数列复习课教案

合集下载

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

数列复习课的教案

数列复习课的教案

数列复习课的教案一、教学目标:1. 理解数列的概念和特征;2. 掌握数列的常见表示方法;3. 能够求解数列的通项公式;4. 能够应用数列解决问题。

二、教学内容:1. 数列的定义和性质;2. 数列的表示方法;3. 数列的通项公式;4. 数列的求和公式;5. 数列的应用。

三、教学过程:1. 导入(5分钟)通过提问和讲解,复习数列的概念,引导学生回忆数列的定义和性质。

2. 知识讲解(15分钟)a) 数列的表示方法:递推公式和通项公式;b) 数列的通项公式的推导方法和步骤;c) 数列的求和公式的推导方法和应用;d) 数列在实际问题中的应用。

3. 讲解例题(15分钟)通过讲解一些典型的数列例题,引导学生掌握数列的解题方法和技巧。

4. 练习巩固(20分钟)学生自主完成一些练习题,巩固数列的相关知识和解题方法。

5. 拓展延伸(10分钟)引导学生思考更复杂的数列问题,并提供一些拓展题目,激发学生的兴趣和思维。

6. 总结归纳(5分钟)对数列的相关知识点进行总结和归纳,帮助学生梳理思路,加深对数列的理解。

四、教学手段:1. 板书:列举数列的定义、性质、表示方法、通项公式和求和公式等重要概念和公式。

2. 多媒体教学:通过投影仪展示例题、解题步骤和相关应用,提高学生的理解和兴趣。

3. 互动讨论:通过提问、回答和讨论,激发学生思维,培养学生的问题解决能力。

五、教学评价:1. 课堂表现:观察学生的听讲、思考和回答问题的情况,评价学生的积极性和参与度。

2. 练习评价:对学生完成的练习题进行批改,评价学生对数列的掌握情况。

3. 问题解决能力评价:观察学生解决复杂数列问题的能力,评价学生的问题解决能力和思维发展。

六、教学反思:通过数列复习课的教学,学生对数列的概念、性质、表示方法、通项公式和求和公式等知识有了更深入的理解。

课堂中的讲解和练习巩固相结合,有效提高了学生的学习兴趣和解题能力。

但是,还需要进一步加强数列的应用训练,培养学生解决实际问题的能力。

数列复习课教案

数列复习课教案

数列复习课教案(一)民立中学夏芝晨(区学科带头人)数列是一类特殊的函数,它的定义域是自然数集N或N的有限子集,通项公式就是这一函数的解析表达式。

等差数列和等比数列是两种最基本、最常见的数列。

它们各有五个基本量:首项、公差或公比、项数、通项、前项和;两个基本公式——通项公式和前项和公式,将这五个基本量连接起来,应用函数与方程的思想方法,认识这些基本量的相互联系,由已知推求未知,构成了数列理论的基本框架,成为贯穿始终的主线。

第一课时复习课题:数列、等差数列、等比数列。

复习目标:理解数列的概念,掌握等差数列、等比数列的概念。

复习重点:掌握等差数列、等比数列的概念。

复习难点:用函数的观点来研究数列。

教学过程:知识要点:(1)数列可看作定义域为自然数集N或其子集的函数。

数列的各项即是自变量(项数)从1开始自小到大依次取自然数时对应的一系列函数值。

数列的一般形式:简记为数列。

项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。

(2)表示函数的常用方法有列表法、解析法和图象法三种。

相应地,表示数列也可用上述三种方法。

如果能用解析法表示数列,那么这种解析式就称为数列的通项公式。

数列的图象法表示与函数的图象法表示有区别,前者只是一些孤立的点,后者一般是一段或若干条曲线。

(3)数列中,若(常数),对都成立,则数列叫等差数列,常数叫数列的公差。

数列中,若(常数),,对都成立,则数列叫等比数列,常数叫数列的公比。

(4)三数成等差,即是的等差中项;三数成等比,即是的等比中项。

例一:根据下列数列的前项的值,写出满足反映给出规律的一个通项公式。

(1)3,5,9,17,33,……(2)0,3,8,15,24,……(3)(4)0,1,0,1,0,1,……解:分析与项数之间的对应关系:(1)联想数列2,4,8,16,32,……即数列,可知。

(2)联想1,4,9,16,25,……即数列,可知。

(3)这是一个分数数列,分子为偶数数列,分母为,是两个连续奇数的积,所求的通项公式是。

(完整版)职高数学复习-数列教案

(完整版)职高数学复习-数列教案

第 课时教学内容:数列的定义教学目的:理解数列的定义、通项公式、Sn 的含义,掌握通项公式的求法及其应用,了解递推的含义.教学重点:数列的基本概念.教学难点:求通项公式、递推公式的应用 教学过程:一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。

1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n 注 求数列通项公式的一个重要方法: 对于数列}{n a ,有: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)67是该数列的第几项;(3)此数列从第几项起开始为负项. 解:例2 求下列数列的通项公式:(1)1,3,5,7, ……(2)-211⨯,321⨯,-431⨯,541⨯.…… (3)9,99,999,9999,……解:(1)12-=n a n ;(2))1(1)1(+-=n n a nn ;(3)110-=nn a练习:定写出数列3,5,9,17,33,……的通项公式: 答案:a n =2n +1 。

