数字信号处理复习题带答案
数字信号处理复习资料(答案)
一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。
7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。
8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。
9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中并联型 的运算速度最高。
10、数字信号处理的三种基本运算是: 延时、乘法、加法 11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。
12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。
13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
《数字信号处理》复习题及答案
《数字信号处理》复习题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分)1.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( D)。
A. ΩsB. ΩcC. Ωc/2D. Ωs/22. 若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C)。
A. R3(n)B. R2(n)C. R3(n)+R3(n-1)D. R2(n)+R2(n-1)3. 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含( A)。
A. 单位圆B. 原点C. 实轴D. 虚轴4. 已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( B)。
A. NB. 1C. 0D. - N5. 如图所示的运算流图符号是( D)基2 FFT算法的蝶形运算流图符号。
A. 按频率抽取B. 按时间抽取C. 两者都是D. 两者都不是6. 直接计算N点DFT所需的复数乘法次数与( B)成正比。
A. NB. N2C. N3D. Nlog2N7. 下列各种滤波器的结构中哪种不是I I R滤波器的基本结构( D)。
A. 直接型B. 级联型C. 并联型D. 频率抽样型8. 以下对双线性变换的描述中正确的是( B)。
A. 双线性变换是一种线性变换B. 双线性变换可以用来进行数字频率与模拟频率间的变换C. 双线性变换是一种分段线性变换D. 以上说法都不对9. 已知序列Z变换的收敛域为|z|>1,则该序列为( B)。
A. 有限长序列B. 右边序列C. 左边序列D. 双边序列10. 序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( D)。
A. 2B. 3C. 4D. 511. 下列关于FFT的说法中错误的是( A)。
A. FFT是一种新的变换B. FFT是DFT的快速算法C. FFT基本上可以分成时间抽取法和频率抽取法两类D. 基2 FFT要求序列的点数为2L(其中L为整数)12. 下列结构中不属于FIR滤波器基本结构的是( C)。
数字信号处理试卷及答案
数字信号处理试卷及答案数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为。
2.线性时不变系统的性质有律、律、律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换就是( )A 、1 B 、δ(ω) C 、2πδ(ω) D 、2π2.序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度就是 ( )A 、 3 B 、 4 C 、 6 D 、 73.LTI 系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为 ( )A 、 y(n-2)B 、3y(n-2)C 、3y(n)D 、y(n)4.下面描述中最适合离散傅立叶变换DFT 的就是( )A 、时域为离散序列,频域为连续信号B 、时域为离散周期序列,频域也为离散周期序列C 、时域为离散无限长序列,频域为连续周期信号D 、时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号A 、理想低通滤波器B 、理想高通滤波器C 、理想带通滤波器D 、理想带阻滤波器6.下列哪一个系统就是因果系统( )A 、y(n)=x (n+2) B 、 y(n)= cos(n+1)x (n) C 、 y(n)=x (2n)D 、y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件就是其系统函数的收敛域包括( )A 、实轴B 、原点C 、单位圆D 、虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A、有限长序列B、无限长序列C、反因果序列D、因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件就是A、N≥MB、N≤MC、N≤2MD、N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A、0B、∞C、 -∞D、1三、判断题(每题1分, 共10分)1.序列的傅立叶变换就是频率ω的周期函数,周期就是2π。
数字信号处理复习题含答案
