九年级——锐角三角函数

合集下载

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 CA 90B 90∠-︒=∠︒=∠+∠得由B A6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

九年级数学专题复习锐角三角函数

九年级数学专题复习锐角三角函数

总复习锐角三角函数【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点进阶:ABCabc(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点进阶:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点进阶:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点进阶:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点进阶:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点进阶:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c==,cos sin b A B c ==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高)②如图所示,1()2ABC S r a b c =++△.【典型例题】类型一、锐角三角函数的概念与性质例1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.举一反三:【变式】如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .类型二、特殊角的三角函数值 例2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.举一反三: 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值.例3.如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.CBA举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到0.1千米)类型三、解直角三角形及应用例4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长.例5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).举一反三:【变式】如图所示,正三角形ABC的边长为2,点D在BC的延长线上,CD=3.(1)动点P在AB上由A向B移动,设AP=t,△PCD的面积为y,求y与t之间的函数关系式及自变量t的取值范围;(2)在(1)的条件下,设PC=z,求z与t之间的函数关系式.例6.如图(1)所示,一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.(1)求AO与BO的长.(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图(2)所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A 沿NO下滑了多少米;②如图(3)所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【巩固练习】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35 B .45 C .34 D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247B .73C .724D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12B .22C .32D .336.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t an∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

初中数学九年级锐角三角函数知识点总结

初中数学九年级锐角三角函数知识点总结

锐角三角函数是初中九年级数学中的一个重要内容,其中包括对正弦、余弦和正切函数的理解和应用。

下面是对锐角三角函数知识点的详细总结:1.三角函数的定义:- 正弦函数(sin):对于单位圆上的一个角,其对边的长度与斜边的长度的比值。

- 余弦函数(cos):对于单位圆上的一个角,其邻边的长度与斜边的长度的比值。

- 正切函数(tan):对于单位圆上的一个角,其对边的长度与邻边的长度的比值。

2.锐角的定义:锐角是角度在0°到90°之间的角。

3.单位圆:单位圆指半径长度为1的圆,锐角三角函数可以通过单位圆来定义和理解。

4.三角函数的图像:正弦函数、余弦函数和正切函数的图像可以通过将单位圆绕过原点旋转得到。

5. 正弦函数(sin)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1-图像特点:关于y轴对称6. 余弦函数(cos)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:cos0° = 1, cos30° = √3/2, cos45° = √2/2,cos60° = 1/2, cos90° = 0-图像特点:关于x轴对称7. 正切函数(tan)的特点:-定义域:(0°,90°)或(0,π/2)-值域:R(实数集)-周期:180°或π- 特殊值:tan30° = 1/√3, tan45° = 1, tan60° = √3, tan90° = 不存在(无限大)-图像特点:周期性递增8.三角函数之间的关系:- 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)- 正切函数与正弦、余弦函数的关系:tanθ = sinθ / cosθ9.锐角三角函数的应用:-通过正弦函数、余弦函数和正切函数可以求解三角形的边长和角度大小。

九年级数学《锐角三角函数》课件

九年级数学《锐角三角函数》课件

h
A
α
l
C
展示评讲
坡比(坡度):坡面的竖直高度h与水平长 B
度l的比叫做坡面的~ 即:i h
l
i h:l
h
A
l
C
正切:如图,在Rt∆ABC中,我们把锐角A
的对边与邻边的比叫做∠A的正切,即
B
tan
A
A的对边 A的邻边
BC AC
a b
ha
注意:tanA还可以写成tan∠A或A α tanα或tan∠BAC或tan∠1
锐角三角函数
引入新课
汽车爬坡能力是衡量汽车性 能的一个重要标志,很明显, 若汽车所爬坡面越陡,汽车 爬坡能力越强. 即:坡角越大,坡面就越陡.
B
h
A αl
C
学习目标
1、理解并掌握正切的定义,明确角 与线段的比的关系; 2、会利用正切的定义求任意一个锐 角的正切值; 3、利用坡度和坡比的概念解决实际 问题。
自学思考
1、水平长度一定时,坡角与什么因素有关呢?
竖直高度越大,坡面越陡,坡角越大
2、竖直高度一定时,坡角与什么因素有关呢?
水平长度越小,坡面越陡,坡角越大
3、水平长度与竖直高度都不同时,坡角与什么因素有关呢?
竖直高度与水平长度的比值越大,坡面越 陡,坡角越大
展示评讲 三角函数:在直角三角形中
B
lb
C
当堂检测
1、(25分)在∆ABC中,AC=5,BC=4,AB=3,则tanA= ,
tanB=
.
2、(25分)在∆ABC中,∠C=90度,AB=2BC,则
tanA= ,
tanB=
.
ห้องสมุดไป่ตู้
3、(25分)如3 图1所示为某拦水坝的横截面,迎水坡AB的