例3 已知数列{}n a 的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项.解 据题意可知:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a 例4 已知数列{}n a 的前n 项和,求数列的通项公式: (1) n S =n 2+2n ; (2) n S =n 2-2n-1.解:(1)①当n ≥2时,n a =n S -1-n S =(n 2+2n)-[(n-1)2+2(n-1)]=2n+1;②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n ≥2时,n a =n S -1-n S =(n 2-2n-1)-[(n-1)2+2(n-1)-1]=2n-3; ②当n=1时,1a =1S =12-2×1-1=-2;③经检验,当n=1时,2n-3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求.注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合四、提高:例5 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.五、同步练习:1.已知:2n a n n =+,那么 (C ) (A )0是数列中的一项 (B )21是数列中的一项 (C )702是数列中的一项 (C )30不是数列中的一项2、在数列2,5,9,14,20,x ,…中,x 的值应当是 (D ) (A )24 (B )25 (C )26 (D )273、已知数列11,7,3,…,79,…且a n =179,则n 为 (C ) (A )21 (B )41 (C )45 (D )494、数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 (B )(A )51(B )5 (C )6 (D )231log 3log 3215+ 5、已知数列1,-1,1,-1,…,则下列各式中,不是它的通项公式的为 (D ) (A )1)1(--=n n a (B )2)12(sinπ-=n a n (C ) 1 ()1()n n a n ⎧=⎨-⎩为奇数为偶数(D )n n a )1(-=6、数列 ,541,431,321,211⋅⋅-⋅⋅-的一个通项公式是 (A )(A ))1(1)1(+-=n n a n n (B ))1(1)1(1+-=+n n a n n(C )nn a nn)1(1)1(-⋅-=(D ))2()1(+-=n n a nn7、数列通项是nn a n ++=11,当其前n 项和为9时,项数n 是 (B )(A )9 (B )99 (C )10(D )100 8.数列112,223,334,445,…的一个通项公式是 (B )(A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 92,5,22,11,,则25 (B ) (A )第六项 (B )第七项 (C )第八项 (D )第九项 10.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,求数列的第五项a 5= 31 11、已知数列{a n }的前n 项和S n 满足log 2 (S n + 1) = n + 1,求a n .(答案: 3 n=12 n 2n n a ⎧=⎨≥⎩)12、已知数列{100-4n},(1)求a 10;(2)求此数列前10项之和; (3)当此数列前n 项之和最大时,求n 的值. 答案(1)60(2)780(3)24or2513、设数列{a n }中,S n =-n 2+24n ,(1)求通项公式; (2)求a 10+a 11+a 12+…+a 20的值; (3)求S n 最大时a n 的值.答案:(1)an=25-2n (2)-55(3)1 补充:1、已知数列{a n }满足a 1=b(b ≠1),且)(211N n a a nn ∈-=+, (1)求a 1, a 2, a 3; (2)求此数列的通项公式.2、已知数列{a n }前n 项之和S n =1nn +,求a n .3、一数列的通项公式为a n = 30 + n -n 2. ①问-60是否为这个数列中的一项. ②当n 分别为何值时,a n = 0, a n >0, a n <0第 课时教学内容:等差数列(1)教学目的:通过复习,巩固等差数列的定义、通项公式、求和公式 教学重点:等差数列 教学过程:(一)主要知识 1.等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=. 3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c (二)主要方法: 1.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 2.知三求二(n n S a n d a ,,,,1),要求选用公式要恰当.3.设元技巧: 三数:d a a d a +-,, 四数d a d a d a d a 3,,,3-+-- (二)基础题型: 讲练题:1.求等差数列8,5,2…的第20项。

高三数学复习教案:高考数学数列复习教案

高三数学复习教案:高考数学数列复习教案

高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。

本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。

【基础练习】1.已知数列满足,则 = 。

分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。

3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。

解:(1)由得:或所以70是这个数列中的项,是第13项。

等差数列复习课教案

等差数列复习课教案

等差数列复习课(一)学情本课是复习课,针对高二刚学过等差数列的学生,学生设定为有一定基础的中等学生。

(二)题型1、选择填空题必有一道等差或等比数列,共5分;2、大题最后一题涵盖多种知识点,包含数列、集合、函数、不等式、初等数论等,掌握数列知识,至少能拿3-5分。

(三)考点1、等差数列的定义,通项公式及前n 项和公式;2、等差数列的性质及应用。

(四)三维目标1、知识与技能:复习等差数列的定义、通项公式、前n 项和公式及相关性质。

2、过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解。

3、情感与价值:培养学生观察、归纳的能力,培养学生的应用意识。

(五)教学方法师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识。

(六)教学过程Ⅰ知识回顾1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

21≥=--n ,d a a n n 或 2211≥=+-+n ,a a a n n n 。

2、等差数列的通项公式如果等差数列{}n a 首项是1a ,公差是d ,则等差数列的通项公式是d )m n (a d )n (a a m n -+=-+=11。

注意:等差数列的通项公式整理后为)(1d a nd a n -+=,是关于n 的一次函数。

3、等差中项如果a,A,b 成等差数列,那么A 叫作a 与b 的等差中项。

即:2b a A +=,或 b a A +=2。

(算数平均数) (数列:以正整数集(或它的有限子集)为定义域的函数,是一列有序的数,可以是有限项,也可以是无限项。

)4、等差数列的前n 项和公式等差数列{}n a 首项是1a ,公差是d ,则2)(1n n a a n S +==d n n na 2)1(1-+。

注意:该公式整理后为n d a n d s n )2(212-+=,是关于n 的二次函数,且常数项为0。

高中必修二数学教材数列教案

高中必修二数学教材数列教案

高中必修二数学教材数列教案
教学内容:数列
教学目标:1. 了解数列的概念及特点。

2. 掌握常见数列的表示方法及性质。

3. 能够解决与数列相关的问题。

教学重点:数列的概念、常见数列的特点、递推公式的求解。

教学难点:数列的性质应用题的解题技巧。

教学准备:黑板、彩色粉笔、教学PPT、习题集。

教学过程:
1. 概念引入:通过举例引入数列的概念,让学生了解什么是数列,并询问学生对数列的认识。

2. 数列的表示方法:介绍等差数列、等比数列等常见数列的表示方法及特点,并通过实例引导学生理解。

3. 数列的性质:讲解数列的性质,如首项、公差、通项公式等,让学生掌握数列的基本概念。

4. 数列的递推公式:通过实例引导学生如何求解数列的递推公式,让学生熟练掌握求解方法。

5. 综合练习:布置一些数列的练习题目,让学生独立解题,并及时纠正学生的错误。

6. 总结提问:对本节课所学的知识进行总结,并提出一些问题让学生思考,加深对数列的理解。

7. 课后作业:布置一些相关的练习题目,帮助学生巩固复习所学知识。

教学反思:在教学过程中要注重引导学生思考和探究,通过实例让学生理解数列的概念及性质,让学生在解题中得到实际应用。

同时要及时纠正学生的错误,并鼓励他们勇于探索和学习。

数列教学设计精选5篇

数列教学设计精选5篇

数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。

长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。

但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。

新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。

”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。

“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。

近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。

一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。

上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。

教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。

然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。

第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。

学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。

2025届高考数学一轮复习教案:数列-等比数列

2025届高考数学一轮复习教案:数列-等比数列

第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。

等差数列综合复习(教案+例题+习题)

等差数列综合复习(教案+例题+习题)