数字信号处理复习题含答案数字信号处理复习题含答案数字信号处理是一门研究如何对数字信号进行处理和分析的学科。
在现代科技的发展中,数字信号处理已经广泛应用于音频、视频、通信等领域。
为了帮助大家复习数字信号处理的知识,本文将提供一些复习题,并附上答案。
希望这些题目能够帮助大家巩固对数字信号处理的理解。
1. 什么是离散时间信号?答案:离散时间信号是在离散时间点上取值的信号。
离散时间信号可以用数学序列表示,例如x(n),其中n为整数。
2. 什么是离散时间系统?答案:离散时间系统是对离散时间信号进行处理和变换的系统。
离散时间系统可以用差分方程表示。
3. 什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是将离散时间域信号转换到离散频率域的一种变换。
DFT可以用来分析信号的频谱特性。
4. 什么是快速傅里叶变换(FFT)?答案:快速傅里叶变换是一种高效计算离散傅里叶变换的算法。
FFT算法可以降低计算复杂度,提高计算速度。
5. 什么是数字滤波器?答案:数字滤波器是对数字信号进行滤波的系统。
数字滤波器可以通过差分方程或差分方程的系数来描述。
6. 什么是有限冲激响应(FIR)滤波器?答案:有限冲激响应滤波器是一种滤波器,其冲激响应具有有限长度。
FIR滤波器可以通过线性组合的方式实现。
7. 什么是无限冲激响应(IIR)滤波器?答案:无限冲激响应滤波器是一种滤波器,其冲激响应具有无限长度。
IIR滤波器可以通过递归的方式实现。
8. 什么是数字信号的抽样和保持?答案:抽样是指将连续时间信号在一定时间间隔内取样得到离散时间信号。
保持是指在抽样的同时,将采样值保持不变。
9. 什么是量化?答案:量化是将连续时间信号的幅值转换为离散的幅值级别的过程。
量化过程中,需要确定量化级别和量化误差。
10. 什么是编码?答案:编码是将量化后的离散信号用一组二进制码表示的过程。
编码可以通过不同的编码方式实现,例如脉冲编码调制(PCM)。
以上是一些关于数字信号处理的复习题及其答案。
(完整word版)数字信号处理习题及答案
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
(完整word版)数字信号处理复习题带答案
1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。
A 、理想低通滤波器B 、理想高通滤波器C 、理想带通滤波器D 、理想带阻滤波器 2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__?A 、.h(n)=δ(n)+δ(n -10)B 、h(n)=u(n)C 、h(n)=u(n)-u(n-1)D 、 h(n)=u(n)-u(n+1)3.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是_____A_____。
A.N≥MB.N≤MC.N≤2MD.N≥2M 4.以下对双线性变换的描述中不正确的是__D_________。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对 5、信号3(n)Acos(n )78x ππ=-是否为周期信号,若是周期信号,周期为多少? A 、周期N=37πB 、无法判断C 、非周期信号D 、周期N=146、用窗函数设计FIR 滤波器时,下列说法正确的是___a____。
A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。
B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。
C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。
D 、以上说法都不对。
7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域为 __________。
A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。
8.N 点FFT 所需乘法(复数乘法)次数为____D___。
A 、2N log NB 、NC 、2ND 、2log 2NN9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。
数字信号处理复习2(含答案)
一、 填空题 1、判断序列13()sins()72x n A n ππ=+是否为周期序列(周期序列),假如)(n x 为周期序列,周期为多少?(14) 2、设)(n x 和)(n y 分别表示系统的输入和输出,请判断系统3()[()]y n x n =是线性系统?(非线性) ,是移不变系统?(移不变)3、设系统的单位抽样响应1()()h n u n n=,则该系统是因果系统(因果),是稳定系统?(不稳定)4、一个线性移不变系统,其系统函数的极点位置与该系统的稳定性和因果性的关系是 (极点在单位圆内,则该系统是因果稳定系统。
)5、快速傅立叶变换FFT 能提高离散傅立叶变换DFT 的计算速度的原因是:(1) 将长序列的DFT 转变为短序列的DFT , (2)利用W N 的特性合并计算减少乘法次数。
6、()(2)()nx n u n =-,则()X z =(2z z +或112z -+,2z >)7、用10000Hz 的采样频率对()a x t 进行采用,则采样后序列()x n 的最高频率可能(5000)Hz ,对应的数字频率为(π)8、系统的频率响应与系统函数的关系是在(系统函数在单位圆上的取值就是系统的频率响应)的值。
