七年级下册数学概念

合集下载

七年级数学下册知识点归纳汇总

七年级数学下册知识点归纳汇总

七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

③对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线及其判定平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。

七年级下册数学知识点总结与归纳

七年级下册数学知识点总结与归纳

第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。

方程一般形式是 ax+by=c(a ≠0,b ≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。

七年级下册数学知识点概念

七年级下册数学知识点概念

七年级下册数学知识点概念数学是一门基础学科,在学生的成长中占据着重要地位。

作为学科中的重要组成部分,数学知识点的理解和掌握不仅对后续学科的学习有利,还能够培养学生的思维能力、逻辑思维和创新能力。

以下是七年级下册数学知识点的概念和应用,希望能够对同学们的学习有所帮助。

一、小数小数是指整数和分数之间的数,通常用点号表示。

小数有很多种表示方法,如百分数、分数和小数点后的数字等。

对于小数的运算,我们需要掌握小数四则运算的规律和技巧,例如将小数转化为分数进行运算,并合理运用四舍五入的规则。

二、有理数有理数是指所有可以表示为整数和分数的数,包括正数、负数和零。

有理数的四则运算和小数一样,需要严格按照规则进行运算,并注意有理数的运算法则和性质,如乘法的可交换律、可结合律和分配律等。

三、代数式代数式是指含有未知数和常数的符号语言,在数学中广泛应用。

代数式的理解和掌握是代数学习的重要基础,对于后续的代数方程和函数的学习有着重要的作用。

代数式的简化和因式分解是代数式运算的基本技巧,如将代数式转化为同类项,合并同类项进行计算等。

四、分式分式是指整式的分式表达式,包括有理数的分式和多项式的有理分式。

分式的理解和掌握对于后续的函数和微积分学习都有着重要的作用。

对于分式的简化、分母有理化、通分、分式方程和分式不等式等运算,需要严格按照规则进行运算,并结合实际问题进行应用。

五、平方根平方根是求一个数的正平方根的操作,通常表示为√a,其中a为非负数。

平方根的应用涉及到勾股定理、三角函数和向量等数学概念。

对于平方根的运算,需要理解和掌握开方的规律和方法,并在实际应用中进行合理运用。

六、比例与相似比例是指两个量之间的大小关系,通常用a:b或a/b来表示。

比例的理解和掌握能够培养学生的思维和创新能力,涉及到百分数、倍数关系、比例尺和比例公式等概念。

相似是指两个图形形状相同但大小不同的关系,涉及到比例、比例尺和相似比等概念。

对于比例和相似的应用,需要掌握等比例四边形、相似三角形和相似图形的性质和运算方法。

七年级数学下册全部知识点归纳(含概念公式实用)

七年级数学下册全部知识点归纳(含概念公式实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包含它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1〞。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包含项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。

〔2〕按去括号法则去括号。

〔3〕合并同类项。

4、代数式求值的一般步骤:〔1〕代数式化简。

〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。

七年级数学下重点概念整理(实数)

七年级数学下重点概念整理(实数)
6.1 实数
一、无理数
1.定义:无限不循环小数叫做无理数。 2.判断方法 (1)根据定义判断 (2)整数和分数统称为有理数,整数可以看作是分母为 1 的分数,有理数都可以写成分 数的形工,而无理数则不能写成分数的形式。
3.无理数都是无限小数,但无限小数不定是无理数。 4.判断一个数是不是无理数时,不要把分数化成小数再判断。 二、实数
1.定义:有理数和无理数统称为实数。 2.分类: (1)根据定义分: 实数 有理数 整数 正整数:1,2,3------
0 负整数:-1,-2,-3-----分数 正整数
有限小数或无限不循环小数
负整数
无理数 正无理数 无限不循环小数
负无理数
(2)根据正负之分: 实数 正实数 正有理数
正无理数
0 负实数 负有理数
每一个点都表示一个实数。
2.实数的大小比较 (1)数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 (2)正实数大于 0,负实数小于 0,正实数大于一切负实数,两个负实数比较,绝对值 大的反而小。
四、实数的有关概念及运算
6.1 实数
1.相反数 如果 a 表示任何一个实数,那么-a 就是 a 的相反数,a 与-a 互为相反数; 0 的相反数是 0. 2.绝对值 一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0 的绝对值是 0.
系 任何一个有理数,在数轴上都有一个唯一确定的点与之对应,但是,数轴上的点并不是
都表示有理数,无理数也可以用数轴上的点表示。由此可见,数轴上表示有理数的点并
不是连续的,只有将有理数、无理数合在一起,才能填满整个数轴,所以实数与数轴上
的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的