一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。

例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。

解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)n n n -+。

点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。

如(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。

例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。

高三数学一轮复习精品教案――数列

高三数学一轮复习精品教案――数列

城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。

人教版高中数学《数列》全部教案

人教版高中数学《数列》全部教案

人教版高中数学《数列》全部教案人教版高中数学《数列》全部教案一、教学目标1、理解数列的概念,掌握数列的通项公式及其求解方法。

2、掌握等差数列和等比数列的特点及其求解方法。

3、能够根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。

二、教学内容1、数列的概念及通项公式2、等差数列的特点及求解方法3、等比数列的特点及求解方法4、数列在实际问题中的应用三、教学方法1、讲授数列的概念及通项公式,通过例题和练习题加深学生对数列的理解。

2、通过实例和练习题,让学生掌握等差数列和等比数列的特点及求解方法。

3、通过案例分析和实际问题,让学生了解如何根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。

四、教学步骤1、导入新课:通过一些简单的练习题,让学生了解数列的概念及通项公式。

2、讲授新课:(1)数列的概念及通项公式(2)等差数列的特点及求解方法(3)等比数列的特点及求解方法(4)数列在实际问题中的应用3、课堂练习:通过一些例题和练习题,让学生进一步掌握数列的概念及通项公式、等差数列和等比数列的特点及求解方法。

4、课堂小结:对本节课的内容进行总结,强调数列在实际问题中的应用。

5、布置作业:让学生进一步巩固本节课所学内容,提高对数列的理解和应用能力。

五、教学重点难点1、数列的概念及通项公式的理解。

2、等差数列和等比数列的求解方法。

3、如何根据实际问题中的数据特点,建立相应的数列模型。

六、教学评价1、通过课堂练习和作业,检查学生对数列的理解和应用能力。

2、通过实际问题的解决,评价学生对数列的应用能力。

3、通过学生之间的交流和讨论,了解学生对数列的理解情况。

七、教学建议1、加强对数列概念的理解,注重数列的实际应用。

2、练习等差数列和等比数列的求解方法,掌握其特点。

3、注重数列在实际问题中的应用,提高学生的数学应用能力。

4、提倡学生之间的合作学习,通过交流和讨论,加深对数列的理解。

八、教学实例例1:已知某品牌汽车的价格为20万元,每年按发票金额的10%递增,求5年后该汽车的价格。

高中数学数列教案文件

高中数学数列教案文件

高中数学数列教案文件
一、教学目标:
1. 知识目标:了解数列的概念、性质及常见数列的求和公式。

2. 能力目标:掌握数列的概念和性质,能够运用数列的知识解决实际问题。

3. 情感目标:激发学生对数学的兴趣,培养学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点:
1. 教学重点:数列的概念、性质和常见数列的求和公式。