数学九年级培优第25讲 《锐角三角函数》

数学九年级培优第25讲 《锐角三角函数》

第二十八章锐角三角函数第25讲锐角三角函数知识导航1.正弦、余弦、正切的概念及表示方法.2.特殊角的三角函数值.【板块一】求锐角三角函数值方法技巧1.结合图形,理解并牢记三角函数的定义.2.数形结合法熟记特殊角的三角函数值.3.求一个角的三角函数值,一般利用已有的或构造的直角三角形,也可以利用等角转化等,结合三角函数定义求解.题型一紧扣定义求三角函数值【例1】已知锐角α满足tanα=12,求sinα的值.【解析】在Rt△ABC中,∠C=90°,∠A=α,∵tanα=12BCAC=,∴设BC=x,AC=2x,∴AB,∴sinBCABα===【点评】由于三角函数的定义是基于直角三角形,所以要画出符合题意的直角三角形,结合勾股定理和三角函教的定义求解.【例2】如图,在正方形ABCD中,点M为AD的中点,点E为AB上一点,且BE=3AE,求cos∠ECM 的值.【解析】首先确定△EMC为直角三角形,设AE=x,则BE=3x,AM=MD=2x,CD=4x.∴AE MDAM CD=,又∠A=∠D=90°,∴△AEM∽△DMC,可得∠EMC=90°,由勾股定理可求CM=x,CE=5x,在Rt△CEM中,cos∠ECM=CMCE=.题型二等角转换求三角函数值【例3】如图,半径为3的⊙A经过原点O和点C(0,2),点B是y轴左侧⊙A优弧上一点,求tan∠OBC 的值.αA BCCBEA M D【解析】作直径CD,在Rt△OCD中.CD=6.OC=2.∴ODtan∠CDO=OCOD=,由圆周角定理得∠OBC=∠CDO,则tan∠OBC【点评】在圆中经常利用同弧或等弧所对的圆周角相等进行角的转换,用直径所对的圆周角去构造直角三角形.题型三构造直角求三角函数值【例4】如图,在Rt△BAD中,tan∠B=53,延长斜边BD到点C,使DC=12BD,连接AC,求tan∠CAD 的值.【解析】要求tan∠CAD,必须将∠CAD放在直角三角形中,考虑∠BAD=90°,故过点D作DE∥AB交AC于点E.则∠ADE=90°,且有△CDE∽△CBA可利用,由tan∠B=53ADAB=,设AD=5x,AB=3x,而13DE CDAB BC==,∴DE=x,∴tan∠CAD=155DE xAD x==.【点评】求一个角的三角函数值,必须将所求的角放在直角三角形中.题型四等比转化求三角函数值【例5】如图,等腰直角△ABC中,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为点E,连接CE,求tan∠ACE的值.CDBACDEBAA BDEC【解析】过点E 作EH ⊥AC 于点H ,易证AH =HE ,∴tan ∠ACE =HE AH AECH CH EB==,设BE =x ,则BD =CD,∴BC =x ,AB =4x ,∴AE =AB -BE =3x ,∴tan ∠ACE =AEEB=3.【例6】如图,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【解析】连接AC ,∵AB 是⊙O 的直径,∴∠ACP =90°,∴cos ∠APC =PCPA,又易证△PCD ∽△P AB ,∴63105PC CD PA AB ===,∴cos ∠APC =35. 【点评】在直角三角形中,锐角的三角函数值等于两边的比值,当这个比值无法直接求解时,可利用相似三角形对应线段成比例进行转化.题型五 利用特殊角求三角函数值【例7】利用45°角的正切,求tan 22.5°的值,方法如下:解:构造Rt △ABC ,其中∠C =90°,∠B =45°,如图,延长CB 到点D ,使BD =AB ,连接AD ,则∠D =12∠ABC =22.5°,设AC =a ,AB =BDa a ,∴CD =(1)a ,∴tan 22.5°=tan ∠D=AC CD =-1.A BE DHCAACA请你依照此法求tan 15°的值.【解析】构造如图所示的∠A =15°的直角三角形,∠C =90°,并过点B 作∠ABD =15°交AC 于点D ,则∠BDC =30°,设BC =x ,则BD =AD =2x ,CD,∴AC =(2x ,∴tan 15°=BC AC=2针对练习11.如图,△ABC 的顶点是正方形网格的格点,则sin A =.2.在Rt △ABC 中,∠C =90°,sin A =513,则tan B = 125 .3.如图,将边长为2的正方形ABCD 沿 EF 和ED 折叠,使得点B ,C 两点折叠后重合于点G ,则tan ∠FEG =12.4.如图,直线MN 与⊙O 相切于点M ,ME =EF ,EF ∥MN ,则cos ∠E =12. A D CBABCDG F DCBA E5.如图,在△ABC 中,∠C =90°,BC =1,AC =tan 2A的值.解:AB=7.延长CA 到点D ,使AD =AB =7,则CD =7+tan2A=tan ∠D=7- 6.如图,AC 为⊙O 的直径,△ABD 内接于⊙O ,BD 交AC 于点F ,过点B 的切线BE ∥AD 交AC 的延长线于点E ,若CF =2,AF =8,求sin ∠E 的值.解:连接OB ,CD ,∵CF =2,AF =8,∴AC =10.∴OB =5.易证CD ⊥AD ,OB ⊥AD ,∴OB ∥CD ,∴△BOF ∽△DCF .∴32OB OF CD CF ==.CD =103.sin ∠E =sin ∠CAD =CD AC =13. 7.将一副三角尺(Rt △ABC 与Rt △BDC )按如图所示摆放在一起,连接AD ,试求∠ADB 的正切值.解:过点A 作AM ⊥DB 交DB 的延长线于点M ,易证∠MBA =45°,∴设AM =BM =x,则AB x .∴BC,BD .∴tan ∠ADB =AMDM8.如图,在△ABC 中,BC =4,AC =6,AB =5,求tan12∠BAC ·tan 12∠CBA 的值.ABCDEAAEDCBABCDM解:过点C作CH⊥AB于点H,延长BA到点D,使AD=AC,延长AB到点E,使BE=BC,设AH=x,则BH=5-x,∴42-(5-x)2=62-x2,∴x=92.∴BH=12,CH∴tan12∠BAC=tan∠D=CHDH=2962+.tan12∠CBA=tan∠E=CHHE=2142+,∴tan12∠BAC·tan12∠CBA=13.方法技巧:深刻理解三角函数的定义,画出符合题意的示意图,充分运用数形结合的思想解题.▶题型一利用已知三角函数,求其他角的三角函数值【例1】同学们,在我们进入高中以后,将会学到三角函数公式:sin2α=2sinα·cosα,则当锐角a的正切值为12时,sin2a=.【解析】如图,在Rt△ABC中.∠C=90°,∠A=α,由tanα=BCAC=12,设BC=1,AC=2,则AB.sinα=BCAB,cosα=ACAB,由公式sin2α=2sinα·cosα=2=45.【点评】紧扣定义,运用公式解题.▶题型二利用已知三角函数,求线段长【例2】如图,点D是△ABC的边AC上一点,BD=8,sin∠CBD=34,AE⊥BC于点E,若CD=2AD,求AE的长.BACEDCBA HC BADBAO OFAB CDE【解析】过点D作DF⊥BC于点F,则DF=BD·sin∠CBD=8×2=6,由AE⊥B C.DF⊥BC,∴DF∥AE.∴△CDF∽△CAE.∴CDAC=DFAE=23.∴AE=32DF=9.【点评】因三角函数的本质是线段比,故与三角函数相关的计算常与相似三角形联系在一起.▶题型三利用已知三角函数,求线段比【例3】如图,在Rt△ABC中,CD,CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.【解析】易证△BCD∽△BAC,∴BC2=BD·BA,又BA,∴BD2,同理CD=DE=BE-BD222,又∵谈∠DCE=DECD=222b aab-=12,∴a2+ab-b2=0,∴ab▶题型四利用已知三角函数,求面积【例4】如图,在四边形ABCD中,∠BAC=90°,tan∠CAD=12,cos∠ACD,AC与BD交于点E,CDBE=2ED,求四边形ABCD的面积.【解析】过点D作DF⊥ACC于点F,则AB∥DF.∴△ABE∽△FDE.∴ABDF=AEEF=BEED=2,设EF=2a,AE=4a.∴AF=6a,在Rt△AFD中.tan∠F AD=FDAF=12,∴DF=3a,在Rt△CFD中,cos∠ACD =CFCD.∴CF=1,DF=3a=3,∴a=1,AC=7,AB=2DF=6,∴S四边形ABCD=S△ABC+S△AC=12AB·AC+12AC·DF=12×6×7+12×7×3=632.针对练习21.在△ABC中,∠A为锐角,BC=12.tan A=34.∠B=30°,则AB2.如图,点E是正方形ABCD的边CB的延长线上的一点,且tan∠DEC=34,则tan∠AED的值为EDCBAABCDEFE DCBA913.3.已知△ABC中,AB=10,AC=B=30°,则△ABC4.如图,在四边形ABCD中,BD是对角线,∠ABC=90”,tan∠ABD=34,AB=20,BC=10,AD=13,求CD的长.解:分别过点A,C作AH⊥BD于点H,CG⊥BD于点G,∵tan∠ABD=AHBH=34,∴设AH=3x,BH=4x,(3x)2+(4x)2=202,∴x=4.∴AH=12,BH=16.∴HD=5,BD=21,易证∠BCG=∠ABD,..tan∠BCG=GBGC=34,又BC=10,∴BG=6,CG=8,∴DG=BD-BG=15,∴CD==17.5.如图,在△ABC中,AB=BC=5,tan∠ABC=34.边BC的重直平分线与AB的交点为点D.求ADDB的值.解:过点D作DF⊥BC于点F,连接CD,则BD=CD,BF=CF=52,tan∠DBF=DFBF=34.∴DF =158,在Rt△BFD中,BD=258,∴AD=5-258=158,∴ADDB=35.6.如图,已知四边形ABCD的一组对边AD,BC的延长线相交于点E,∠ABC=120°,cos∠ADC=35,CD=5,AB=12,ACDE的面积为6,求四边形ABCD的面积.EDCBAAB CDGHDCBAAB CDF CBA解:过点C作CF⊥AD于点F,过点A作AG⊥EB于点G,在Rt△ACDF中,cos∠ADC=DF CD=3 5.又CD=5,DF=3,CF=4,∵S△CDE=12ED·CF=6,∴ED=3,∴EF=6,在Rt△BAG中,∠BAG=30°,AB=12,∴AG=EFC∽△EAG,得EFEG=CFAG,可求EG=BE=EG-BG=9 6.∴S四边形ABCD=S△ABE-S△CED=126)×6=75-E DCBA ABCDE FG。

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .

华师大版数学九年级上册24.锐角三角函数说课课件

华师大版数学九年级上册24.锐角三角函数说课课件
3、猜想:当∠A为任意锐角时,上述结论是否仍然成立吗?你 会证明这个结论吗?如果用式子该如何表示?
4、概括:引导学生自己概括出互余两角的正弦和余弦之间的关 系。
5、讨论:互余两角的正切和余切之间是否也存在这样的关系? 说说你的想法。
6、交流:让学生相互交流讨论结果,加深理解。
[设计意图]
本节重视倡导学生在问题情境中自主探索, 在探索基础上组织交流,在交流的基础上引 导学生反思,从而重视知识的产生过程,使 学生在自主探索中理解数学知识,体验成功 的乐趣。学习的内容不再以定论的情势呈现, 而是以问题的情势呈现,让学生紧紧环绕问 题情境,通过自主探索,合作交流,反思体 验来主动建构。
2、让学生借助于两块三角板,根据锐角三角函数的定 义,分别求出30°,45°,60°角的四个三角函数值。 (1)先让学生说说自己的方法,再让学生独立计算。 (2)引导学生相互交流,将交流结果填在表格中。
30°、45°、60°角的三角函数值
A
sinA
cosA
tanA
cotA
30°
45°
60°
[设计意图]
二:教学目标
根据本课的设计意图和教学内容,结合学生的实 际情况,我制定了以下教学目标:
1:知识与能力:使学生运用锐角三角函数的定义, 探索并掌握30°,45°,60°角的三角函数值,理 解并掌握互余两角的三角函数关系,能运用它们解 决有关问题。
2:过程与方法:培养学生视察,分析,概括,推 理的能力,逐步渗透数形结合思想和转化思想。
锐角三角函数
一:教材分析
本节课是华师大版数学教材九年级上册第24章 第三节锐角三角函数第二课时内容。锐角三角函数 反应了直角三角形中存在的边角关系,它是解直角 三角形的重要根据之一,在教材中具有非常重要的 作用。考虑到锐角三角函数的知识点较多,教材在 编写时有意安排了两个课时的内容,这节课是在学 生掌握了锐角三角函数的意义和同角三角函数关系 的基础上进行的。

北师大版九年级数学下册《直角三角形的边角关系——锐角三角函数》教学PPT课件(4篇)

北师大版九年级数学下册《直角三角形的边角关系——锐角三角函数》教学PPT课件(4篇)