初一下数学知识点

初一下数学知识点

初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。

学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。

2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。

学生需要学会整式的合并同类项和去括号等基本运算。

3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。

4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。

5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。

以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。

七年级数学上下册知识点详细

七年级数学上下册知识点详细

七年级数学上下册知识点详细目录一、上册知识点详解1、整数的概念和运算2、有理数的概念及其运算3、数轴与有理数的位置4、代数式的概念和基本操作5、一次方程的概念及应用二、下册知识点详解1、比例的概念及运用2、百分数的概念及简单应用3、图形的基本概念及分类4、平移、旋转、翻折和组合的概念及应用5、统计图和统计量的计算方法一、上册知识点详解1、整数的概念和运算整数是由正整数、负整数和零组成的数。

整数运算包括加法、减法、乘法和除法。

2、有理数的概念及其运算有理数是指可以表示为两个整数的比的数,包括正有理数、负有理数和零。

有理数运算和整数运算相似,包括加法、减法、乘法和除法。

3、数轴与有理数的位置数轴是用来表示数的一条直线,上面的每个点都代表一个数。

有理数在数轴上的位置被称为有理数的坐标。

4、代数式的概念和基本操作代数式是由数、变量和运算符号组成的式子。

代数式的基本运算包括加法、减法、乘法与除法,此外还有合并同类项、提取公因数、配方法等操作。

5、一次方程的概念及应用一次方程是指变量的次数为1的方程,形如ax+b=0。

解一次方程通常使用逆运算的方法来求解。

二、下册知识点详解1、比例的概念及运用比例是指同一类或不同类对象之间的数量关系,比例的基本要素是比和比值。

比例的应用包括计算、改变或比较量等。

2、百分数的概念及简单应用百分数是指百分之一的数,百分数与分数和小数的等价关系都必须掌握。

百分数在实际生活中的应用很广,例如计算打折、利息和赠品等。

3、图形的基本概念及分类图形是平面上的几何形状,通常包括点、线、角和面。

图形的分类包括三角形、四边形、多边形、圆等。

4、平移、旋转、翻折和组合的概念及应用平移、旋转和翻折是图形的基本变换,这些变换可以通过手绘或图形软件来实现。

图形的组合指将不同的图形通过组合变换得到新的图形。

5、统计图和统计量的计算方法统计图是用来描述和展示数据分布情况的图表,包括条形图、折线图和饼图等。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。