2. 教学难点:能够灵活运用数列的知识解决实际问题。

三、教学过程:
1. 导入:通过提出一个实际问题引入数列的概念,让学生了解数列的定义和常见的数列类型。

2. 讲解:介绍数列的概念和性质,如等差数列、等比数列等,并讲解常见数列的求和公式。

3. 练习:布置练习题让学生通过练习加深对数列的理解和运用。

4. 拓展:引导学生运用数列的知识解决实际问题,拓展学生的思维广度。

5. 总结:总结数列的知识点,强化学生对数列的掌握和应用能力。

四、课堂作业:
1. 完成练习题,加深对数列的理解和掌握。

2. 找出身边的例子,分析是否符合数列的概念。

3. 思考如何运用数列的知识解决实际问题。

五、教学反馈:
及时对学生的作业进行批改和评价,引导学生对数列的理解和应用进行反思和总结,及时
纠正和加强学生的掌握程度。

等差数列复习教案

等差数列复习教案

等差数列复习教案教案标题:等差数列复习教案教学目标:1. 理解等差数列的概念和性质。

2. 能够识别等差数列中的公差和首项。

3. 掌握等差数列的通项公式和求和公式。

4. 能够应用等差数列的知识解决问题。

教学准备:1. 教师准备:白板、黑板笔、教学课件、教学素材、练习题。

2. 学生准备:课本、笔记本、笔。

教学过程:一、导入(5分钟)1. 引入等差数列概念:回顾上一节课学习的内容,提问学生对等差数列的理解和特点。

2. 引导学生思考:列举几个实际生活中的等差数列例子,让学生发现等差数列的应用。

二、概念解释和性质讲解(10分钟)1. 教师通过教学课件或板书,给出等差数列的定义和符号表示。

2. 解释等差数列的公差和首项的含义,并强调它们在等差数列中的作用。

3. 讲解等差数列的性质,如相邻项之差相等等。

三、求解等差数列的公式(15分钟)1. 教师通过示例和解题步骤,引导学生推导等差数列的通项公式和求和公式。

2. 强调公式的应用方法和注意事项,如确定已知条件、代入公式计算等。

四、练习与巩固(20分钟)1. 分发练习题,让学生独立完成练习。

2. 教师巡视指导学生解题过程,及时纠正错误和解答疑惑。

3. 收集学生的练习答案,进行讲解和订正。

五、拓展与应用(10分钟)1. 提供一些拓展题目,让学生运用等差数列的知识解决问题。

2. 鼓励学生思考等差数列在实际生活中的应用场景,并展示他们的解决方案。

六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,强调等差数列的重要性和应用价值。

2. 学生对本节课的学习进行反思,提出问题和困惑,教师进行解答和引导。

教学延伸:1. 鼓励学生通过自主学习和合作学习,进一步巩固和拓展等差数列的知识。

2. 提供更多的练习题和挑战题,让学生在解决问题中发现等差数列的应用。

教学评估:1. 教师观察学生在课堂上的表现,包括参与度、合作与思考能力等。

2. 教师收集学生完成的练习题和拓展题答案,进行评价和订正。

数列教案优秀3篇

数列教案优秀3篇

数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。

教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。

这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。

【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。

【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。

2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。

对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。

二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。

(2)会简单运用等差数列的前n项和公式。

(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。

(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。

三、教学模式与教法、学法本课采用“探究―发现”教学模式。

教师的教法:突出活动的组织设计与方法的引导。

学生的学法:突出探究、发现与交流。

四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。

这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。

2025届高考数学一轮复习教案:数列-数列的概念

2025届高考数学一轮复习教案:数列-数列的概念

第七章数列第一节数列的概念【课程标准】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.3.能够利用a n与S n的关系求数列的通项公式.4.能根据数列递推关系求数列的项或通项公式.【考情分析】考点考法:高考题常以数列的概念为载体,考查数列项、前n项和及其与通项公式的关系.S n和a n的关系是高考热点,在各种题型中都会有所体现.核心素养:数学抽象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项与序号n之间的关系式前n项和数列{a n}中,S n=a1+a2+…+a n2.数列的表示法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n与a n+1的关系式或a1,a2和a n-1,a n,a n+1的关系式等表示数列的方法函数法a n=f(n),n∈N*【微点拨】(1)并不是所有的数列都有通项公式;(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.3.数列的分类单调性递增数列∀n∈N*,a n+1>a n递减数列∀n∈N*,a n+1<a n常数列∀n∈N*,a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数k,a n+k=a n【微点拨】(1)数列的单调性可以类比数列的通项公式对应的函数解析式在区间(0,+∞)上的单调性;(2)可以把数列函数化,利用函数方法研究数列的单调性.4.数列的前n项和数列{a n}的前n项和S n=a1+a2+a3+…+-1+a n,则a n=1,=1,--1,≥2.【基础小题·自测】类型辨析改编题号12,3,4 1.(多维辨析)(多选题)下列结论不正确的是()A.数列5,2,0与2,0,5是同一个数列B.根据数列的前几项归纳出数列的通项公式可能不止一个C.任何一个数列不是递增数列,就是递减数列D.如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n=S n-S n-1【解析】选ACD.A中两个数列项的顺序不同,不是同一个数列;B正确;C中数列可能是常数数列或摆动数列;D中当n=1时,a1=S1-S0无意义.2.(选择性必修第二册P5例2·变形式)数列0,23,45,67,…的一个通项公式为()A.a n=-1r1B.a n=-12r1C.a n=2(-1)2-1D.a n=22r1【解析】选C.将0写成01,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*.3.(选择性必修第二册P6例5·变形式)数列1,3,6,10,15,…的递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n≥2,n∈N*C.a n+1=a n+(n+1),n≥2,n∈N*D.a n=a n-1+(n-1),n∈N*,n≥2【解析】选B.设数列1,3,6,10,15,…为,则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,n=2时,A,D不合题意;而C中不包含a2-a1=2,由此可得数列满足a n-a n-1=n,n≥2,n∈N*.4.(选择性必修第二册P4例1·变形式)已知数列{a n}满足a n=(r1)2,则S3=________.【解析】数列{a n}满足a n=(r1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.答案:10【巧记结论·速算】在数列{a n}中,若a n最大,则≥-1,≥r1(n≥2).若a n最小,则≤-1,≤r1(n≥2).【即时练】已知数列中,a n=n2-5n+4,则数列的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项【解析】选D.根据题意,数列中,a n=n2-5n+4,则a n+1-a n=(n+1)2-5(n+1)+4-n2+5n-4=2n-4,当n<2时,有a n+1-a n<0,则有a1>a2,当n=2时,有a n+1-a n=0,则有a2=a3,当n>2时,有a n+1-a n>0,则有a3<a4<……故数列的最小项是第2项、第3项.