同济大学组合数学期末试卷

合集下载

高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学大一公共课高等数学期末试卷及答案9

同济大学大一公共课高等数学期末试卷及答案9

同济大学高等数学(下册)期末考试试卷考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每小题3分,共计24分) 1、设⎰=yz xzt dt e u 2, 则=∂∂zu。

2、函数)2sin(),(y x xy y x f ++=在点(0,0)处沿)2,1(=l 的方向导数)0,0(lf ∂∂= 。

3、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I= 。

4、设),(y x f 为连续函数,则=I ⎰⎰=+→Dt d y x f t σπ),(1lim 2,其中222:t y x D ≤+。

5、⎰=+Lds y x )(22 ,其中222:a y x L =+。

6、设Ω是一空间有界区域,其边界曲面Ω∂是由有限块分片光滑的曲面所组成,如果函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在Ω上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式: , 该关系式称为 公式。

7、微分方程96962+-=+'-''x x y y y 的特解可设为=*y 。

8、若级数∑∞=--11)1(n pn n 发散,则p 。

二、选择题(每小题2分,共计16分)1、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim0--+→=( )(A )),(b a f x ';(B )0;(C )2),(b a f x ';(D )21),(b a f x'。

2、设2y x z =,结论正确的是( )(A )022>∂∂∂-∂∂∂x y z y x z ; (B )022=∂∂∂-∂∂∂x y z y x z ;(C )022<∂∂∂-∂∂∂x y z y x z ; (D )022≠∂∂∂-∂∂∂xy z y x z 。

同济大学版高等数学期末考试试卷

同济大学版高等数学期末考试试卷

《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。

高等数学(同济)下册期末考试题及答案(5套)之欧阳体创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳体创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr rd d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。

同济大学2019-2020 学年第二学期数学专业《线性代数》期末考试及参考答案

同济大学2019-2020 学年第二学期数学专业《线性代数》期末考试及参考答案

⎪ 1 ⎪1⎪1同济大学2019-2020 学年第二学期数学专业《线性代数》期末考试卷及参考答案参考解答学院:专业班级:学号:姓名:一.填空题(每空 3 分,共 15 分)10 13 -111.行列式0 -17 1 中(3,2)元的代数余子式A32的值为 -10 ...-15 19 4⎛2 0 0 ⎫⎛0.5 0 0 ⎫2.设A, B 为3 阶方阵,若AB =0 2 0⎪,则B-1 A-1 =0 0.5 0⎪. ⎪ ⎪0 2 1 ⎪ 0 -1 1 ⎪⎝⎭⎝⎭3.设α1,α2,α3为3 维列向量,且| α1,α2 ,α3 | = 2 ,则| -α1,3α3 -2α2 ,α2 | = 6 ....4.若向量组α1⎛2 ⎫= λ⎪,α⎪⎝⎭⎛-1⎫= -2 ⎪,α⎪⎝⎭⎛2 ⎫= 3 ⎪的秩为2 ,则λ=3.⎪⎝⎭5.设λ是方阵A 的一个特征值,则A +aE 的一个特征值为λ+a .二.选择题(每小题 3 分,共 15 分)1.设方阵A, B, C (C 不是零矩阵)满足AC =BC ,则必有【 C 】. (A) A =O 或 B =O ; (B) A =B ;(C)| A -B | = 0 或| C | = 0 ; (D)以上等式没有正确的.2.设B =PAQ ,下列说法错误的是【 A 】.23⎪ ⎝ ⎭(A ) 若 B 为单位矩阵 E , P , A , Q 皆为方阵,则必有 P -1= QA ;(B ) 若 P , Q 可逆,则 A 可经过有限次初等变换化为 B ;(C ) 若 B 为单位矩阵 E , P , A , Q 皆为方阵,则必有QPA = E ;(D ) 若 P , Q 可逆,则 R ( A ) = R (B ) .⎛ 0 1 0 ⎫ 3. 设 A 为 3 阶可逆矩阵,B = 1 0 0 ⎪ A ,关于 A -1, B -1 的说法,正确的是【 B 】.0 0 1 ⎪(A ) 交换 A -1 的第 1,3 行得到 B -1 ;(B ) 交换 A -1 的第 1,2 列得到 B -1 ;(C ) 交换 A -1 的第 1,2 行得到 B -1 ;(D ) 交换 A -1 的第 1,3 列得到 B -1 . 4.若非齐次线性方程组 AX = B 所对应的导出方程组 AX = 0只有零解,则以下判断错误的是【 A 】.(A ) A 的列向量组线性相关; (B ) AX = B 可能无解; (C ) AX = B 不可能有无穷多解; (D ) AX = B 可能有唯一解.⎛ a ⎫ ⎛ 0 ⎫ ⎛ -1⎫ 5.若α = 2 ⎪ , β = b ⎪, γ = 0 ⎪ 是正交向量组,则a , b , c 分别为【 D 】.⎪ ⎪ ⎪ -1⎪ 1 ⎪ c ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ (A )0,0,0; (B )0,1,1/2;(C )0,-1/2,0; (D )0,1/2,0.三.解答下列各题(每小题 8 分,共 16 分)⎝⎭ 2 ⎭ ⎛5 0⎫⎝ ⎭ 0 1 0 1 0 1 0 1 0 1 0 1 ⎝ ⎭⎝ ⎭ ⎝ ⎭2 ⎭ 1 23 42 3 4 1 1. 计算行列式 D =.3 4 1 2 4 1 2 31 1 1 1 1 1 1 1解: D = 10 2 3 4 1 = 10 0 1 2 -1 (4)3 4 1 2 4 1 2 3 0 1 -2 -1 0 -3 -2 -1 ⎛ 1 2 -1⎫ = 101 -2 -1⎪6 分⎪ -3 -2 -1⎪ ⎝ ⎭ ⎛ 1 2 -1⎫ = 100 -4 0 ⎪ =160。