2. 同底数幂的除法:底数不变,指数相减。

3. 幂的乘方:底数不变,指数相乘。

4. 积的乘方:等于各因式分别乘方后的积。

5. 单项式与单项式的和:系数相加,字母部分不变。

6. 单项式与单项式的差:系数相减,字母部分不变。

7. 单项式与单项式的积:系数相乘,字母部分合并。

8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。

9. 多项式与多项式的和:同类项的系数相加,字母部分不变。

10. 多项式与多项式的差:同类项的系数相减,字母部分不变。

11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。

二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。

2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。

3. 一元一次方程的解法:移项、合并同类项、化系数为1。

4. 一元一次不等式的解法:移项、合并同类项、化系数为1。

5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。

6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。

7. 二元一次方程组的解法:消元法、代入法。

8. 二元一次不等式组的解法:消元法、代入法。

9. 分式方程:含有分母的方程。

10. 分式方程的解法:去分母、化系数为1、检验。

11. 分式不等式:含有分母的不等式。

12. 分式不等式的解法:去分母、化系数为1、检验。

三、几何图形1. 点、线、面的概念。

2. 直线的性质:无端点、无限延伸、不可度量长度。

3. 射线的性质:有一个端点、无限延伸、不可度量长度。

4. 线段的性质:有两个端点、有限长度、可度量长度。

5. 角的概念:两条射线从同一点出发所形成的图形。

6. 角的分类:锐角、直角、钝角、平角、周角。

7. 角的性质:度数大小关系、补角和余角、角的和差。

8. 三角形的概念:由三条边和三个内角组成的封闭图形。

七年级数学下册思维导图(超全)

七年级数学下册思维导图(超全)

七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。

2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。

3. 实数的运算加法将两个实数相加得到一个新的实数。

减法将一个实数减去另一个实数得到一个新的实数。

乘法将两个实数相乘得到一个新的实数。

除法将一个实数除以另一个非零实数得到一个新的实数。

乘方将一个实数乘以自身多次得到一个新的实数。

开方求一个实数的平方根或立方根等。

第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。

2. 代数式的分类单项式只有一个项的代数式。

多项式由多个项组成的代数式。

3. 代数式的运算加法将两个代数式相加得到一个新的代数式。

减法将一个代数式减去另一个代数式得到一个新的代数式。

乘法将两个代数式相乘得到一个新的代数式。

除法将一个代数式除以另一个非零代数式得到一个新的代数式。

乘方将一个代数式乘以自身多次得到一个新的代数式。

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。

②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。

③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。

7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。

平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。

本文介绍了平面几何中的角度和平行线的相关概念和性质。

其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。

此外,文章还介绍了命题和定理的概念,以及平移变换的性质。

最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。

科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。

平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。

其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。

横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。

点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。

对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

七年级下册数学知识点总结

七年级下册数学知识点总结

七年级下册数学知识点总结七年级下册的数学知识点分为多个模块,包括有分式与小数、比例与相似、平面几何、数据的收集、整式的加减乘除等,下面将对这些知识点进行详细的总结。

一、分式与小数1.1 分数的概念与用法分数由分子和分母组成,表示分子除以分母的值。

在进行分数的乘、除、加、减等运算时,将分数化为相同分母的通分数后再进行运算。

小数是数的一种表现形式,也可表示分数,比如$0.5$ 表示 $\frac{1}{2}$。

1.2 分数的混合运算混合运算指的是含有加减乘除多个运算符的运算。

在进行分数的混合运算时,先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。

1.3 分数的约分和通分分数的约分是指将分数的分子和分母同时除以一个相同的数,使得分子和分母互质,达到简化分数的目的。

通分是指将不同分母的两个或多个分数化为相同分母的分数,便于进行加减法运算。

1.4 小数的四则运算小数的四则运算和整数的四则运算类似,同样包括加、减、乘、除运算。

在进行小数的除法运算时,可以将被除数和除数乘以同一个倍数,使得除数化为整数,然后再进行运算。

二、比例与相似2.1 比例的概念和性质比例是指两个数的比相等的关系,通常用 $a:b$ 表示,其中$a$ 和 $b$ 都是有理数。

比例的性质包括反比例、比例的倒数、交叉乘积相等等。

2.2 相似的概念和判定相似是指两个形状相似的图形,它们的对应角度相等,对应边成比例,对应点的距离也成比例。

当两个图形相似时,它们的面积之比等于它们对应边的平方之比。

2.3 相似三角形的应用相似三角形广泛应用于衡量远离物体的高度、河流的宽度等问题。

通过计算物体到地面的距离和观察点到物体的角度,可以通过相似三角形计算出物体的高度。

三、平面几何3.1 角的概念和分类角是指由两条射线或线段以一个公共的端点所组成的图形,在平面几何中应用广泛。

根据角的大小和形状,可以将角分为钝角、直角、锐角等多种类别。

3.2 直线和平面的性质直线和平面是平面几何中最基本的图形,它们有许多独特的性质。

初中数学七年级下册知识点及公式总结大全(人教版)