【核心考点·分类突破】考点一通项公式的探索及应用[例1](1)(多选题)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,是{a n}的项的是()A.21B.33C.152D.153【解析】选ABD.由数列的通项公式得,a1=21,a2=33,a12=153.(2)写出数列的一个通项公式,使它的前4项分别是下列各数.①23,45,87,169;②-12,23,-34,45;③3,4,3,4;④6,66,666,6666.【解析】①4个项都是分数,它们的分子依次为2,22,23,24,分母是正奇数,依次为2×1+1,2×2+1,2×3+1,2×4+1,所以给定4项都满足的一个通项公式为a n=22r1.②4个项按先负数,后正数,正负相间排列,其绝对值的分子依次为1,2,3,4,分母比对应分子多1,所以给定4项都满足的一个通项公式为a n=(-1)nr1.③4个项是第1,3项均为3,第2,4项均为4,所以给定4项都满足的一个通项公式为a n=3,=2-14,=2(k∈N*).④4个项,所有项都是由数字6组成的正整数,其中6的个数与对应项数一致,依次可写为6=23(10-1),66=23(102-1),666=23(103-1),6666=234-1),所以给定4项都满足的一个通项公式为a n=23(10n-1).【解题技法】由数列的前几项求通项公式的方法(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n或(-1)n+1来调整.【对点训练】1.若一数列为1,37,314,321,…,则398是这个数列的()A.不在此数列中B.第13项C.第14项D.第15项【解析】选D.因为1=37×0,37=37×1,314=37×2,321=37×3,因此符合题意的一个通项公式为a n=37(n-1),由37(n-1)=398解得n=15,所以398是这个数列的第15项.2.根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)-11×2,12×3,-13×4,14×5,…;(3)23,415,635,863,1099,…;(4)9,99,999,9999,….【解析】(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式为a n=(-1)n·1(r1).(3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数的乘积,故所求数列的一个通项公式为a n=2.(2-1)(2r1)(4)这个数列的前4项可以写成10-1,100-1,1000-1,10000-1,故所求数列的一个通项公式为a n=10n-1.考点二已知S n或S n与a n的关系求a n[例2]金榜原创·易错对对碰①若数列{a n}的前n项和S n=2n+1,则数列的通项公式为a n=________.②若数列{a n}的前n项和S n=2n-1,则数列的通项公式为a n=________.【解析】①当n=1时,a1=S1=21+1=3;当n≥2时,a n=S n-S n-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.综上有a n=3,=1,2-1,≥2.答案:3,=1,2-1,≥2.②当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.综上有a n=2n-1.答案:2n-1【解题技法】1.已知S n求a n的三个步骤(1)利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的解析式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的解析式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.2.已知S n与a n的关系求a n的两个方法(1)利用S n-S n-1=a n(n≥2)消去S n,转化为a n与a n-1的关系求a n;(2)利用a n=S n-S n-1(n≥2)消去a n,转化为S n与S n-1的关系,求出S n后再求a n.提醒:当n≥2时推出的关系不包含n=1的情况,因此需要验证n=1时是否成立,如果成立,则合并表示,如果不成立,则分段表示.【对点训练】1.已知正项数列{a n}中,1+2+…+=(r1)2,则数列{a n}的通项公式为()A.a n=nB.a n=n2C.a n=2D.a n=2 2【解析】选B.因为1+2+…+=(r1)2,所以1+2+…+-1=(-1)2(n≥2),两式相减得=(r1)2-(-1)2=n(n≥2),所以a n=n2(n≥2),①又当n=1时,1=1×22=1,a1=1,适合①式,所以a n=n2,n∈N*.2.记S n为数列{a n}的前n项和,若S n=2a n+1,则S n=________.【解析】因为S n=2a n+1,所以S n+1=2a n+1+1,所以a n+1=2a n+1-2a n,所以a n+1=2a n,当n=1时,S1=a1=2a1+1,所以a1=-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S n=-(1-2)1-2=1-2n.答案:1-2n【加练备选】1.已知数列{a n}满足a1+2a2+3a3+…+na n=2n,则a n=________.【解析】当n=1时,a1=21=2,因为a1+2a2+3a3+…+na n=2n,①故a1+2a2+3a3+…+(n-1)a n-1=2n-1(n≥2),②由①-②得na n=2n-2n-1=2n-1,所以a n=2-1.显然当n=1时不满足上式,所以a n=1,,≥2.答案=1,≥22.已知数列的前n项和S n=3n+b,求的通项公式.【解析】当n=1时,a1=S1=3+b.当n≥2时,a n=S n-S n-1=2·3n-1,因此,当b=-1时,a1=2适合a n=2·3n-1,所以a n=2·3n-1.当b≠-1时,a1=3+b不适合a n=2·3n-1,所以a n=3+,=1,2·3-1,≥2.综上可知,当b=-1时,a n=2·3n-1;当b≠-1时,a n=3+,=1,2·3-1,≥2.考点三数列的性质及其应用【考情提示】数列作为一种特殊的函数,除考查求通项公式、求和等之外,还考查数列的单调性,项的最值,周期性等,解题时要类比函数的研究方法,结合数列的特性.角度1数列的单调性及项的最值[例3]已知数列{a n}的通项公式为a n=3-23r1(n∈N*).则下列说法正确的是()A.这个数列的第10项为2731B.98101是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列【解析】选C.令n=10,得a10=2831.故选项A不正确,令3-23r1=98101,得9n=300,此方程无正整数解,故98101不是该数列中的项.因为a n=3-23r1=3r1-33r1=1-33r1,又n∈N*,所以数列{a n}是单调递增数列,所以14≤a n<1,所以数列中的各项都在区间[14,1)内,故选项C正确,选项D不正确.【解题技法】关于数列的单调性及项的最值(1)求数列项的最值需要先研究数列的单调性,一是通过列举项找规律;二是利用数列递增(减)的等价条件,求出递增、递减项的分界点处的n值.(2)利用函数方法,令n∈(0,+∞),研究对应函数的单调性、图象确定最值,再回归到数列问题.【对点训练】已知数列{a n}的通项公式为a n=3r2,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】选D.因为a n+1-a n=3r3+2r1-3r2=3-3-2r1,由数列{a n}为递减数列知,对任意n ∈N*,a n+1-a n=3-3-2r1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).角度2数列的周期性[例4]已知数列{a n}满足a n+1=a n-a n-1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2029的值为()A.2029n-mB.n-2029mC.mD.n【解析】选C.根据题意计算可得a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,因此数列{a n}是以6为周期的周期数列,且a1+a2+…+a6=0,所以S2029=S338×6+1=a1=m.【解题技法】关于数列的周期性在求数列的某一项的值,且该项的序号较大时,应该考虑该数列是否具有周期性,一般地,求出数列的前几项,确定周期,然后利用数列的周期性即可求出所求项.【对点训练】已知数列{a n}中,a1=12,a n+1=1+1-,则a2025=()A.-2B.12C.-13D.3【解析】选B.因为a1=12,所以a2=1+11-1=3,a3=1+21-2=-2,a4=1+31-3=-13,a5=1+41-4=12,…,所以数列{a n}是周期数列且周期T=4,所以a2025=a1=12.。