高等数学(同济)下册期末考试题及答案(5套)之欧阳索引创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳索引创编

高等数学(下册)考试试卷(一)欧阳家百(2021.03.07)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰220103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。

高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ202103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。

2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。

3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。

4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。

5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。

6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。

7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。

8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。

高等数学同济下册期末考试题及答案套

高等数学同济下册期末考试题及答案套

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学(同济版)下册期末考试题及答案四套

高等数学(同济版)下册期末考试题及答案四套

高等数学(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B)),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B)x ; (C )y ; (D )0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d .4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=( )(A )⎰⎰-2cos 202244πθθa dr r a d ; (B)⎰⎰-20cos 202244πθθa dr r a r d ;(C )⎰⎰-20cos 202248πθθa dr r a r d ; (D )⎰⎰--22cos 20224ππθθa dr r a r d .5、设有界闭区域D 由分段光滑曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+LQdy Pdx )((A)⎰⎰∂∂-∂∂Ddxdy x Q y P )(; (B )⎰⎰∂∂-∂∂D dxdy x P y Q )(; (C )⎰⎰∂∂-∂∂Ddxdy y Q x P )(; (D )⎰⎰∂∂-∂∂Ddxdy y Px Q )(. 6、下列说法中错误的是( ) (A ) 方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dxdyx dx dy ysin =+是一阶微分方程; (C ) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D )方程xy x dx dy 221=+是伯努利方程。

同济大学高等数学期末考试试卷(含答案)

同济大学高等数学期末考试试卷(含答案)

同济大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.点是函数的间断点.
A、正确
B、不正确
【答案】A
2.设函数,则().
A、
B、
C、
D、
【答案】C
3.设函数,则.
A、正确
B、不正确
【答案】A
4.设函数,,则函数.
A、正确
B、不正确
【答案】A
5.极限().
A、
B、
C、
D、
【答案】C
6.设曲线如图示,则在内
( ).
A、没有极大值点
B、有一个极大值点
C、有两个极大值点
D、有三个极大值点
【答案】B
7.微分方程满足的特解是().
A、
B、
C、
D、
【答案】C
8.函数在点处连续.
A、正确
B、不正确
【答案】A
9.().
A、
B、
C、
D、
【答案】C
10.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
11.极限.
A、正确
B、不正确
【答案】A
12.不定积分 ( ).
A、
B、
C、
D、
【答案】A
13..
A、正确
B、不正确
【答案】B
14.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
15.是偶函数.
A、正确
B、不正确
【答案】A。