初中数学七年级下册知识点及公式总结大全(人教版)

初中数学七年级下册知识点及公式总结大全(人教版)第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,永不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。

内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。

同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.对顶角的性质:对顶角相等。

10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角互补,两直线平行。

第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

七年级下册数学定义公式

七年级下册数学定义公式

七年级下册数学定义公式
以下是七年级下册数学中常见的一些定义和公式:
1. 定义:
- 因数:一个数能整除另一个数,我们称这个数是另一个数的因数。

- 整数:不带小数点和分数线的数。

- 分数:带有分数线的数,分子除以分母得到的数。

- 常数:不含未知数的数字。

- 变量:在数学中,代表未知数的字母或符号。

- 平方数:一个数的平方根是整数的数。

- 二次根式:形如√a的表达式,其中a为正数。

- 等差数列:数列中相邻两项之差都相等的数列。

- 等比数列:数列中相邻两项之比都相等的数列。

- 多项式:一个含有字母的代数式。

2. 公式:
- 面积公式:
- 矩形的面积:长 ×宽
- 正方形的面积:边长 ×边长
- 三角形的面积:底边 ×高 ÷ 2
- 梯形的面积:长边 ×短边之和 ÷ 2 ×高
- 周长公式:
- 矩形的周长:(长 + 宽) × 2
- 正方形的周长:边长 × 4
- 三角形的周长:边1 + 边2 + 边3
- 圆的周长:直径 ×π (π取近似值3.14)
- 体积公式:
- 立方体的体积:边长 ×边长 ×边长
- 长方体的体积:长 ×宽 ×高
- 圆柱体的体积:底面积 ×高
- 平均值公式:
- 平均值 = 总和 ÷数据个数
以上仅列举了一部分常见的定义和公式,七年级下册数学中还包括更多的概念和公式,具体内容可以参考教材。

七年级数学下册知识点

七年级数学下册知识点

七年级数学下册知识点一、数的基本概念1、定义整数:整数是阿拉伯数字0,1,2,3,4,5,6,7,8,9组成的数字,如123、-10、0。

2、正数和负数:正数是由阿拉伯数字0-9组成的数字,其值是大于(或等于)0的数,如5、27、128等;负数是由带有“-”符号的正数组成,其值是小于0的数,如:-13、-20、-101等。