第六章数列一章教案

第六章数列一章教案

第六章数列⼀章教案第六章数列6.1 数列的概念教学⽬标:1.了解数列的概念和通项公式的意义,会求常见数列的通项公式.2.培养学⽣观察、分析、归纳、判断问题的能⼒.3.对学⽣进⾏由特殊到⼀般和由⼀般到特殊的认识规律的教育.教学重点:数列的概念及求⼀些数列的通项公式.教学难点:已知数列前⼏项求数列的通项公式.教学⽅法:讲授法、启发式教学法等.学习⽅法:观察法、练习法.教具:投影仪.教学过程:⼀、导⼊新课(1)师语:同学们,“队列”⼀词我们⾮常熟悉,谁能描述⼀下“队列”的含义?(2)教师选⼀两名学⽣对队列进⾏描述(可能不准确,不完整).(3)教师对学⽣的描述加以规范,并参照数列的定义给出队列的描述;按⼀定的次序排列的⼀列⼈叫队列.显然,构成队列的元素是⼈.每⼀个⼈在队列中都有固定的次序号,只要我们指定次序号就能找到与之对应的唯⼀的⼈,反之亦然.那么,如果有⼀列数,像⼈排成队列⼀样,按照⼀定的次序排成⼀列,这就是我们今天要学习的“数列”.(4)教师板书课题(⿊板左上⾓).(5)师语:构成“队列”的元素是⼈,⽽构成“数列”的元素是数,为了研究“数列”的问题,必须给出“数列”及有关概念的科学的定义.⼆、讲授数列的定义(1)教师板书数列的定义按⼀定次序排列的⼀列数,叫做数列,例如:4,5,6,7,8,9,10; (1)1,,,,…; (2)的精确到1,0.1,0.01,0.001,…的不⾜近似值列成⼀列:1,1.4,1.41,1.414, (3)-1,1,-1,1,-1, (4)2,2,2,2, (5)等都是数列(2)师语:构成数列的元素是数,⼀个数列中包含很多数,每⼀个数在数列中所处的位置是不同的,(即,每⼀项都有⾃⼰的次序号).在数列中的每⼀个数都叫做这个数列的项.(教师将项的定义板书在数列定义下),显然,⼀个数列中有很多项.根据项在数列中所处的次序不同,我们依次将各项称为第1项,第2项,第3项,…….(提问学⽣所给出的数列的各项的值.)显然数列中的每⼀项都对应⼀个次序号,反之亦然.所有次序号按从⼩到⼤的顺序排列在⼀起就是正整数的⼀个⼦集1,2,3,4,…….数列中每⼀项所对应的次序号叫做该项的项数.(将项数的定义板书于项定义下.)不难发现对于⼀个已知数列来说“项数⼀经确定,项就被唯⼀确定了”.(提问⼏名同学,分别举出⼀个或⼏个具体的数列,并选择规律明显的板书于⿊板右侧.)三、讲授数列的通项公式(1)师语:前⾯的⼏名同学分别举出了⼏个数列的实例,虽然这些数列是不同的,但是它们的共同特征为按⼀定次序排列的⼀列数.数列的⼀般形式可以写成:,,,,…,…其中代表数列的第项,在这种表⽰⽅法中是项,是项数.为了更简洁地表⽰数列还可以将数列表⽰成{}的形式.显然,将数列表⽰成{}的形式很简单.对于不同的数列来说是不同的.例如,数列1,,,…,,…,记作.我们看这个数列的第项=,它是⽤项数来表⽰该数列相应项的式⼦,⼀般称其为通项公式.(2)板书通项公式的定义:⽤项数来表⽰该数列的相应项公式,叫做数列的通项公式.例如,前⾯数列(1)的通项公式是.(3)数列与函数的关系.由数列通项公式的定义可知,数列的通项是以正整数的⼦集为其定义域的函数,因此通项可以记作:.(4)看数列(2)的各项同通项公式=之间的关系:在=中,如果⽤5代替公式中的,就得到第5项如果依次⽤正整数1,2,3,…去代替公式中的就可求出数列中的各项.四、数列的分类项数有限的数列叫做有穷数列,项数⽆限的数列叫做⽆穷数列.例如,数列(1)是有穷数列;数列(2),(3),(4)是⽆穷数列.五、例题和练习例1 (⽤投影仪或⼩⿊板给出.) 根据通项公式,求出上⾯数列{}的前5项.(1);(2)=(-1)·.解:(1)在通项公式中依次取=1,2,3,4,5,得到数列的前5项为:;(2)在通项公式中依次取=1,2,3,4,5,得到数列前5项为:―1,―2,―3,4,―5.练习:⽤投影仪订正答案.教材第136页练习第1(1),2(3)题例2 写出数列的⼀个通项公式,使它的前4项分别是下⾯各列数:(1)1,3,5,7;(2);(3)―,,―,;解:(1)分析:序号 1 2 3 4项 1 3 5 7由上表可以看出,数列的前4项1,3,5,7,都是序号的2倍数减1,所以通项公式为.(2)数列前4项的分母都等于序号加1,分⼦都等于分母的平⽅减去1,所以通项公式是.(3)数列的前4项的绝对值都等于序号加上1的积的倒数,且奇数项为负,偶数项为正,所以通项公式是.练习:⽤投影仪给标准答案.教材第136页练习第3题.例3 已知数列{}的第1项是1,以下各项由公式.给出,写出这个数列的前5项.解:练习:教材第136页练习第2(2)题.六、课堂⼩结由学⽣讨论或教师总结,然后⽤投影仪或⼩⿊板给出.(1)本节课学习了数列的定义及其有关概念;(2)⽤函数的观点研究、分析数列的通项公式.(3)要求会解已知数列通项公式求指定项的习题,以及给出数列的前4项,写出其⼀个通项公式的简单问题,七、课外作业教材136页练习第1(2),2(4)题练习第2(1)题;教材146页习题5-1第1(2)、(4)、(5)题.常见错误分析本节中常见错误主要集中在两个地⽅:⼀个是求数列的通项公式;另⼀个是第136页练习B第2题的解答.前者的原因主要有两点,⼀是学⽣对通项公式的理解不深刻,在分析、判断中,脱离项数(序号)⽽仅仅注意项;⼆是没有掌握求通项公式的⼀些⽅法,当⾯对复杂的数列时束⼿⽆策.后者的主要原因在于对递推公式的理解上,他们会使⽤递推公式=+3,却不会使⽤=+3.在教学中,对例3应当强调中的与-1的作⽤仅仅是代表项的序号,该递推公式⽤⾃然语⾔来叙述就是:从第2项起,该数列的任意⼀项等于它的前⼀项的倒数与1的和.⽽=-⽤⾃然语⾔叙述就是:从第3项起,每⼀项都等于它的前⼆项与前⼀项的差.习题分析⼀、例题分析(⼀)⼤于3且⼩于11的⾃然数排成⼀列:4,5,6,7,8,9,10; (1)⾃然数1,2,3,4,5,…的倒数排列成⼀列数:1,,,,,…; (2)的精确到1,0.1,0.01,0.001,…的不⾜近似值排列成⼀列数:1,1.4,1.14,1.414,… ;(3)-1的⼀次幂,2次幂,3次幂,4次幂,…排成⼀列:-1,1,-1,1,-1,… ;(4)⽆穷多个2排成⼀列:2,2,2,2, (5)等都是数列.作⽤:1.数列(1)、(2)、(3)、(4)、(5)是⽤来说明数列定义的,把概念具体化,加深学⽣对概念的理解.2.这5个数列很有代表性.