同理, cos
A=
AC ,cos AB
A1
=
A1C A1 B1
.
B1 B
∵AB=A1B1,
AC AB
>
A1C ,即cos A1 B1
A > cos
A1,
A A1
C
∴梯子的倾斜程度与cos A也有关系, cos A的值越 小,梯子越陡.
如图:在Rt △ABC中,∠C=90°,
sin
A
A的对边 斜边
B1 B2 B3
A
C3 C2
C1
Rt△AB1C1∽Rt△AB2C2
新课学习
直角三角形的边与角的关系:
(2)BA1CC11
和B2C2
AC2
有什么关系?
B1
B2 B3
A
C3 C2
C1
B1C1 = B2C2 AC1 AC2
新课学习
直角三角形的边与角的关系: (3)如果改变B2在梯子上的位置(如B3)呢?
B2
斜边的比值、邻边与斜边的比值将怎
样变化?
C1 C2
A1
这是一个变化的过程.对边与斜边的比值、邻边与
斜边的比值都随着倾斜角的改变而改变.同时,如果给
定一个倾斜角的值,它的对边与斜边的比值、邻边与
斜边的比值是唯一确定的.
讲授新课
斜边
B ∠A的对边
A
C
∠A的邻边
定义:在Rt△ABC中,如果锐角A确定,那
∴ B1C1∥ B2C2,
C1 C2
A1
∴Rt△B1A1C1 ∽ Rt△B2A1C2.
讲授新课
想一想:如图.
(2)BA11CA11 和
A1C2 B2 A1

九年级数学《锐角三角函数》单元备课

九年级数学《锐角三角函数》单元备课
数形结合是重要的数学思想和数学方法,本章内容又是数形结合的很理想的材料。例如,对于锐角三角函数的概念,教科书是利用学生对直角三角形的认识(在直角三角形中,所对的边等于斜边的一半,的直角三角形是等腰直角三角形)以及相似三角形的有关知识引入的,结合几何图形来定义锐角三角函数的概念,将数形结合起来,有利于学生理解锐角三角函数的本质。再比如,解直角三角形在实际中有着广泛的作用,在将这些实际问题抽象成数学问题,并利用锐角三角函数解直角三角形时,离不开几何图形,这时往往需要根据题意画出几何图形,通过分析几何图形得到边、角等的关系,再通过计算、推理等使实际问题得到解决。因此在本章教学时,要注意加强数形结合,在引入概念、推理论述、化简计算、解决实际问题时,都要尽量画图帮助分析,通过图形帮助找到直角三角形的边、
全等三角形的有关理论对理解本章内容有积极的作用。例如,在研究解直角三角形时,教科书通过探索得到结论:事实上,在直角三角形的六个元素中,除直角外,如果在知道两个元素(其中至少有一个是边),这个三角形就确定下来了,这样就可以由已知的两个元素求出其余的三个元素,这个结论的获得实际上利用了直角三角形全等的有关理论,因为对于两个直角三角形,如果已知两个元素对应相等,并且其中有一个元素是边,那么这两个直角三角形全等,也就是已知一个直角三角形的除直角外的两个元素,其中至少有一个是边,这个三角形就确定下来,因此就可以利用这两个元素求出其余的元素。因此,利用三角形全等的理论,有利于理解解直角三角形的相关内容。教学中要注意加强知识间的相互联系,使学生的学习形成正迁移。
教材
简介
本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。

九年级下册《锐角三角函数》课件

九年级下册《锐角三角函数》课件

3.如图
B
1
3 则 sinA=___2___ .
A 30°
C
7
练习 B 根据下图,求sinA和sinB的值.
3
A
5
C
求sinA就是要确∠A 的对边与斜边的比;
求sinB就是要确定 ∠B的对边与斜边的比
练习 B 根据下图,求sinA和sinB的值. 5
求sinA就是要确定∠A A 1
C
的对边与斜边的比;
(1)求证:AC=BD;
(2)若 sin C 12 ,BC=12,求AD的长。
A
13
B
D
C
5. 如图,在△ABC中, ∠ C=90度,若∠ ADC=45度,BD=2DC, 求tanB及sin∠BAD.
A
B
D
C
小结 回顾
及时总结经验,要养成积累 方法和经验的良好习惯!
在Rt△ABC中
sinA= A的对边 = a A的斜边 c
例题示范
例4: 如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若
DPB 那么 CD ( B ) AB
A.sin, B.cos,C.tan, D. 1 tan
变题: 如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若
AB=10,CD=6,求 sin .
sin 4
5
C
D
P
A
O
B
结论:在一个直角三角形中,如果一个锐角等于30°,那么不管
三角形的大小如何,这个角的对边与斜边的比值都等于 1 2
A
如图,任意画一个Rt△ABC,使∠C=
90°,∠A=45°,计算∠A的对边与斜
边的比 BC ,你能得出什么结论?

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结

九年级数学中,锐角三角函数是一个重要的知识点。

锐角三角函数是指对于锐角的正弦、余弦和正切函数。

下面我将对锐角三角函数的基本概念、性质和应用进行总结。

一、基本概念1.弧度和角度:角度是常用的角度度量单位,弧度是角度的另一种度量单位。

1个弧度对应360°/2π≈57.3°。

角度和弧度之间的关系式:弧度=角度×π/180°。

2.锐角:指角度小于90°的角。

3. 三角函数:对于一个锐角A,定义其正弦(sin A)为对边与斜边的比值,余弦(cos A)为邻边与斜边的比值,正切(tan A)为对边与邻边的比值。

二、性质1.正弦函数的性质:(1)对于锐角A,0 < A < 90°,sin A > 0;(2)sin A = sin (180° - A) = sin (A + 360°);(3)sin (90° - A) = cos A;(4)sin A ≠ 0,当且仅当A是锐角。

2.余弦函数的性质:(1)对于锐角A,0 < A < 90°,cos A > 0;(2)cos A = cos (180° - A) = cos (360° + A);(3)cos (90° - A) = sin A;(4)cos A ≠ 0,当且仅当A是锐角。

3.正切函数的性质:(1)对于锐角A,0 < A < 90°,tan A > 0;(2)tan A = tan (180° + A);(3)tan (90° - A) = 1/tan A;(4)tan A ≠ 0,当且仅当A是锐角。

4.三角函数的关系:(1)sin^2 A + cos^2 A = 1;(2)tan A = sin A / cos A。

三、应用1.解三角形:利用已知角的正弦、余弦和正切的值,可以求解未知边长或角度的三角形问题。

九年级数学单元检测卷—锐角三角函数(含答案)

九年级数学单元检测卷—锐角三角函数(含答案)

九年级数学单元检测卷—锐角三角函数(含答案)一、选择题(每小题3分,共24分)1.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A 等于().A.43 B.34 C.53 D.352.若10)1α+︒=,则锐角a 的度数是().A .20°B .30°C .40°D .50°3.如图所示,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取∠ABD =145°,BD =500m ,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是().A .500sin 55°mB .500cos 55°mC .500tan 55°m D.500cos55︒m 4.小明沿着坡度为1∶2的山坡向上走了1000m ,则他升高了().A .B .500mC .mD .1000m5.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是().A .0<n <22B .0<n <12C .0<n <33D .0<n <326.某个水库大坝的横断面为梯形,迎水坡的坡度是1,背水坡为1∶1,那么两个坡的坡角和为().A.90°B.75°C.60°D.105°7.计算6tan45°-2cos60°的结果是()A.43B.4C.5D.538.野外生存训练中,第一小组从营地出发向北偏东60°方向前进了3km,第二小组向南偏东30°方向前进了3km,第一小组准备向第二小组靠拢,则行走方向和距离分别为().A.南偏西15°,B.北偏东15°,C.南偏西15°,3km D.南偏西45°,9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=23,AB=42,则tan∠BCD 的值为()A.2B.153C.155D.3310.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,3≈1.73).A.3.5m B.3.6mC.4.3m D.5.1m二、填空题(每小题4分,24共分)11.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________m.12.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC的长为24米,则旗杆AB的高度是__________米.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC对称,若DM=1,则tan∠ADN=__________.14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为__________.15.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.16.如图,△ABC的顶点都在方格纸的格点上,则cosA=.三、解答题(共46分)17.(10分)计算:(1)sin245°+tan60°cos30°-tan45°;(2)||+(cos60°-tan30°)0.18.(7分)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=163.3(1)求∠B的度数;(2)求边AB与BC的长.19.(7分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度≈1.732,结果保留一位小数).20.(7分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40m,坡角∠BAD=60°,为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?21.(7分)已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.22.(8分)已知:如图,△ABC中,∠B=30°,P为AB边上一点,PD⊥BC于D.(1)当BP∶PA=2∶1时,求sin∠1、cos∠1、tan∠1;(2)当BP∶PA=1∶2时,求sin∠1、cos∠1、tan∠1.答案一、选择题1、D2、A3、B4、A5、A6、B7、C8、A9、B 10、D二、填空题11、-12、8313、4314、13或2415、75°或15°16、55三、解答题17.解:(1)原式=2122⎛+- ⎪⎝⎭=1322+-1=1.(2)||+(cos 60°-tan 30°)0+1+=1+.18.解:(1)在Rt △ACD 中,∵cos ∠CAD=32AC AD ==,∠CAD 为锐角,∴∠CAD =30°,∠BAD =∠CAD =30°,即∠CAB =60°.∴∠B =90°-∠CAB =30°.(2)在Rt △ABC 中,∵sin B =AC AB ,∴AB =8sin sin 30AC B =︒=16.又cos B =BC AB,∴BC =AB ·cos B =16×2=.19.解:根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得BC.又BC -AB =AC-BD =20,∴BD∴古塔BD 的高度约为27.3m.20.解:作BG ⊥AD 于点G ,作EF ⊥AD 于点F 在Rt △ABG 中,∠BAD =60°,AB =40,∴BG =AB ·sin 60°=AG =AB ·cos 60°=20.同理,在Rt △AEF 中,∠EAD =45°,∴AF =EF =BG=BE =FG =AF -AG =1).因此BE 至少是-1)m.21.sin B=1322提示:作AE ⊥BC 于E ,设AP =2.(1)当BP ∶P A =2∶1时,求sin ∠1=23;cos ∠1=21;tan ∠(2)当BP ∶P A =1∶2时,sin ∠1=721;cos ∠1=772;tan ∠1=23.。