3、有理数:有理数是分数、小数及其整数倍构成的数。

所有正数和负数都是有理数,小数也是有理数。

二、算术运算1、加法运算:给出一组数,用“+”号连接,将数从左往右从低位数到高位数依次相加,将他们的和称为加法运算,如365+54=419。

2、减法运算:给出一组数,用“-”号连接,将被减数从左右从低位数到高位数依次减去减数,所得的差称为减法运算,如675-255=420。

3、乘法运算:给出一组数,用“乘号”“×”连接,将两个乘数的各个位的数相乘,加起来的积称为乘法运算,如765×43=32995。

4、除法运算:给出一组数,用“除号”“÷”连接,将被除数依次除以除数,所得的结果称为除法运算,如945÷5=189。

三、因式分解1、定义:因式分解是将一个多项式拆分为一系列单项式的乘积,每一系列单项式称为一个因子,例如:3x2+9x -4=(3x+4)×(x-1)。

2、目的:通过因式分解,可以将一个复杂的表达式简化,使其表达的更加清晰明了,也可以使算式更容易求解。

3、步骤:(1)列出多项式并将因式分子写成原因式。

(2)左右分别拆分因式成为两个不包括系数,最高次幂小于等于一的多项式;(3)将拆出来的因式乘起来,检验积与原式是否相等。

四、分式1、定义:分式是无限小数与一个正整数(或零)的比值标准表示法,由一个带有分子(分母为1的无限小数)和分母构成,如5/4表示5与4的比率,是一个分数。

2、形式:分式的形式可以是真分式、假分式、互分式以及真分数,当分子和分母皆为整数时为真分数。

七年级数学下册全部知识点归纳

七年级数学下册全部知识点归纳
2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
五、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
七、积的乘方

七年级上下册数学课本知识点归纳

七年级上下册数学课本知识点归纳

七年级上下册数学课本知识点归纳数学作为一门基础学科,是学生必修的科目之一。

在初中阶段,七年级数学课本是数学学科的入门教材,是学生掌握基本知识的基石。

本文将对七年级上下册数学课本的知识点进行归纳,帮助初学者快速掌握数学基础知识。

一、整数与小数(上册)整数与小数是数学学科中最基本的概念,也是其他知识点的基础。

在七年级上册中,主要包括整数的基本概念、运算及应用;小数的基本概念、运算及比较大小等。

二、代数式(上册)代数式是数学中非常重要的概念,是我们后续学习的基础。

在七年级上册中,主要包括代数式的基本概念、加减乘除及应用等。

三、几何图形(上册)几何图形是数学学科中非常重要的知识点之一,涉及到平面和立体图形。

在七年级上册中,主要包括多边形的基本概念、分类及性质;圆的基本概念、周长与面积等。

四、分数(下册)分数是数学学科中较难的知识点之一,但是对于我们日常生活中相当常见。

在七年级下册中,主要包括分数的基本概念、运算、化简及应用等。

五、比例与相似(下册)比例是数学中重要的概念之一,涉及到相似、变化等。

在七年级下册中,主要包括比例的基本概念、比例的性质及应用;相似的基本概念、相似三角形的性质及应用等。

六、函数(下册)函数是数学中非常重要的概念,也是高中数学学科的重要基础。

在七年级下册中,主要包括函数的基本概念、函数的图像、定义域与值域、函数的四则运算及应用等。

总结:以上是七年级上下册数学课本的知识点归纳,内容包括整数与小数、代数式、几何图形、分数、比例与相似以及函数等。

初学者可以根据此归纳快速掌握七年级数学的基础知识,为后续学习打下坚实的基础。

七年级下册数学复习提纲

七年级下册数学复习提纲

七年级下册数学复习提纲
整数
•负数的概念和运算
•整数的加减乘除及其性质
•整数的绝对值
•整数的比较
•整数运算中的应用问题
分数
•分数的概念及其计算
•分数的化简
•分数的比较和大小关系
•分数的乘除及其应用
小数
•小数的概念及其转化
•小数的加减乘除
•小数的比较和大小关系
•小数的运用
代数式
•数学符号的含义
•代数式及其基本性质
•代数式的运算及其应用
•代数式的化简和因式分解
等式与方程
•等式的概念及其性质
•等式的变形及其应用
•方程的概念及其解法
•一元一次方程和一元一次方程的应用
图形的认识
•基本图形的认识及其性质
•相似图形及其比
•常见图形的面积和周长
几何初步
•平面和空间的概念
•直线、射线、线段、角度和圆的概念
•与角度和弧度有关的计算
•三角形、矩形、平行四边形、梯形的面积和周长
统计与概率
•数据的搜集与整理
•平均数、中位数、众数
•相关系数和散点图
•概率的概念及其计算
以上为七年级下册数学的复习提纲,建议根据教材中相关内容进行系统学习和练习,加深对数学知识的理解和掌握,为进一步学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学概念o(≧v≦)o~~好棒第一章整式的乘除
1.同底数幂相乘,底数不变,指数相加。