9、圆周卷积与线性卷积之间的关系是(L 点圆周卷积是线性卷积以L 为周期的周期延拓序列的主值序列,或,当圆周卷积的长度大于等于。
)10、长度为M 的有限长序列,对其频率响应进行频域抽样,抽样点数为N ,则频域抽样不失真的条件是:(N≥M )11、利用DFT 计算连续时间信号的频谱时,会产生的问题有: (混叠失真、频谱泄漏、栅栏效应)12、设有一谱分析用的信号处理器,抽样点数必须为2的整数次幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定最小记录长度为(0.1s );所允许处理的信号的最高频率为(5kHz );在一个记录中的最少点数(1024)13、 一个序列10),(-≤≤N n n x ,其DFT 的复数乘法运算量与(N 2)成正比.14、 已知一个线性相位FIR 数字滤波器的一个零点为:i --1,则该系统的其它零点为(1,0.50.5,0.50.5i i i -+-+--) 15、 采用窗函数设计FIR 数字滤波器,其阻带最小衰减与(窗函数的形状有关,过渡带宽与(窗函数的长度或宽度)有关。
数字信号处理期末重点复习答案
1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞=-∞<∞∑6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。
7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。
8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型的运算速度最高。
9、数字信号处理的三种基本运算是:延时、乘法、加法10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。
11、N=2M 点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。
12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对13、数字信号处理的三种基本运算是: 延时、乘法、加法14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
18、单位脉冲响应分别为 和的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h1(n)*h2(n), =H1(ej ω)×H2(ej ω)。
数字信号处理习题和答案解析
. WORD 格式整理. .习题及答案4一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理复习题含答案
数字信号处理复习题含答案数字信号处理复习题含答案数字信号处理(Digital Signal Processing,DSP)是一门研究如何对数字信号进行处理和分析的学科。
在现代通信、音频处理、图像处理等领域中,数字信号处理起着至关重要的作用。
本文将介绍一些常见的数字信号处理复习题,并提供相应的答案。
1. 什么是采样定理?为什么要进行采样?答案:采样定理是指在进行模拟信号到数字信号转换时,采样频率必须大于等于信号最高频率的两倍。
这是为了避免采样过程中出现混叠现象,即高于采样频率一半的频率成分被错误地还原为低于采样频率一半的频率。
采样是为了将连续时间的模拟信号转换为离散时间的数字信号,以便进行数字信号处理。
2. 请解释什么是离散傅里叶变换(Discrete Fourier Transform,DFT)?答案:离散傅里叶变换是将离散时间序列转换为频域表示的一种方法。
它将离散时间序列的每个样本与一组复指数函数进行内积运算,得到频域表示。
离散傅里叶变换在频谱分析、滤波器设计等领域中广泛应用。
3. 请列举几种常见的数字滤波器类型,并简要介绍它们的特点。
答案:常见的数字滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器通过滤除高于截止频率的信号成分,保留低于截止频率的信号成分。
高通滤波器则相反,滤除低于截止频率的信号成分,保留高于截止频率的信号成分。
带通滤波器允许通过一定范围内的频率成分,滤除其他频率范围的信号。
带阻滤波器则相反,滤除一定范围内的频率成分,保留其他频率范围的信号。
4. 请解释什么是快速傅里叶变换(Fast Fourier Transform,FFT)?答案:快速傅里叶变换是一种高效计算离散傅里叶变换的方法。
相比于传统的DFT算法,FFT算法利用了信号的对称性和周期性,通过分治策略将计算复杂度从O(N^2)降低到O(NlogN),其中N为信号长度。
FFT在频谱分析、滤波器设计等领域中被广泛应用。
数字信号处理》总复习题答案
一、填空题
1、一个线性时不变离散时间系统可以用三种方式表示: (1)差分方程;(2)单位抽样响应;(3)系统函数 。
2、说明序列Z变换与下列变换的关系: (1)LT:z esT LT;
(2)DTFT:z e jw(单位圆上的ZT ) DTFT;
(3)DFT:z
e
j
2 N
9、要获得线性相位的FIR DR,其h(n)必须满足: (1)h(n)是 实数; (2)h(n) h(N 1 n) h(n)以n (N 1) / 2为中
心的偶对称或奇对称 。
10、序列CZT用来计算沿z平面一条螺旋线等分角的采样值。
11、周期序列不能进行ZT的原因是: | x(n)zn | n N 1
2、已知系统差分方程 y(n) x(n) x(n 4)。 (1)求系统函数H (z);
(2)求幅频特性,并画幅频曲线;
(3)若用该系统阻止直流、50Hz及2、3、4等高次谐波,则系
统的抽样频率取多少?
