0,1),B (-1,0),C (1,0)三点坐标. (1)若点D 与A 、B 、C 三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 的解析式.
21.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y (元)是1吨水的价格(元)的一次函数.
⑴根据下表提供的数据,求y 与x 的函数关系式.当水价为每吨10元时,10吨水生产出的饮料所获的利润是多少? 1吨水的价格x (元) 4 6 用1吨水生产的饮料所获利润y (元)
200
198
⑵为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t 吨,当日所获利润为W 元,求W 与t 的函数关系式。

22.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......
为(km)y ,
图中的折线表示
y 与x 之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义。

(3)求慢车和快车的速度;
(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求
第二列快车比第一列快车晚出发多少小时?
六.体验中考:
23.(2008河南)如图,直线L1的解析式为,33+-=x y 且L1与X 轴交于点D .直线L2经过点A 、B ,直线L1、L2交于点C .
(1)求点D 的坐标; (2)求直线L2的解析式; (3)求△ADC 的面积;…
24.(2006黄冈)如图所示,在平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(4,0),(4,3),动点M 、N 分别从O 、
B 点同时出发,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿B
C 向终点C 运动,过点N 作NP ⊥BC 交于AC 于P ,
连接MP ,当两动点运动了ts 时,求P 点的坐标.(用含t 的代数式表示).…
(第22题)
A
B C
D
O
y /km
900 12 x /h
4 O
C
N
M
P
B (4,3)
A (4,0)
x
y。

相关文档
最新文档