即包含了⽆穷数列(2)(3)(4)(5)⼜包含了有穷数列(1),既有可以写出通项公式的(1)(2)(4)(5),⼜有写不出通项公式的(3),⽽(5)则是常数数列.3.这5个数列的构成简单,便于巩固概念,不会因为理解例题本⾝⽽⼲扰它所起的作⽤.例1 根据通项公式,求出下列各数列的前5项:(1)=; (2)=(-1)·.解:解题思路是根据通项公式的定义,第项,就是=()中的=时的值.(1)在通项公式中依次取=1,2,3,4,5,得到数列{}的前5项为:,,,,;(2)在通项公式中依次取=1,2,3,4,5,得到数列{}的前5项为:-1,2,-3,4,-5.作⽤:1.巩固通项公式的概念.2.说明如何使⽤通项公式求数列的指定项.例2 写出数列的⼀个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2),,,;(3)-,,-,.解:((1)对此题的解法,重点放在分析的过程上,即如何找项与序号的关系,以及由各项的特点,如何找出各项的共同的构成规律.这是解题的关键.)(1)数列的前4项1,3,5,7都是序号的2倍减去1,所以通项公式是=2-1;(此题数列的前4项是⾃然数中的前4个奇数,从这个⾓度考虑也可得=2-1.但本题的解答是要突出解决已知数列前4项求通项公式的⼀般⽅法是找各项与序号之间的关系.)(2)数列的前4项,,,的分母都等于序号加上1,分⼦都等于分母的平⽅减去1,所以通项公式是;(当数列的项构成⽐较复杂时,解决写通项公式的问题,可以把项分成⼏个部分来考虑,分别找其与序号的关系,然后合成.)(3)数列的前4项-,,-,的绝对值都等于序号与序号加上1的积的倒数,且奇数项为负,偶数项为正,所以通项公式是. (此题也可这样来分析:它的项正负相间,且奇数项为负,偶数项为正,因此可⽤(-1)解决符号问题,⼜各项分⼦均为1,分母为序号乘以序号与1的和,所以通项公式可得.) 作⽤:1.巩固通项公式的概念.2.说明如何解决已知数列前⼏项,求出其⼀个通项公式的问题.3.给学⽣作出如何分析项的构成与序号的关系,找出各项构成的规律,培养观察分析、归纳、总结问题的能⼒.例3 已知数列{}的第1项是1,以的各项由公式给出,写出这个数列的前5项.解:=1,作⽤:1.此题是⽤递推公式给出的数列,⼀般称其为递推数列,也叫递归数列,⽤来说明由递推公式也是给出数列的⼀种⽅法.2.说明如何求递推公式给出的数列的前⼏项,让学⽣了解⼀点递推数列的知识.3.学⽣对第项、第+1项、第-1项之间的顺序关系容易弄错,要给学⽣指出它们之间的相邻关系.⼆、习题分析(⼆):第146页习题5-12.已知⽆穷数列1×2,2×3,3×4,4×5,…,(+1)…;(1)求这个数列的第10项、第31项及第48项;(2)420是这个数列中的第⼏项?此题中的(2)是课⽂例题所没有涉及以的题型.反映了数列通项公式的另⼀个作⽤.即在某些情况下,可以由已知项的来求未知的项数.解这种题的思路是设第项的值为该项的值,由通项公式,得到关于的⽅程,解这个⽅程,所得⽅程的正整数解就是该项的项数(序号).如果是判断某个数是不是该数列的项,也是设第项的值为该数,看所得⽅程有⽆正整数解,有则是项数(序号),否则就不是数列的项.6.2等差数列的概念(⼀)教学⽬标:1.理解等差数列的概念.2.初步掌握等差数列的通项公式,并会简单应⽤.理解等差中项的概念,并会求两个数的等差中项.3.在等差数列定义的引⼊和通项公式的推导中培养学⽣观察、分析、归纳、概括的思维能⼒和思想⽅法.4.渗透由特殊到⼀般和由⼀般到特殊的辩证唯物主义思想,进⾏辩证唯物主义思想教育.教学重点:等差数列的定义、通项公式.教学难点:通项公式的理解和应⽤.教学⽅法:讲授法、启发式教学法等.学习⽅法:观察法、练习法.教学过程:⼀、复习提问、新课导⼊求下列数列的通项公式:1. (1);(2)3,6,9,12,15,….师⽣共同解答(或学⽣先做,教师总结).注⼀般来说,两题的结果应是,=3.教师总结时,应着重对(2)进⾏分析,并指出如下⼏点:第(2)题的每⼀项都是3的倍数,因此可以成如下形式:3·1,3·2,3·3,3·4,3·5,….于是有=3·.对于第(2)题我们再从任意相邻两项之间差的关系⼊⼿观察分析⼀次.⼆、讲授新课请不同的同学来回答,可能有两种不完整的结论:1. 前项减后项的值相等,2.后项减前项的值相等.教师在评说中要对结论进⾏规范,得出结论:该数列从第2项起,每⼀项与它的前⼀项的差都等于3.再请同学观察⼀例:1,2,3,4,5…….然后让⼀些学⽣举出⼏个具体的例⼦.随后,教师给出关键的⼀例:,+,+2,+3,+4, (3)让学⽣回答它的第项是什么?得出=+(-1),同时,教师可以给出等差数列有关概念.如果⼀个数列从它的第2项起,每⼀项与它的前⼀项的差都等于同⼀常数,则这个数列叫做等差数列,这个常数叫做等差数列的公差,通常⽤字母表⽰.例如,数列:3,6,9,12,…的公差是3;1,2,3,4,…的公差是=1.数列(3),+,+2,+3,…的公差是,这个数列可以表⽰任何等差数列.我们刚才找出它的⼀个通项公式,即如果已知⾸项和公差,则等差数列{}的通项公式是=+(-1).例如,数列(2)3,6,9,12,…的通项公式为=3+(-1)·3=3+3(-1)=3;数列1,2,3,4,…的通项公式为=1+(-1).例1 求等差数列8,5,2,…,的通项公式与第20项.分析:等差数列通项公式只须和已知就可确定.有了通项公式,便可求该数列的任意⼀项.解:因为a=8,d=5-8=-3,所以这个等差数列的通项公式是1=8+(-1)×(-3),an即a=-3+11.n=-3×20+11=-49.所以a20例2 等数数列-5,-9,-13,…第⼏项是-401?分析:已知⾸项为-5,公差为-9-(-5)=-4,第项=-401,利⽤通项公式,可反求项数.解:因为=-5,=-9-(-5)=-4,=-401,代⼊通项公式,得-401=-5+(-1)×(-4)解得=100,即这个数列的第100项为-401.三、课堂练习教材第140页练习四、课堂⼩结1. 等差数列的定义:注意公差是“后项减前项”.2. 等差数列的通项公式:=+(-1)①是求指定项的关键;②通项公式,由和所决定.五、课外作业1.复习作业:复习课⽂6.2等差数列的概念.2.书⾯作业:第140页练习A第2(2),3(2)题练习第1,3题,教材第146页习题第4题.3.预习作业:预习课⽂6.2等差数列前项和.6.3等差数列的前项和教学⽬标:1.理解等差数列的前项和公式的推导过程.2.