解:(1) y(n) x(n) x(n 4) Y (z) X (z) z4 X (z)
3、用脉冲响应不变法设计一个低通滤波器,已知归一化
模拟低通滤波器Ha (s)
s2
2 3s
2,模拟截止频率fc
1kHz,采样频率fs 4kHz。试求数字滤波器H (z),并画
出其并联结构图。若保持H (z)不变,采样频率提高4倍,
则低通滤波器的截止频率有什么变化?
解:c
2fc
2000
(2) (n)在n 0处值为1 (n)可实现, (t)在t 0处为
(完整版)数字信号处理复习题-答案
7.对正弦信号进行采样得到的正弦序列一定是周期序列。 ( × ) 8.数字信号处理仅仅指的是数字处理器。 ( × )
9.信号处理的两种基本方法:一是放大信号,二是变换信号。 ( × ) 10.在时域对连续信号进行抽样,在频域中,所得频 谱是原信号频谱的周期延拓。( × ) 四、简答题
1.用DFT 对连续信号进行谱分析的误差问题有哪些?
答:混叠失真;截断效应(频谱泄漏);栅栏效应
2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。 答
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工; 第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
4.设线性时不变系统的单位脉冲响应h(n)和输入序列x(n),如下图所示,要求分别用图解法和列表法求输出y(n),并画出波形 一、填空题: 1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: f ≥2fs 。 3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 N 点等间隔 抽样 。 4、3()5cos()78x n n π π=-的周期为 14 。 5、2()5cos()78 xnnπ π=-的周期为 7 。 6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 。 7、序列()8 ()n jxne π-=是否为周期序列 否 。 8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ 型,直接Ⅱ 型,_级联型_和_并联型_四种。 9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的___主值序列__,而周期序列可以看成有限长序列的_周期 序列 __。 10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__ x((n+m))N R N (n)___。 二、选择填空题 1、δ(n)的z 变换是( A ) A. 1 B.δ(w) C. 2πδ(w) D. 2π 2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是(), 5点圆周卷积的长度是( B )。 A. 5, 5 B. 6, 5 C. 6, 6 D. 7, 5 3、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需( B )级蝶形运算
数字信号处理大题(含答案)
四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。
解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。
对应三种不同的原序列。
-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。
解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理复习题含答案
数字信号处理复习题一、选择题1、某系统)(),()()(n g n x n g n y =有界,则该系统( A )。
A.因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统( D )。
A.若因果必稳定B.若稳定必因果C.因果与稳定有关D.因果与稳定无关3、某系统),()(n nx n y =则该系统( A )。
A.线性时变B. 线性非时变C. 非线性非时变D. 非线性时变4.因果稳定系统的系统函数)(z H 的收敛域是( D )。
A.9.0<z B. 1.1<z C. 1.1>z D. 9.0>z5.)5.0sin(3)(1n n x π=的周期( A )。
A.4B.3C.2D.16.某系统的单位脉冲响应),()21()(n u n h n =则该系统( C )。
A.因果不稳定B.非因果稳定C.因果稳定D.非因果不稳定7.某系统5)()(+=n x n y ,则该系统( B )。
A.因果稳定B.非因果稳定C.因果不稳定D.非因果不稳定8.序列),1()(---=n u a n x n 在)(z X 的收敛域为( A )。
A.a z < B. a z ≤ C. a z > D. a z ≥9.序列),1()21()()31()(---=n u n u n x n n 则)(z X 的收敛域为( D )。
A.21<zB. 31>zC. 21>zD. 2131<<z 10.关于序列)(n x 的DTFT )(ωj e X ,下列说法正确的是( C )。