《锐角三角函数》PPT优秀课件

《锐角三角函数》PPT优秀课件

斜边c
B ∠A的对边a
sin A= ∠A的对边
斜边
A ∠A的邻边b C
∠A的邻边
cos A=
斜边
tan A= ∠A的对边 ∠A的邻边
锐角A的正弦、余弦、和正切统称∠A的锐角三角函数.
已知直角三角形两边求锐角三角函数的值
如图,在 Rt△ABC 中,∠C=90°,AB=10,BC=6,求sinA,cosA,
即tan A= a . b
B
斜边c
∠A的对边a
A
┌ ∠A的邻边b C
再见
在Rt△ABC中,∠C=90°锐角正弦的定义
斜边 A
B
∠A的对边

C
如图,在Rt△ABC中,∠C=90° 我们把锐角A的邻边与对边的比叫做∠A的正切,记作tanA,即
B
斜边 ∠A的对边
┌ A ∠A的邻边 C
例1 如图,在 Rt△ABC 中,∠C =90°,AB=10,BC=6,求
sin A, cos A,tan A的值.
tanA的值. 解:由勾股定理,得
B 10
6
A
C
因此 sin A BC = 6 = 3, AB 10 5
cos A AC 8 4 , tan A BC = 6 = 3 .
AB 10 5
AC 8 4
利用勾股定理求三角函数值方法
已知直角三角形中的两条边求锐角三角函数值的一般思路 是:当所涉及的边是已知时,直接利用定义求锐角三角函数值; 当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的 长度,然后根据定义求锐角三角函数值.
课堂练习
1. 如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则
1

九年级人教版数学第二学期第28章锐角三角函数整章知识详解

九年级人教版数学第二学期第28章锐角三角函数整章知识详解

九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455

-tan45

【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。

九年级数学《锐角三角函数》教学课件

九年级数学《锐角三角函数》教学课件
组内合作 相互交流
请同学们根据思考题,以及自学中的疑惑组 内相互交流。
尝试练习
B
1.如图△ABC中,∠C=90°,BC=5,AC=12.
5
判断:(1)sinA=13( √)
C
(2)tanB= (5
12
)×
2.如图,在Rt△ABC中,∠C=90°.
A
⑴ 若BC=8,AB=17,求sinA, cosA,tanA的值;
0<sinA<1,0<cosA<1.
小组展示
锐角α的正弦,余弦和正切统称∠α的三角函数
注意:
1、在三角函数的表示中,用希腊字母或单独一个大写 英文字母表示的角前面的“∠”一般省略不写,否则 要写. 1、sinA、cosA是在直角三角形中定义的,∠A是锐角 (注意数形结合,构造直角三角形)。 2、sinA、 cosA是一个比值(数值)。 3、sinA、 cosA的大小只与∠A的大小有关,而与直角
导入新课
如图,在Rt△ABC中,∠C=90°,当锐角 A确定时,∠A的对边与邻边的比就随之确 定, 那么∠A的对边与斜边,邻边与斜边之 间的比是否也随之确定?
学习目标
1.掌握锐角的正弦,余弦,三角函数定义。
2.会求一个锐角的三角函数。
3.灵活运用锐角的三角函数解决相关问题。
自主学习 学会质疑
自学课本115页至116页思考下列问题: 1.什么叫锐角的正弦,余弦,如何表示,表示 时需注意什么? 2.一个锐角的三角函数包括哪几个函数? 如何求一个锐角的三角函数值? 3.锐角A的正弦值,余弦值的取值范围是多少?
A的邻边 b
A
C B
⑵ 若BC︰AB=5︰13 ,求sinA, cosA,tanA的值; ⑶ 若sinA= 5, 求sinB的值.

九年级数学锐角三角函数(带答案)

九年级数学锐角三角函数(带答案)