2.幂的乘方,底数不变,指数相乘。

3.积的乘方等于积中每一个因式分别乘方。

4.同底数幂相除,底数不变,指数相加。

5.除0外的任何数的零次方都是一
6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连
同它的指数不变,作为积的因式。

7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把
所得的积相加。

8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,
再把所得的积相加。

9.平方差公式:两数和与这两数差的积,等于与他们的平方差。

10.完全平方公式:
11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。

12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

第二章相交线与平行线
1.在同一平面内,两条直线的位置关系有相交和平行。

2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。

3.在同一平面内,不相交的两条直线叫平行线。

4.对顶角相等。

5.如果两个角的和是180°,称这两个角互为补角。

6.如果两个角的和是90°,称这两个角互为余角。

7.同角或等角的余角相等,同角或等角的补角相等。

8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

9,平面内,过一点有且只有一条直线与已知直线垂直。

10.垂线线段最短。

11、在同一平面内:同位角相等
内错角相等两直线平行
同旁内角互补.
12.过直线外一点有且只有一条直线与已知直线平行。

平行于同一条直线的两只线平行。

13.平行线的定义:同位角相等
两直线平行内错角相等
同旁内角互补
第三章三角形
1三角形的内角和是180°。

2直角三角形的两个锐角互余。

3.三角形任意两边之和大于第三边,三角形任意两边之和小于第三边。

4.在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线,
5.三角形的三条中线交于一点,这个点成为三角形的重心。

6.在三角形中,一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的角平分线交于一点。

7.从三角形的一个顶点向他的对边所在直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。

三角形的三条高所在的直线交于一点。

8.能够完全重合的两个图形成为全等图形。

9.全等三角形的形状和大小都相同。

10.能够完全重合的三角形叫做全等三角形。

全等三角形的对应边相等,对应角相等。

11.三边分别相等的两个三角形全等,简写“边边边”或“SSS”.
12.两边及其夹角分别相等的两个三角形,简写“角边角”或“ASA”.
13.两边分别相等且其中一组对边等角的对边相等的两个三角形,简写“角角边”或“AAS”。

14.两边及其夹角分别相等的两个三角形,简写“边角边”或“SAS”。

第四章变量之间的关系
1.事物A随着事物B的变化而变化,A是自变量,B是因变量。

在变化过程中始终不变化的量叫做常量。

2.可以用:①关系式②图象来表示变量之间的关系。

3.用图象表示变量之间的关系时,通常用横轴上的点表示自变量,用竖轴上的数表示因变量。

第五章生活中的对称轴
1.如果一个平面图形沿一条直线折叠后,直线两边的部分能够互相重合,那么这个图形为轴对称图形,这条直线叫做对称轴。

2.如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。

3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。

4.等腰三角形是轴对称图形。

等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),他们所在的直线都是等腰三角形的对称轴。

等腰三角形的两个底角相等。

5.线段是轴对称图形,垂直且平分线段的直线是它的一条对称轴。

6.垂直于一套直线,并且平分这条线段的直线,叫做这条线段的垂直平分线。

7.线段垂直平分线上的点到这条线段两个短点的距离相等。

8.角是轴对称图形,角平分线所在的直线就是他的对称轴。

9,角平分线上的点到这个角的两边的距离相等。

第六章概率初步
1.在一定条件下,有些事情我们事先肯定他一定发生,这些事情称为必然事件。

2.有些事情我们事先能肯定他一定不会发生,这些事情称为不可能事件。

3,必然事件与不可能事件统称确定事件。

4.有许多时间我们事先无法肯定他发生不发生,这些事称为不可能事件,也称随机事件。

5.在试验次数很大时的频率都会在一个常数附近摆动,这就是频率的稳定性。

6.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。

7.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。

8.如果一个试验有N种等可能的结果,事件A包含其中的M种结果,那么事件A发生的概率是为:P(A)=。

相关文档
最新文档