A.非周期连续函数B.非周期离散函数C.周期连续函数,周期为π2D.周期离散函数,周期为π211.以下序列中( D )的周期为5。
A.)853cos()(π+=n n x B. )853sin()(π+=n n x C.)852()(π+=n j en x D. )852()(ππ+=n j e n x 12.)63()(π-=n j e n x ,该序列是( A )。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为T π,因此对T 8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。
A 、理想低通滤波器B 、理想高通滤波器C 、理想带通滤波器D 、理想带阻滤波器 2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__?A 、.h(n)=δ(n)+δ(n -10)B 、h(n)=u(n)C 、h(n)=u(n)-u(n-1)D 、 h(n)=u(n)-u(n+1)3.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是_____A_____。
A.N≥MB.N≤MC.N≤2MD.N≥2M 4.以下对双线性变换的描述中不正确的是__D_________。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对 5、信号3(n)Acos(n )78x ππ=-是否为周期信号,若是周期信号,周期为多少? A 、周期N=37πB 、无法判断C 、非周期信号D 、周期N=146、用窗函数设计FIR 滤波器时,下列说法正确的是___a____。
A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。
B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。
C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。
D 、以上说法都不对。
7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域为 __________。
A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。
8.N 点FFT 所需乘法(复数乘法)次数为____D___。
A 、2N log NB 、NC 、2ND 、2log 2NN9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。
A.y(n)=x 2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n 0)D.y(n)=e x(n)11、在应用截止频率为Ωc 的归一化模拟滤波器的表格时,当实际Ωc ≠1时,代替表中的复变量s 的应为___B________。
A 、Ωc /sB 、s/ΩcC 、-Ωc /sD 、s/c Ω12、用窗函数法设计FIR 数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时 A ,阻带衰减比加三角窗时 。
A. 窄,小B. 宽,小C. 宽,大D. 窄,大13、用双线性变换法进行IIR 数字滤波器的设计,从s 平面向z 平面转换的关系为s=___C 。
A. 1111z z --+-B. 1111z z ---+C. 1111z c z ---+D. 1111z c z--+- 14、序列x(n)=R 8(n),其16点DFT 记为X(k),k=0,1,…,15则X(0)为___D___ 。
A.2B.3C.4D.815、下面描述中最适合DFS 的是___D___ 。
A .时域为离散序列,频域也为离散序列B .时域为离散有限长序列,频域也为离散有限长序列C .时域为离散无限长序列,频域为连续周期信号D .时域为离散周期序列,频域也为离散周期序列16、利用矩形窗函数法设计FIR 滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于(A )。
A.窗函数幅度函数的主瓣宽度 B.窗函数幅度函数的主瓣宽度的一半 C.窗函数幅度函数的第一个旁瓣宽度D.窗函数幅度函数的第一个旁瓣宽度的一半 17、下列系统哪个属于全通系统_____A_____。
A. 1113()3zH z z ---=- B. 11113()3z H z z ---=-C. AB 都是D. AB 都不是 填空:1、已知一离散系统的输入输出关系为2()(1)y n n x n =-,(其中y(n)为输出,x(n)为输入),试判断该系统的特性D (线性、时不变和因果)A 线性 时变 非因果B 线性,非时变,因果C 非线性,时变,因果D 线性,时变,因果2、已知x(n)={1,2,3,2,1;n=0,1,2,3,4},h(n)={1,0,1,-1,0;n=0,1,2,3,4},则x(n)和h(n)的5点循环卷积为 {0,1,3,3,2;n=0,1,2,3,4}B 。
A{0,1,3,3,3;n= 0, 1 ,2 ,3,4 }B{0,1,3,3,2;n= 0, 1 ,2 ,3,4 }C{0,1,4,3,2;n= 0, 1 ,2 ,3,4 }D{1,1,3,3,2;n= 0, 1 ,2 ,3,4 } 3、已知一IIR 数字滤波器的系统函数为11()10.9H z z -=+,试判断滤波器的类型(低通、高通、带通、带阻)为高通4、已知4阶线性相位FIR 系统函数()H z 的一个零点为1+j,则系统的其他零点为1-j , (1-j)/2 , (1+j)/2 。