锐角三角函数与解直角三角形之杨若古兰创作【考纲请求】锐角三角函数的定义、性质及利用,特殊角三角函数值的求法,应用锐角三角函数解决与直角三角形有关的实际成绩.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的常识解决成绩.【常识收集】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B 所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.ab要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变更时,比值也随之变更.(2)sinA,cosA,tanA分别是一个完好的数学符号,是一个全体,不克不及写成,,,不克不及理解成sin与∠A,cos与∠A,tan 与∠A的乘积.书写时习气上省略∠A的角的记号“∠”,但对三个大写字母暗示成的角(如∠AEF),其正切应写成“tan∠AEF”,不克不及写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有响应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变更时,,,tanA >0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地晓得0°、30°、45°、60°、90°角的各三角函数值,它的另一个利用就是:如果晓得了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)细心研讨表中数值的规律会发现:sin0︒、、、、sin90︒的值顺次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值顺次增大,其变更规律可以总结为:当角度在0°<∠A<90°之间变更时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常利用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包含其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的罕见类型及解法已知条件解法步调Rt△两两直角边(a,b) 由求∠A,∠B=90°-ABC 边∠A,斜边,不断角边(如c,a)由求∠A,∠B=90°-∠A,一边一角不断角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在碰到解直角三角形的实际成绩时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即请求出所有的未知元素,已知条件中至多有一个条件为边.考点六、解直角三角形的利用解直角三角形的常识利用很广泛,关键是把实际成绩转化为数学模型,善于将某些实际成绩中的数量关系化归为直角三角形中的边角关系是解决实际利用成绩的关键. 解这类成绩的普通过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际成绩转化为解直角三角形的成绩. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学成绩的答案并检验答案是否符合实际意义,得出实际成绩的解.拓展:在用直角三角形常识解决实际成绩时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母暗示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母暗示,则,如图,坡度通常写成=∶的方式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指南方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别暗示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东南方向指的是北偏东45°,东北方向指的是南偏西45°,东北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角常识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的成绩,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的利用题时,首先弄清题意(关键弄清其中名词术语的意义),然后准确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边暗示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.晓得某个锐角的三角函数值就晓得了该角的大小,可以用比例系数k暗示各边.(3)请求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,经常使用的方法是:利用定义,根据三角函数值,用比例系数暗示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可本人测验考试完成.举一反三:【变式】Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么c等于( )(A) a cos A bsin B+ (B)a sin A bsin B+(C)a bsin A sin B+(D)a bcos A sin B+【答案】选B.过点C作CD⊥AB于D,在Rt△ACD中,AD ADcos AAC b==,所以AD=bcosA,同理,BD=acosB,所以c=AB=AD+BD=bcosA+acosB,又∠A+∠B=90°,所以cosA=sinB,cosB=sinA,所以c=asinA+bsinB.类型二、特殊角的三角函数值2.解答以下各题:(1)化简求值:tan60tan45sin45sin30sin60cos30cos45--++°°°°°°°;(2)在△ABC中,∠C=9012sin cosA A-【思路点拨】第(2)题可以先利用关系式sin2A+cos2A=1对根号内的式子进行变形,配成完好平方的方式.【答案与解析】解 (1)tan60tan45sin45sin30 sin60cos30cos45--++°°°°°°°(2)12sin cosA A-2(sin cos)|sin cos|A A A A=-=-,12sin cosA A -cos sin(045)sin cos(4590)A A AA A A-<⎧=⎨-<<⎩°≤°°°.由第(2)题可得到今后经常使用的一个关系式:1±2sin αcos α=(sin α±cos α)2.例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角,∴2α=60°,α=30°.∴12cos sin 22βα===,∴β=45°.∴23tan()tan 3033β==°. 3.(1)如图所示,在△ABC 中,∠ACB =105°,∠A =30°,AC =8,求AB 和BC 的长;(2)在△ABC 中,∠ABC =135°,∠A =30°,AC =8,如何求AB 和BC 的长?(3)在△ABC 中,AC =17,AB =26,锐角A 满足12sin 13A =,如何求BC的长及△ABC 的面积?若AC =3,其他条件不变呢?第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B =45°;过点C 作CD ⊥AB 于D ,则Rt △ACD 是可解三角形,可求出CD 的长,从而Rt △CDB 可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.【答案与解析】解: (1)过点C 作CD ⊥AB 于D .∵∠A =30°,∠ACD =105°,∴∠B =45°.∵AC ·sinA =CD =BC ·sin B ,∴sin 8sin 30sin sin 45AC A BC B ===°°∴AB =AD+BD =AC ·cosA+BC ·cosB =8cos30°+cos45°=4+(2)作CD ⊥AB 的耽误线于D ,则AB =4,BC =(3)作BD ⊥AC 于D ,则BC =25,ABC S =△204.当AC =3时,∠ACB 为钝角,BC =25,36ABC S =△.【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,而且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形得到本来斜三角形的边、角的大小.类型三、解直角三角形及利用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=,AC+CD =18,求tanA 的值和AB 的长.【思路点拨】解题的基本思路是将成绩转化为解直角三角形的成绩,转化的目标次要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°. ∵4cos 5CD DCE CE=∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高不异,∴AD:DB =:2:3ACD CDB S S =△△. 即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k += ∴AB =AD+DB =AD+32AD =541【总结升华】在解直角三角形时,经常使用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.专题总结及利用一、常识性专题专题1:锐角三角函数的定义【专题解读】锐角三角函数定义的考查多以选择题、填空题为主.例1 如图28-123所示,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则以下结论准确的是 ( )A.sin A=32 B.tan A=12C.cos B=32 D.tan B=3分析 sin A=BCAB=12,tan A=BCAC=33,cos B=BCAB=12.故选D.例2 在△ABC中,∠C=90°,cos A=35,则tan A等于 ( )A.35 B.45 C.34 D.43分析在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=4433BC kAC k==.故选D.分析在Rt△ABC中,BC=222254AB AC-=-=3,∴sin A=35BCAB =.故填35.专题2 特殊角的三角函数值【专题解读】要熟记特殊角的三角函数值.例4 计算|-3|+2cos 45°-(3-1)0.分析 cos 45°=2 2.解:原式=3+2×22-1=2+2.例5 计算-12⎛⎫- ⎪⎝⎭+9+(-1)2007-cos 60°.分析 cos 60°=1 2.解:原式=12+3+(-1)-12=3-1=2.例6 计算|-2|+(cos 60°-tan 30°)0+8.分析cos 60°=12,tan 30°=33,∴cos 60°-tan 30°≠0,∴(cos60°-tan 30°)0=1,解:原式=2+1十+22=32+1.例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1-tan 60°|-132-.分析 tan 60°=3.解:原式=8-1-3+1+3+2=10.专题3 锐角三角函数与相干常识的综合应用【专题解读】锐角三角函数常与其他常识综合起来应用,考查综合应用常识解决成绩的能力.例8 如图28-124所示,在△ABC中,AD是BC 边上的高,E为AC边的中点,BC=14,AD=12,sin B=4 5.(1)求线段DC的长;(2)求tan∠EDC的值.分析在Rt△ABD中,由sin B=ADAB,可求得BD,从而求得CD.由直角三角形斜边上的中线等于斜边的一半,得DE=12AC=EC,则∠EDC=∠C,所以求tan∠EDC可以转化为求tan C.解:(1)∵AD是BC边上的高,∴AD⊥BC在Rt△ABD中,sin B=AD AB.∵AD=12,sin B=45,∴AB=15,∴BD=22AB AD-=221512-=9.∵BC=14,∴CD=5.(2)在Rt△ADC中,∵AE=EC,∴DE=12AC=EC,∴∠EDC=∠C∵tan C=ADDC=125,∴tan∠EDC=tan C=125.例9 如图28-125所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=1213,BC=12,求AD的长.分析(1)利用锐角三角函数的定义可得AC=BD.(2)利用锐角三角函数与勾股定理可求得AD的长.