高等数学(同济)下册期末考试题及答案(5套)之欧阳与创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳与创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ202103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学(同济)下册期末考试题及答案(5套)之欧阳法创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳法创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( ) (A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C)⎰⎰⎰ππϕϕϕθ202013cos sin drr d d ;(D )⎰⎰⎰ππϕϕϕθ20103cos sin dr r d d 。

高等数学(同济版)下册期末考试题及答案四套

高等数学(同济版)下册期末考试题及答案四套

高等数学〔下册〕期末考试试卷〔一〕一、填空题〔每题3分,共计24分〕1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题〔每题2分,共计16分〕1、二元函数),(y x f z =在),(00y x 处可微的充分条件是〔 〕 〔A 〕),(y x f 在),(00y x 处连续;〔B 〕),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;〔C 〕 y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;〔D 〕0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于〔 〕〔A 〕y x +; 〔B 〕x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于〔 〕〔A 〕4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;〔B 〕⎰⎰⎰2012sin ππϕϕθdr r d d ;〔C 〕⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;〔D 〕⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.用两种方法证明公式:.
2.将个相同的球放到个不同的盒子里,每个盒子至少有个球(),问有多少种放法?
3.求解递推关系:
二.(10分)用集合可以组成多少个不同的位数?其中要求1和3每个出现偶数次.
三.(10分)求在1和1000之间不能被5,6和8整除的数的个数.
四.(10分)有级台阶,一个小孩从下往上走,每次只能跨一级或两级,问他从地面走到第级台阶有多少种不同的方法?
五.(10分)设表示把元集划分成非
空子集的方法数,当元集时,求出方法数.
六.(10分)从4种水果中选出个,使得苹果数为偶数个,香蕉数为5的倍数,橘子数不超过4个,梨子数为0或1个,问选出个的选法数.
七.(18分)(1)用四颗珠子穿项链,现可对珠子染3种不同的颜色,问可得到多少个不同的项链?(注:项链可旋转或翻转)
(2)设计一个由6个花瓣和1个中心花蕊组成的图案,这7个部分由3种不同的颜色组成,要求其中出现2蓝2红3黄,此花朵可以旋转,问可以有多少种不同的设计方案?
保洁员协议书
甲方:村村民委员会
乙方:,身份证号:
为了确保本村的清洁卫生得到正常有序地运行,使全村的环境卫生保持清洁.干净。

切实做好全村生活垃圾的收集处置工作。

经甲.乙双方协商同意,特订如下协议:
一.垃圾收集范围:
屯主要道路的路边.溪边经常保持整洁,及时清理白色污染.无明显垃圾堆积物:清除屯主要道路两边杂草:对屯内公共树木养护:沟
乱刻画.乱散发.
止和清理。

二.保洁员报酬工资合计
周清洁2
月发放。

三.保洁所需一切工具均由乙方自己承担,乙方还要自备垃圾清运车辆。

在工作期间注意自身安全,如发生意外,其责任自负,甲方不承担任何责任。

四.工作要求:
1.屯内道路路段保洁要求:对屯内道路及路两旁的沟.涵管必须清理疏通,道路两旁的绿化
带进行抚育.管理,保持路边无杂草,路面无杂物。

2.保洁员必须服从村分管清洁卫生负责人管理,甲方经常组织人员不定期进行检查,达不到工作要求的,每次酌情口工资若干元。

3凡对本职工作责任性不强,垃圾收集不到位,群众反映意见大,经批评.教育不改正,情节严重的在合同期内可作辞退处理。

五.甲方如有提供给乙方的保洁工具,乙方须合理使用.妥善保管和管理,如因乙方未按程序操作,造成保洁工具损坏或丢失的,乙方应做出相应的赔偿。

六.合同有效期为一年。

时间为年月日至年月日。

若乙方在合同期未到,中途欲暂停或终止保洁工作,需提前一个月与甲方商议并经甲方同意后方可暂停或终止保洁工作,否则甲方有权视具体情况扣除乙方一个月工作。

七.本合同一式两份,甲.乙双方各执一份,希望双方遵守合同条款。

合同经甲.乙双方签字后生效,望各自遵守执行。

甲方:(盖章)乙方:
村委主任签字:签字:
年月日。

相关文档
最新文档