5、已知序列()cos(0.15)2sin(0.25)x n n n ππ=+,则信号的周期为40 。
6、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,__ 级联____ 和__ 并联____四种。
7、用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱混叠现像8、因果系统的单位冲激响应h(n)应满足的条件是:当n<0时,h (n )=0______________。
9、如果用采样频率f s = 1000 Hz 对模拟信号x a (t) 进行采样,那么相应的折叠频率应为 ________Hz ㈤,奈奎斯特率(Nyquist )为___1000_Hz10、系统2()()y n x n =是___因果系统___。
11、时域抽样的信号重建的抽样内插公式中的内插函数为12、频域抽样中用N 个频率抽样H(k)来恢复X(z)中的插值函数13、若序列的长度为N ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数M 需满足的条件是N ≧M14、单位抽样响应为()()N h n R n =的系统为__FIR 系统15、系统()()y n nx n =是非稳定系统__16、一个连续时间信号经过理想抽样后,其频谱将以_抽样频率为间隔而重复,即频谱产生周期延拓17、序列()(1)n x n b u n =---的z 变换和收敛域为18、实序列的离散时间傅里叶变换具有___共轭对称_。
简答及计算、证明题:1、求离散信号)2()31()(-=n u n n x n 的Z 变换;2.已知 111()11(1)(1)42X Z z z --=--,Roc :12z >,采用围线积分法求出它的Z的反变换()x n 。
解:3、序列x(n)=δ(n)+2δ(n-2)+δ(n-3)+3δ(n-4),求x(n)*x(n)和x(n)⑤x(n)。
x(n)*x(n)={1 4 6 10 13 6 9;n=0 1 2 3 4 5 6} x(n)⑤x(n)={7 13 6 10 13;n=0 1 2 3 4}。
4、 线性非时变系统函数为:112()512z H z z z ---=-+,2z >,求出相应的单位抽样响应 答案如下:5、 写出下列系统的差分方程,画出直接型结构,级联型和并联型结构实现。
1231125.2 1.58 1.41 1.6()(10.5z )(10.90.8)z z z H z z z ------++-=-++ 6、 连续信号:()sin(2*10*/6)f t A t ππ=+用采样频率100s f Hz =采样,写出所得到的信号序列表达式,指出该序列的周期,并说明理论上根据采样定理最小的采样频率为多少赫兹。
7、 一个线性相位的FIR 滤波器阶数为7,前4个单位样值响应的取值分别为0.0192, -0.0788,-0.2341,0.3751,判断线性相位滤波器的类型,并画出其线性相位滤波器结构。
图省略8、求Z 变换的反变换9、设有限长序列x(n)的长度为200,若用时域抽取法基2FFT 计算x(n)的DFT ,问:(1)有几级蝶形运算?(2)每级有几个蝶形?(3)第6级的蝶形的碟距是多少?(4)共有多少次复数乘法?10、序列x(n)的z 变换为23452()13z z z X z z z ----++=-+,若收敛域包含单位圆,求x(n)在ωπ=处的DTFT 。
11、对周期连续时间信号()cos(200)cos(500)a x t A t B t ππ=+以采样频率1s f kHz=对其进行采样,计算采样信号()()()a a t nT x n x t x nT ===的DFS 系数。
12、具有单位抽样响应()()ny n b u n =的系统,其中b 是一个实数,且1b <,则此系统的频率响应为13、圆周卷积代替线性卷积的条件_(其中N,M 分别的含义)、、14.单位抽样响应为()()N h n R n =的FIR 系统的频率响应是什么?幅频响应和相频响应分别为什么?15、给出一个周期序列,求它的离散傅里叶级数。
比如说()(20)l x n x n l ∞=-∞=-∑,其中5()()x n R n =16、给出一个因果线性移不变系统的可用差分方程比如11()(1)(2)()(1)66y n y n y n x n x n =-+-+--17、假如快速傅氏变换(FFT )处理器的频率分辨能力为0.2F ≤Hz ,所能允许通过信号的最高频率为500h f ≤Hz ,并要求采样点数为2的整数幂。
而且未采用其他任何数据处理措施,求:(1)最小记录长度p T ;(2)采样点的最大时间间隔T ;(3)、在一个记录中的最少点数N 。
18、(10分)假设线性非时变系统的单位脉冲响应()h n 和输入信号()x n 分别用下式表示:88()(),()()nh n R n x n a R n ==,其中0a <<∞, 计算系统的输出信号()y n19、判断正弦序列f (k ) = sin(βk )是否为周期信号,若是,确定其周期。
20、判断下列序列是否为周期信号,若是,确定其周期。
(1)f1(k) = sin(3πk/4) + cos(0.5πk)(2)f2(k) = sin(2k)21、22、求单边指数序列)10(0,00,)(1<<⎩⎨⎧<≥=a k k a k f k 的DTFT 。