证实:(1)∵AD是BC边上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵tan B=ADBD,cos∠DAC=ADAC,tan B=cos∠DAC,∴ADBD=ADAC,∴AC=BD.解:(2)在Rt△ADC中,sin C=1213,设AD=12k,AC=13k,∴CD=22AC AD-=5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k.由已知BC=12,∴18k=12,k=2 3,∴AD=12k=12×23=8.例10 如图28-126所示,在△ABC中,∠B=45°,∠C=30°,BC=30+303,求AB的长.分析过点A作AD⊥BC于D,把斜三角形转化为直角三角形,利用AD是两个直角三角形的公共边,设AD=x,把BD,DC用含x的式子暗示出来,再由BD+CD=BC这一等量关系列方程,求得AD,则AB可在Rt△ABD中求得.解:过点A作AD⊥BC于D,设AD=x.在Rt△ADB中,tan B=ADBD,∴BD=tan tan45AD ADB=︒=x,在Rt△ADC中,tan C=ADCD,∴CD=tanADC=tan30AD︒=3x.又∵BD+CD=BC,BC=30+303,∴x +3x=30+303 ,∴x=30.在Rt△ABD中,sin B=AD AB,∴AB=30sin sin45ADB=︒=3022=302.专题4 用锐角三角函数解决实际成绩【专题解读】加强数学与实际生活的联系,提高数学的利用认识,培养利用数学的能力是当今数学改革的方向,环绕本章内容,纵观近几年各地的中考试题,与解直角三角形有关的利用成绩慢慢成为命题的热点,其次要类型有轮船定位成绩、堤坝工程成绩、建筑测量成绩、高度测量成绩等,解决各类利用成绩时要留意掌控各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学常识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(结果保存小数点后两位)分析本题可作CE⊥AB,垂足为E,求出CE的长即为河宽.解:如图28-131所示,过点C作CE⊥AB于E,则CE即为河宽,设CE=x(米),则BE=x+60(米).在Rt△BCE中,tan30°=CEEB,即33=60xx+,解得x=30(3+1)≈81.96(米).答:河宽约为81.96米.【解题计谋】解本题的关键是设CE=x,然后根据BE=AB+AE 列方程求解.例14 如图28-132所示,某边防巡查队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去救援.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C点再跳入海中;3号救生员沿岸边向前跑300米到离B点比来的D点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中泅水的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达救援地点B.(参考数据2≈1.4,3≈1.7)分析在Rt△ABD中,已知∠A=45°和AD,可求AB,BD,在Rt △BCD中,可利用求出的BD和∠BCD=60°求出BC,然后根据计算出的数据判断谁先到达.解:在Rt△ABD中,∠A=45°,∠D=90°,AD=300,∴AB=AD300cos4522=︒=3002.BDAD=tan 45°,即BD=AD·tan 45°=300.在Rt△BCD中,∠BCD=60°,∠D=90°,∴BC=300sin6032BD=︒=2003,CD=tan60BD︒=3003=1003 .1号救生员到达B点所用的时间为30022=1502≈210(秒),2号救生员到达B点所用的时间为3001003200362-+=50+25033≈192(秒),3号救生员到达B点所用的时间为3006+3002=200(秒).∵192<200<210.∴2号求生员先到达救援地点B.【解题计谋】本题为浏览理解题,题目中的数据比较多,准确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批次要物质从A处运往正东方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后到达B处,此时再测得该岛在它的北偏东30°方向上;已知在C 岛四周9海里的区域内有暗礁,若货船继续向正东方向航行,该货船有没有触礁风险?试说明理由.分析本题可作CD⊥AM于点D,在Rt△BCD中求出CD即可.解:过点C作CD⊥AM,垂足为点D,由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∠CAB=∠ACB,∴BC=AB=24×12=12(海里).在Rt△BCD中,CD=BC×sin 60°=63(海里).∵63>9,∴货船继续向正东方向航行无触礁风险.【解题计谋】此题实际上是通过⊙C(半径为9海里)与直线AM相离判断出无触礁风险.例16 如图28-134所示,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(3≈1.73,结果保存整数)分析因为CD=CE-DE,所以可分别在Rt△AED和Rt△BEC中求DE,CE的长,从而得出结论.解:∵AB=8,BE=15,∴AE=23.在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan 60°=153,∴CD=CE-DE=153-23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tan B=1,tan C=1 1.5,在Rt△ABE中,AE=4,tan B=AEBE=1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tan C=11.5 DFCF,∴CF =1.5DF ×4=6.又∵EF =AD =2.5,∴BC =BE +EF +FC =4+2.5+6=12.5.答:坝底宽BC 为12.5 m .【解题计谋】 背水坡是指AB ,而迎水坡是指CD .例18 如图28-136所示,山顶建有一座铁塔,塔高CD =30m ,某人在点A 处测得塔底C 的仰角为20°,塔顶D 的仰角为23°,求此人距CD 的水平距离AB .(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364,sin 23°≈0.391,cos 23°≈0.921,tan 23°≈0.424)分析 请求AB 的值,因为两个直角三角形中都只要角的已知条件,不克不及直接求解,所以设AB 为未知量,即用AB 暗示BD 和BC ,根据BD -BC =CD =30,列出关于AB 的方程.解:在Rt △ABC 中,∠CAB =20°,∴BC =AB tan ∠CAB =AB tan 20°.在Rt △ABD 中,∠DAB =23°,∴BD =AB tan ∠DAB =AB tan 23°.∴CD =BD -BC =AB tan 23°-AB tan 20°=AB (tan 23°-tan 20°).∴AB =tan 23tan 20CD ︒-︒≈300.4240.364-=500(m).答:此人距CD 的水平距离AB 约为500 m .二、规律方法专题专题5 公式法【专题解读】 本章的公式很多,熟练把握公式是解决成绩的关键.例19 当0°<α<90的值.分析 由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α解:∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα=.∵0°<a <90°,∴cos α>0. ∴原式=cos cos αα=1.【解题计谋】 以上解法中,利用了关系式sin 2α+cos 2α=1(0°<α<90°),这一关系式在解题中经经常使用到,该当牢记,并灵活应用.三、思想方法专题专题6 类比思想【专题解读】 求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,是以对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知a ,b ,解这个直角三角形.分析 已知两直角边长a ,b ,可由勾股定理c c ,再利用sin A =a c 求出∠A ,进而求出∠B =90°-∠A . 解:∵∠C =90°,∴a 2+b 2=c 2.∴c =222515+522a b +==2()().又∵sin A =51225a c ==,∴∠A =30°.∴∠B =90°-∠A =60°.【解题计谋】 除直角外,求出Rt △ABC 中的所有未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者巧妙结合,起到互通、互译的感化,是解决几何成绩经常使用的方法之一.例21 如图28-137所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12 B .22 C .32 D .33 分析∵y =-33x +33,∴当x =0时,y =33,当y =0时,x =1,∴A (1,0),B 30,3⎛⎫ ⎪ ⎪⎝⎭,∴OB =33,OA =1,∴AB =22OB OA +=233,∴cos ∠OBA =12OB AB =. ∴OP ⊥AB ,∴∠α+∠OAB =90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.专题8 分类讨论思想【专题解读】当结果不克不及确定,且有多种情况时,对每一种可能的情况都要进行讨论.例22 一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔挺的公路与高速公路订交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保存根号)解:①如图28-138(1)所示,在Rt△BDC中,∵CD=30,CB=60,∴∠B=30°.又PC=PB,∴∠CPD=60°,∴DP=103.故AP=AD+DP=(30+103)km.②同理,如图28-138(2)所示,可求得AP=(30-103)km,故交叉口P与加油站A的距离为(30+103)km或(30-103)km.【解题计谋】此题针对P点的地位分两种情况进行讨论,即点P 在线段AB上或点P在线段BA的耽误线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100 km.现计划在这两座城市两头构筑一条高速公路(即线段AB),经测量,森林呵护中间P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林呵护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划构筑的这条高速公路会不会穿越呵护区.为何?(参考数据:3≈1.732,2≈1.414)解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan 30°,BC=PC·tan 45°,∵AC+BC=AB,∴PC·tan 30°+PC·tan 45°=100,∴(33+1)PC=100,∴PC=50(3-3)≈50×(3-1.732)≈63.4>50.答:森林呵护区的中间与直线AB的距离大于呵护区的半径,所以计划构筑的这条高速公路不会穿越呵护区.例25 小鹃学完解直角三角形常识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD放在每格宽度为12 mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保存整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE =24 mm ,DF =48 mm .在Rt △ABE 中,sin α=BE AB , ∴AB =sin36BE ︒≈240.6=40(mm).在Rt △ADF 中,cos ∠ADF =DFAD ,∴AD =cos36DF ︒≈480.8=60(mm).∴矩形ABCD 的周长=2(40+60)=200(mm).例26 如图28-142所示,某居民楼I 高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?解:设正午时光线正好照在I 楼的一楼窗台处,此时新建居民楼Ⅱ高x 米.过C 作CF ⊥l 于F ,在Rt △ECF 中,EF =(x -2)米,FC =30米,∠ECF =30°,∴tan 30°=230x -,∴=103+2.答:新建居民楼Ⅱ最高只能建(103+2)米.。