掌握等差数列的前项和公式,并会⽤公式解决简单问题.3.培养学⽣观察、分析、归纳、概括的思维能⼒.教学重点:等差数列的前项和的公式.教学难点:等差数列的前项和公式的推导.教学⽅法:启发式讲授法.学习⽅法:观察法、练习法.教具:投影仪.教学过程:⼀、复习提问1.什么叫等差数列?它的通项公式是什么?2.等差数列,+,+2,…,+(-1)=,能否表⽰成,-,-2,…,-(-1).3.2和10的等差中项是多少?⼆、引⼊新课上节课我们学习了等差数列的通项公式,知道了⼀个数列的通项公式,想求它的哪⼀项,都只需将该项的序号代⼊公式就可求出该项.并且知道=+(-1)中,四个量,,和,只要知道其中的3个就能求出第4个.但是如果要求数列1,2,3,4,5,…的前100项和这样的问题,通项公式解决不了,今天我们就来学习等差数列的前项和的问题.三、讲授新课1.已知等差数列,,,…,,…的前项的和记作,即=++…+.例如,正整数数列1,2,3,...,,...的前100项的和,记作=1+2+3+ (100)2.怎样求等差数列前项和?看例⼦.求=1+2+3+ (100)对于这个问题,著名数学家⾼斯10岁时曾很快求出它的结果.你知道这个故事吗?他是如何计算的呢?⾼斯的算法是:⾸项与末项的和:1+100=101,第2项与倒数第2项的和2+99=101,第3项与倒数第3项的和3+98=101,…第50项和倒数第50项的和:50+51=101,于是所求的和是.这个问题是求等差数列1,2,3,…,,…的前100项的和的问题.在上⾯的求解中,我们发现所求和可⽤⾸项、末项及项数来表⽰,且任意的第项与倒数第项之和都等于⾸项与末项的和,这就启发我们怎样去求⼀般等差数列的前项的和.设等差数列{}的前项和为,即=++…+.根据通项公式上式可写成=+(+)+…+[+(-1)].①由于=-,=-2,…,=-(-1),所以=+(+)+…+[+(-1)].②(提问学⽣怎样想到的.)把①、②两边分别相加,得由此得到等差数列{}的前项和公式.⽤语⾔叙述就是:等差数列的前项和等于⾸末项的和与项数乘积的⼀半.如果⾼斯的同学都知道这个公式,⾼斯的计算就不会最快了,你说是吗?⽤公式可得1+2+3+…+100==5 050.⽤这个公式需要已知等差数列的⾸项和末项(第项)以及项数.如果知道⾸项、公差和项数可以⽤下⾯的公式:把通项公式=+(-1)代⼊,得.这也是等差数列前项和的公式.显然当知道项,公差和项数时,⽤后⼀个公式最直接.3.例题.例7 如图10-1所⽰,⼀个堆放铅笔的V型架的最下⾯⼀层放⼀⽀铅笔,往上每⼀层都⽐它下⾯⼀层多放⼀⽀,最上⾯⼀层放120⽀,这个V形架上共放多少⽀铅笔?分析:由“往上每⼀层都⽐它下⾯⼀层多放1⽀”,得每⼀层所放铅笔的⽀数为等差数列,且公差=1,=1,=120,=120,是求的问题.解:由题意可知这120层铅笔数或等差数列,且公差=1,=1,=120.代⼊前项和公式得,即V形架上共放着7 260⽀铅笔.例8 在⼩于100的正整数集合中,有多少个数是7的倍数?并求它们的和.分析:100以内是7的倍数最⼩的⼀个是7,依次排出成等差数列,公差是7,最⼤的那⼀个可以通过作除法求得,即100÷7=7×14+2.所以最⼤那⼀个7的倍数是98,即=98.由此也可知=14.解:在⼩于100的正整数中,7是7的倍数中最⼩的⼀个.由于100÷7=7×14+2,可知最⼤的那⼀个是14×7=8.将这些数由⼩到⼤排列,成等差数列公差为7,=7,=98,个数为14.,即在⼩于100的正整数和集合中,有14个数是7的倍数,它们的和等于735.四、课堂练习练习:教材第页五、课堂⼩结1.等差数列前n项和的公式(1);(2).2.思考在什么情况下⽤两个公式中的哪⼀个为好?(这⼀点让学⽣总结分析.)六、课外作业1.复习作业:复习课⽂6.2.2等差数列的前项和.2.书⾯作业:第142练习第1(2)、(3)题,习题5-1第2,3(1),1题.3.预习作业:预习课⽂6.3等⽐数列中5.3.1等⽐数列的概念.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、1,4,7,10,(),16,…;
3、-1,2,-3,4,(),6,…。
4、数列an=n(n-1)的第____项是30.
5、数列an= 的第4项是____。
6、已知等差数列-1,4,9,14,…,此等差数列的公差d=____,第五项a5是____.
7、已知等差数列24,20,16,12,…,此等差数列的公差d=___,第五项a5是____.
8、数列10,20,30,40,50,…,的通项公式为____。
9、数列 , , , ,…,的通项公式为____。
10、数列的通项公式为an=(-1)n+1·2+n, 则a10=____。
11、已知等比数列1,-4,16,…,此等比数列的公比q=____,第四项a4是____.
12、已知等比数列27,9,3,…,此此等比数列的公比q=____,第四项a4是____.
13、在等比数列{an}中,a3=5,a6=15,则
a9=____.
14、在等比数列{an}中,a1=2,a4=16,则
a7=____.
二、选择题:
1、已知数列{an}的通项公式an=(-1)n· ,则该数列的第3项是( );
A.4B. C.- D.-3
2.前n个正整数的和等于( )
A.n2B.n(n+1) C. n(n+1) D.2n2
三、解答题:
1、在等差数列{an}中,a1=25,a5=33,求s6;
2、在等差数列{an}中,a3=-2,a7=10,求s7;
3、在等比数列{an}中,a3=4,a5=16,求s6;
作业
整理笔记
预习
复习第七章平面向量
教学反思
期末复习教案(1)
第六章数列学时:2
主要内容
数列的通项公式,等差数列的通项公式及前n项和项公式,等比数列的通项公式及前n项和项公式的运用
学情分析
单个的知识点学生易掌握,较综合的学生学习时较难。
教学目的
1、知识目标:巩固数列的通项公式,等差数列的通项公式及前n项和项公式,等比数列的通项公式及前n项和项公式,并能解决相关的问题。
2、能力目标:通过本课的学习提高学生分析问题、解决问题的能力。
3、德育目标:经历利用数学公式解题的过程,体验数学知识的应用意识。
重点
运用数列的相关知识解决实际问题。
难点
正确地选用数列的相关公式解决实际问题
实训(实验)项目
教学方法
讲练结合,启发式教学法,举例法。
教学准备
教学过程
一、填空:
1、2,4,6,8,(),12,…;
相关文档
最新文档