九年级下锐角三角函数有关三角函数的计算

九年级下锐角三角函数有关三角函数的计算

锐角三角函数有关三角函数的计算一周强化一、一周知识概述1、锐角的三角函数一般地;在直角三角形中;锐角A的正弦(sinA)、余弦(cosA) 、正切(tanA);都叫做∠A的三角函数.正弦:如图;在Rt△ABC中;∠C=90°;锐角A的对边与斜边的比叫做∠A的正弦;记作sinA;即.余弦:锐角A的邻边与斜边的比叫做∠A的余弦;记作cosA;即.正切:锐角A的对边与邻边的比;叫做∠A的正切;记作tanA.即.2、特殊角的三角函数值30°45°60°sinαcosαtanα 13、同角三角函数间的关系(1)平方关系:sin2α+cos2α=1(2)商数关系:4、互余的两角的关系任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.即若A+B=90°;则sinA=cosB;cosA=sinB;tanA·tanB=1.5、求已知锐角的三角函数值在计算器的面板上涉及三角函数的键有键;当我们计算整数度数的某三角函数值时;可先按这三个键之一;然后再从高位向低位按出表示度数的整数;然后按;则屏幕上就会显示出结果.若度数的单位是用度、分、秒表示的;在用计算器计算三角函数值时;同样先按和三个键之一;然后再依次按度键;然后按键;则屏幕上就会显示出结果.有的计算器在计算角的三角函数值时;角的单位用的是度;则必须先把度、分、秒统一为“度”.6、已知三角函数值求角度已知三角函数值求锐角时要用到计算器上的相应键的第二功能;参照使用说明进行.值得注意的是型号不同的计算器的用法可能不同.二、重难点知识归纳1、对锐角三角函数的理解(1)锐角的正弦、余弦、正切都是锐角的函数.sinα、cosα、tanα都是一个整体符号.(2)三角函数值是一个比值;没有单位;只与角的大小有关;而与三角形的大小无关.(3)sinα+sinβ≠sin(α+β);sinα·sinβ≠sin(αβ)(4)sin2α表示(sinα)2;cos2α=(cosα)22、同名三角函数值的变化规律当角α在0°~90°间变化时;它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.锐角三角函数的值都是正实数;且0<sinα<1;0<cosα<1.3、记忆特殊角的三角函数值的方法有三种:(1)列表法;就是利用课本上的表格记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数【正弦、余弦与正切的概念】【基础练习】【例1】(2012•营口)在Rt△ABC中,若∠C=90°,BC=6,AC=8,则sinA的值为()A.45B.35C.34D.43【例2】(2012•遂宁)在△ABC中,∠C=90°,BC=4,AB=5,则cosB的值是()A.45B.35C.34D.43【例3】(2012•青海)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.43【例4】(2012•宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为()A.4 B.5C.181313D.121313【例5】(2012•哈尔滨)如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.34【例6】如图,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34B.43C.45D.35【例7】在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确【例8】在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35B.53C.255D.52【例9】如图,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.【例10】如图,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.【例11】如图,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.【培优练习】【例12】(2012•滨州)把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A.不变B.缩小为原来的1 3C.扩大为原来的3倍D.不能确定【例13】(2011•定西)把锐角△ABC的各边都扩大2倍得△A′B′C′,那么∠A、∠A′的余弦值关系是()A.cosA=cosA′B.cosA=2cosA′C.2cosA=cosA′D.不确定的【例14】(2010•贵港)如图所示,在4×8的矩形网格中,每个小正方形的边长都为1,△ABC的三个顶点都在格点上,则tan∠BAC的值为()A.12B.1 C.2D2【例15】已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.【例16】如图,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.【例17】在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值.【例18】 如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,BC=4,求sinα,cosα,tanα的值.【例19】(2004•内江)已知a ,b ,c 是△ABC 的三边,a ,b ,c 满足等式b2=(c+a )(c-a ),且5b-4c=0,求sinA+sinB 的值.【例20】(2002•东城区)在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的正弦值.【例21】 在△ABC 中,∠C=90°,BC=3,AB=5,求sinA ,cosB ,tanA 的值.【例22】 已知α为锐角且cosα是方程2x 2-7x+3=012sin cos αα-的值.【例23】已知△ABC 的一边AC 为关于x 的一元二次方程x 2+mx+4=0的两个正整数根之一,且另两边长为BC=4,AB=6,求cosA .【例24】在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值【例25】如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则cot∠EAB的值为_____.【例26】(2008•鄂尔多斯)已知,如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,⊙O经过B,C,D三点,与AB交于另一点E.(1)请你仔细观察图形,连接图中已表明字母的某两点,得到一条新线段,证明它与线段AE相等;(2)在图中,过点E作⊙O的切线,交AD于点F;①求证:EF2=FD•FC;②若AF=DF,求sinA的值.【课后练习】1.求出如图所示的Rt△ABC中∠A的正弦值和余弦值.2.在Rt△ABC中,∠C=90°,AB=10,BC=8,求sinA和tanB的值.3.已知直角三角形中两条直角边的差是7cm,斜边的长是13cm,求较小锐角α的各三角函数值.4.已知:如图,Rt△ABC,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC切于D,且AD=2,AE=1.求:(1)圆O直径的长;(2)BC的长;(3)sin∠DBA的值.5.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.6.已知:如图,在由边长为1的小正方形组成的网格中,点A、B、C、D、E都在小正方形的顶点上,求tan∠ADC的值.【特殊角的三角函数】【基础练习】【例1】(2012•天津)2cos60°的值等于()A.1 B.2C.3D.2【例2】(2012•乐山)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.1【例3】(2012•大庆)tan60°等于()A.12B.32C3D3【例4】在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A3B.12C3D3【例5】(2011•烟台)如果△ABC中,sinA=cosB=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【例6】(2011•防城港)若∠α的余角是30°,则cosα的值是()A.12B3C2D3【例7】(2010•2sin45°的结果等于()A2B.1 C.22D.12【例8】(2010•济南)如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为()A.12B.22C.32D.1【例9】(2011•达州)如图所示,在数轴上点A所表示的数x的范围是()A.3sin30x sin602︒︒<<B.3cos30x cos452︒︒<<C.3tan30x tan452︒︒<<D.3c ot45x cot302︒︒<<【例10】(2011•遂宁)计算2sin30°-sin245°+cot60°的结果是()A.1332+B.312+C.32+D.132-+【例11】(2011•兰州)点M(-sin60°,cos60°)关于x轴对称的点的坐标是()A.(3,12) B.(31,2--) C.(31,2-) D.(13,2--)【例12】(2010•衡阳)如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70°,∠c=50°,那么sin ∠AEB的值为()A.12B3C2D3【培优练习】【例13】 (2012•南昌)计算:sin30°+cos30°•tan60°.【例14】 (2011•湘潭)计算:()01o 22011π---+.【例15】(2011•兰州)已知a 是锐角,且11sin a 154cos 3.14tan ()23απα-+︒=--++()()的值.【例16】 (2009•中山)计算:01||sin3032π-︒++().【例17】 (2008•桂林)计算:1120083-+︒()()【例18】 (2008•甘南州)计算:02112cos30tan452--︒-++︒()(()【例19】 (2008•达州)计算:20081cos45-+--︒();【例20】(2005•资阳)已知a sin60b cos45=︒=︒,,11c ()2-=,d =a 、b 、c 、d 这4个数中任意选取3个数求和.【例21】 (2003•甘肃)化简: s in90sin30tan0cos60tan45cos0cot90︒+︒+︒+︒-︒-︒+︒【例22】(2003•常州)不用计算器求值:tan30sin601cos60︒+︒-︒【课后练习】最新整理【例23】 (1999•上海)(1)计算:tan60cot45sin60︒︒-︒;【例24】 (2000•昆明)计算:22sin 30sin 60︒+︒【例25】 (2001•常州)计算sin60cos30tan45︒+︒+︒的值.【例26】 (2000•兰州)计算:1sin45cos301sin45cos30+︒-︒-︒-︒()()【例27】 (2002•南宁)计算:21|1sin60cos302--++︒-︒().【锐角三角函数】【基础练习】【例1】 (10年贵州毕节)在正方形网格中,ABC △的位置如图所示,则cos B 的值为( )A .12B .22C .32D .33【例2】 如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( ) A .13 B .12C .22D .3【例3】 (2012内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12B .55C .1010D .255【例4】 (2012泰州)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .【例5】 (2010年浙江省东阳县)如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于 ( )A.a·sinα B .a·tanα C .a·cosα D .αtan a【例6】 (2012浙江嘉兴、舟山)如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC =a 米,∠A =90°,∠C =40°,则AB 等于( )米. A asin40° B acos40°C atan40°D .a tan40【例7】 在△ABC 中,∠C =90°,C D ⊥AB 于D .则sin B =________.A .AB CD B .BC AC C . AB BC D .ABAC【例8】 (2010年湖北黄冈市)在△ABC 中,∠C =90°,sinA =45,则tanB =( ) A .43 B .34 C .35 D .45【例9】 (2010江苏宿迁)在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为 .【例10】(2010年日照市)如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( ) A .2 B.3 C.2 D.1【例11】(2012•乐山)如图,在Rt △ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .12B .C .D .1【例12】(2010年日照市)在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( )A .2 B.3 C.2 D.1 【例13】如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是 ( ) A.4cm B.6cm C.8cm D.10cm【例14】 在△ABC 中,∠C =90°,若AC =3,BC =4,则sin B =_________. 【例15】 在Rt △ABC 中,sin A =54,AB =10,则BC =______ 【例16】 如图,在Rt △ABC 中,∠C =90°,AB =6,AD =2,则sin A =____. 【例17】等腰梯形,上底长是1cm ,高是2cm ,底角的正弦是54,则下底=_______,腰长=__________.【例18】(2012山东省)把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 【例19】(2012铜仁)如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°= ; (2)如图,已知tanA=43,其中∠A 为锐角,试求ctanA 的值.【例20】(2012江苏南京)如图,将45︒的∠AOB 按图摆放在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37︒的∠AOC 放置在该尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm. (结果精确到0.1 cm ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)【例21】(2012广西柳州)已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC 所在直线形成的夹角的余弦值为255 (即cosC =255),则AC 边上的中线长是 . 【例22】(2012淮安市)如图,△ABC 中,∠C =90º,点D 在AC 上,已知∠BDC =45º,BD =102,AB =20.求∠A 的度数.【例23】 (10内蒙呼和浩特)如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC相交于点D,且AB=43,求AD的长.【例24】已知:如图,在△ABC中,∠A=30°,∠B=45°,AC=10,求:AB及BC的长.A BC【例25】已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10,求:AB及BC的长.A BC【例26】(2012四川巴中)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=212,试求CD的长.【例27】(2012青海西宁)如图,在△ABC中,∠ACB=90º,CD⊥AB,BC=1.(1)如果∠BCD=30º,求AC;(2)如果tan∠BCD= 13,求CD.【例28】已知:如图,在△ABC中,D是BC边的中点,且∠BAD=90°,1tan3B=,求:sin CAD∠D CBA【例29】已知:在△ABC中,∠A=30°,AC=10,BC=6,求:AB的长.【例30】(2010重庆市) 已知:如图,在Rt△ABC中,∠C=90°,AC= 3 .点D为BC边上一点,且BD=2AD,∠AD C=60°求△ABC的周长(结果保留根号)【例31】(2012湖北鄂州)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A 、B 、C 在同一直线上,EF ∥AD ,∠A =∠EDF =90°,∠C =45°,∠E =60°,量得DE =8,试求BD 的长.【例32】矩形ABCD 中AB=10,BC=8,E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB边上,求 tan ∠AFE=?【例33】(10年福建省泉州)如图,在梯形ABCD 中,︒=∠=∠90B A ,=AB 25,点E 在AB上,︒=∠45AED ,6=DE ,7=CE .求:AE 的长及BCE ∠sin 的值.【例34】(2012贵州安顺)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE 、CD 的长度(精确到个位,3≈1.7).【培优练习】【例35】(2011广东茂名市中考)如图,已知:οο9045<<A ,则下列各式成立的是( )A .sinA=cosAB .sinA>cosAC .sinA>tanAD .sinA<cosA【例36】(2011赤峰市中考)Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B+ D.cos sin a bA B +【例37】(2012湖北荆州)如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A . 2B . 2C .D . 3【例38】(2012海南省)如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P是优弧¼AmB上的一点,则tan APB ∠的值是( ) A .1 B .2 C .3D .3【例39】已知α为锐角,sin(α-090)=0.625,则cos α=___ .【例40】 (2012福建福州)如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)【例41】 比较大小:①tan21° tan31°,②Sin21° Cos21°.【例42】(2007宁夏课改)如图,PA 为O e 的切线,A 为切点,PO 交O e 于点B ,43PA OA ==,,则sin AOP ∠的值为( )A .34B .35C .45D .43【例43】(2010年河南)如图,Rt △ABC 中,∠C=090, ∠ABC=030,AB=6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA=DE ,则AD 的取值范围是 .【例44】(2007山东济南课改)已知:如图,O e 的半径为3,弦AB 的长为4.求sin A 的值.【例45】(2007山东烟台课改)如图,已知AB 是半圆O 的直径,弦AD ,BC 相交于点P ,若DPB α∠=,那么CDAB 等于( ) A.sin αB.cos α C.tan α D.1tan α【例46】(2007四川成都课改)如图,已知AB 是O e 的直径,弦CD AB ⊥,22AC =,1BC =,那么sin ABD ∠的值是 .【例47】(2010年浙江省东阳市)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E点,AE=2,ED=4. (1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值;(3)延长BC 至F ,连接FD ,使BDF ∆的面积等于83,求EDF ∠的度数.【例48】已知:在△ABC 中 ,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积.【例49】已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.【例50】如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.(1)若s in∠B A D=35,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).【例51】在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.(1)如图1,AB与⊙O相切于点C,试求OA的值;(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA的值.【例52】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=34,求⊙O的半径长.【例53】已知:如图:BC是半圆O的直径,D、E是半圆O上两点,⋂⋂=CEED,CE的延长线与BD的延长线交于点A ,过点E 作EF ⊥BC 于点F ,交CD 与点G. (1)求证:AE=DE(2)若52=AE ,34tan =∠ABC ,求DG.【课后练习】1. 在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinB 的值是( ) A . 23B. 3 2 C . 3 4 D . 4 32. 等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A.030 B.060 C.090 D.01203. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( ) A .150 B .375 C .9 D .74. 在△ABC 中,∠C=90°,BC=2,2sin 3A =,则边AC 的长是( ) A 5B .3C .43D 135. 在△ABC 中,∠C =90°,3a =3b ,则sin A __________.6. 在△ABC 中,∠C =90°,a =8,b =45,则sin A +sin B +sin C =__________.7. 等腰三角形底边长是10,周长是40,则其底角的正弦值是________.8. 已知△ABC 中,∠ACB =90°,AB =6,CD ⊥AB 于D ,AD =2.则sin A= .9. 设直角三角形的两条直角边的比为5:12,则较大锐角的正弦值等于______. 10. 在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A = . 11. Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= .12. 已知:如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,点E 、F 分别在AB 、AC 的延长线上,EF 交⊙O 于点M 、N ,交AD 于点H ,H 是OD 的中点,D 是弧MN 的中点,EH -HF=2,设∠ACB=α,tan α=43,EH 和HF 是方程x 2-(k+2)x+4k=0的两个实数根. (1)求EH 和HF 的长; (2)求BC 的长.13. (10年山西)如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 一点,且∠AED=45°(1)试判断CD 与⊙的位置关系,并说明理由;(2)若⊙O 的半径为3cm ,AE=5cm ,求∠ADE 的正弦值.【解直角三角形】【基础练习】仰角和俯角:【例1】(2010年辽宁省丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是()A.(53332+)m B.(3532+)mC.533m D.4m【例2】(2012福建福州)如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点煌距离是()A.200米B.2003米C.2203米D.100(3+1)米【例3】(2012湖北宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米B.20米C.16米D.12米【例4】 (2012贵州黔西南)兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高2m的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为( )A.()103+2m .B ()203+2m .C ()53+2m D.()153+2m【例5】 (2012湖北襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为12m ,他的眼镜距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( )A .(43+1.6)mB .(123+1.6)mC .(43+1.6)mD .43m【例6】 (2012广西来宾)如图,为测量旗杆AB 的高度,在与B 距离为8米的C 处测得旗杆顶端A 的仰角为56°,那么旗杆的高度约是 米(结果保留整数).(参考数据:sin 56°≈0.829,cos 56°≈0.559,tan 56°≈1.483)\【例7】 (2012广东湛江)某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE 60米的D 处.用仪器测得主塔顶部A 的仰角为68°,已知测量仪器的高CD =1.3米,求主塔AE 的高度(结果精确到0.1米)(参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.48)【例8】 (2010年青岛)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)【例9】 (2012天津市)如图,甲楼AB 的高度为123m ,自甲楼楼顶A 处,测得乙楼顶端C 处的仰角为450,测得乙楼底部D处的俯角为300,求乙楼CD的高度(结果精确到0.1m,3取1.73).【例10】(2012江苏宿迁)如图是使用测角仪测量一幅壁画高度的示意图.已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画顶端的仰角∠ADF=60°,底端的俯角∠BDF=30°,且点D距离地面的高度DE=2m,求壁画AB的高度.【例11】(2012广东珠海)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:≈,2 1.413 1.73≈)【例12】(2012浙江台州)如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的俯角∠EAB为15°,码头D的俯角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).【例13】(2012湖南岳阳)九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A 处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)【例14】(2012江苏盐城)如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45︒;如果小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30︒.求小华的眼睛到≈)地面的距离.(结果精确到0.1米,参考数据:3 1.73【例15】(2012福建漳州)极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB,小华在D处用高1.1米的测角仪CD,测得楼的顶端A的仰角为22o ;再向前走63米到达F 处,又测得楼的顶端A 的仰角为39o (如图是他设计的平面示意图).已知平台的高度BH 约为13米,请你求出“八卦楼”的高度约多少米? (参考数据:sin 22o ≈207,tan 220≈52,sin 39o ≈2516,tan 39o ≈54)【例16】(2012湖北十堰)如图,为了测量某山AB 的高度,小明先在山脚下C 点测得山顶A 的仰角为45°,然后沿坡角为30°的斜坡走100米到达D 点,在D 点测得山顶A 的仰角为30°,求山AB 的高度.(参考数据:3≈1.73)【例17】(2012山西省)如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A .B 的距离,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了500米,在点D 测得端点B 的俯角为45°,求岛屿两端A .B 的距离(结果精确到0.1米,参考数据:)【例18】(2010重庆市潼南县) 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈732.13≈)【例19】(2010年广东省广州市)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米)45°39°DC AEB【例20】(2010年浙江省绍兴市)如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100 m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.(1)求气球的高度(结果精确到0.1m);(2)求气球飘移的平均速度(结果保留3个有效数字).【例21】(2010年四川省眉山市)如图,在一次数学课外实践活动中,要求测教学楼的高度AB.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB【例22】(2010年山东聊城)建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P处,利用自制测角仪测得正南方向商店A点的俯角为60,又测得其正前方的海源阁宾馆B点的俯角为30(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).【例23】(2010浙江金华)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)【例24】(2012山东青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22º≈38,cos22º≈1516,tan22º≈25)【例25】(2012吉林省)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)【例26】(2012河南省)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅,如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定,小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°,已知点C到大厦的距离BC=7米,∠ABC=900,请根据以上数据求条幅的长度(结果保留整数,参考数据:000,,)≈≈≈tan310.6sin310.52cos310.86【例27】(2012四川资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).【例28】(2012广西南宁)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为3山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【例29】(2012辽宁锦州)如图,大楼AB 高16米,远处有一塔CD ,某人在楼底B 处测得塔顶的仰角为38.5°,爬到楼顶A 处测得塔顶的仰角为22°,求塔高CD 及大楼与塔之间的距离BD 的长.(参考数据:sin 22°≈0.37, cos 22°≈0.93, tan 22°≈0.40, sin 38.5°≈0.62,cos 38.5°≈0.78, tan 38.5°≈0.80 )【例30】(2012四川凉山)某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话: 小明:我站在此处看树顶仰角为45o. 小华:我站在此处看树顶仰角为30o . 小明:我们的身高都是1.6m . 小华:我们相距20m .请你根据这两位同学的对话,计算这棵汉柏树的高度.(参考数据:2 1.414≈,3 1.732=,结果保留三个有效数字)【例31】(2012贵州贵阳)小亮想知道亚洲最大的瀑布黄果树夏季洪峰汇成巨瀑时的落差.如图,他利用测角仪站在C 处测得∠ACB =68°,再沿BC 方向走80m 到达D 处,测得∠ADC =34°,求落差AB .(测角仪高度忽略不计,结果精确到1m )【例32】(2012广西钦州)如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)【例33】(2012云南省)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30︒,荷塘另一≈,端D处与C、B在同一条直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取3 1.73结果保留整数)【例34】(2012内蒙古呼和浩特)如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.【例35】(2012内蒙古赤峰)如图,王强同学在甲楼楼顶A 处测得对面乙楼楼顶D 处的仰角为30°,在甲楼楼底B 处测得乙楼楼顶D 处的仰角为45°,已知甲楼高26米,求乙楼的高度.(3≈1.7)坡度和坡角: 【例36】如图,已知一商场自动扶梯的长 l 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( ) A .34B .43C .35D .45【例37】(2010浙江湖州)河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比 1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53米 B .10米 C .15米D .103米【例38】一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是( )A.30米B.10米C.1030米D.1010米 【例39】坡角为30o的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A.4m B.3m C.43m 3D.43m 【例40】(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )A .5200mB .500mC .3500mD .1000m 【例41】(2010年宁波市)如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为︒15,则引桥的水平距离BC 的长是_________米(精确到0.1米).【例42】(2010福建泉州市惠安县) 如图,先锋村准备在坡角为030=α山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为__________米.【例43】同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图,水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求斜坡AB 的坡面角α,坝底宽AD 和斜坡AB 的长(精确到0.1m).【例44】(2012广东深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为A.(63)+米B.12米C.(423)+米 D .10米【例45】(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【例46】(2010年兰州市)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)【例47】(2010年山东省济南市)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC ∥AD ,斜坡AB =40米,坡角∠BAD =600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果保留根号)?【例48】(2012四川广安)如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m【例49】(2012福建南平)如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈米.(精确到0.1米)【例50】(2012湖北咸宁)如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i ,则AC的长度是cm.1:5【例51】(2012贵州黔南)都匀市某新修“商业大厦”的一处自动扶梯如图,已知扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于.。

相关文档
最新文档