电介质和磁介质的比较

电介质和磁介质的比较
电介质和磁介质的比较

物本1102班201109110118 梁秀杰

一、电介质和磁介质的定义

电介质

定义:能够被电极化的介质。在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。在正弦条件下,各向同性的电介质满足下列关系式:式中是电导率,是电常数,是角频率,是实相对电常数。各向异性介质可能仅在某些方向是介电的。

电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:

①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;

②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移

极化;

③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电

场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。

磁介质

定义:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质引。磁介质在磁场作用下内部状态的变化叫做磁化。真空也是一种磁介质。磁场强度与磁通密度间的关系决定于所在之处磁介质的性质。这种性质来源于物质内分子、原子和电子的性状及其相互作用,有关理论属于固体物理学的重要内容。

在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。

实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即cm =C/T,C 称为居里常数,T为热力学温度,此关系称为居里定律。

二、混淆的各物理概念

电磁学中的一些概念之间存在着相似之处,正因为此容易忽略各物理量之间的本质差别。比如三个电矢量(电场强度E、电位移矢量D、电极化强度P)与三个磁矢量(磁感应强度B、磁场强度H、磁化强度M)之间会因为名称相似或公式相近而发生混淆。要深刻地认识这些物理概念的实质,并能够加以区分。电场强度E 与磁感应强度B 对应,电位移矢量D 与磁场强度H 对应,电极化强度P 与磁化强度M对应;通过对三个电矢量的通量的比较,弄清楚它们不同的源;通过对三个磁矢量环流的比较,弄清楚B、H、M三种矢量线所包围的电流分别是全电流、传导电流(稳恒情况下)、磁化电流。

三、引入磁介质的磁化现象

在电介质中,首先由电介质的微观电结构提出其分子模型为电偶极子,然后考虑在无外场情况下电介质中的不同类型分子(有极分子和无极分子)的电偶极矩表现,然后再考虑在有外场作用下的无极分子的位移极化和有极分子的取向极化。如图①

引入磁介质的磁化现象的过程,与电介质中引入极化现象的过程类似,都是首先确定分子模型,然后通过观察介质在无外场情况下的表现来将介质进行分类,最终在外场的作用下,根据介质分子的表现提出了极化和磁化的概念。然而对于电介质和磁介质两种不同的介质,其顺磁质的磁矩表现与有极分子电介质的电偶极矩的表现类似;抗磁质的磁矩表现与无极分子的电偶极矩的表现类似。

四、认识各物理规律

电介质中的物理规律与磁介质中的物理规律也具有对称性。注意到种对称性并加以较,如图所示②

①、②引用于2010年第09期科教文汇(下旬刊)

物本1102班梁秀杰

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论 (一)气体电介质的击穿过程 气体放电可以分非自持放电和自持放电两种。20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。 1、汤逊放电理论的适用范围: 汤逊理论的核心是: (1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离; (2)自持放电是气体间隙击穿的必要条件。 汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。在高气压、长气隙中的放电现象 无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面: (1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。 低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。但在大气压下气体击穿时出现的却是带有分支的明亮细通道。 (2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。完成击穿需要一定的时间。但实测到的在大气压下气体的放电时间要短得多。 (3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。 (4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。

由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。 2、流注理论 利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。 (1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。 因此流注出现后,将减弱其周围空间内的电场,加强了流注前方的电场,并且这一作用伴随着其向前发展而更为增强。因而电子崩形成流注后,当某个流注由于偶然原因发展更快时,它就将抑制其它流注的形成和发展,这种作用随着流注向; 前推进将越来越强,开始时流注很短可能有三个,随后减为两个,最后只剩下一个流注贯通整个间隙了,所以放电是具有通道形式的。 (2) 放电时间 根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小的多。 (3) 阴极材料的影响 根据流注理论,大气条件下气体放电的发展不是依靠芷离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。 在Pd值较小的情况下,起始电子不可能在穿越极间距离后完成足够多的碰撞电离次数,因而难 e≥108所要求的电子数,这样就不可能出现流注,放电的自持只能依靠阴极上的 过程。以聚积到ad 因此汤逊理论和流注理论适用于一定条件下的放电过程,不能用一种理论来取代另一种理论,它们互相补充,可以说明广阔的Pd范围内的放电现象。 ‘ 3、不均匀电场中气体的击穿 稍不均匀电场中放电达到自持条件时发生击穿现象,此时气隙中平均电场强度比均匀电场气隙的要小,因此在同样极间距离时稍不均匀场气隙的击穿电压比均匀气隙的要低,在极不均匀场气隙中自持放电条件即是电晕起始条件,由发生电晕至击穿的过程还必须增高电压才能完成。 极不均匀电场有如下特征: (1) 极不均匀电场的击穿电压比均匀电场低;

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

电介质的介电常数

电介质的介电常数 温度() 温度()

石英玻璃电学性能 石英玻璃具有很高的介电强度,很低的电导率折电损失,即使在高温时,其电导率与介电损失也较一般材料低,特别适合高温高机械应力条件下作高频和电压绝缘材料。 电导率在20o C时,透明石英玻璃的电导率为10-17-10-16西/米,不透明石英玻璃的电导率为10-14-3.2×10-13西/米,其值与石英玻璃的纯度有关。 介电常数在常温和0-106赫兹频率下,透明石英玻璃的介电常数为3.70;不透明石英玻璃为3.50,温度升高,介电常数略有增加,到450o C以后,介电常数显著增加。 介电损失石英玻璃的介电损失与温度的关系是随温度的升高,介电损失增加,在350o C 以上,介电损失随温度的升高而增加更为显著。 石英玻璃的介电损失 击穿强度在200o C时,透明石英玻璃的击穿电压约为普通玻璃的三倍, 500o C时为普通玻璃的十倍。 石英光学玻璃 我厂生产的光学石英光学玻璃窗口片,能耐高温和高压,主要应用于:特种光源,光学仪器,光电子,军工,冶金,半导体,光通讯等领域。它能实验温度:1200度,软化温度为:1730度,具体参数如下。 1.JGS1(远紫外光学石英光学玻璃) 它是用高纯度氢氧熔化的光学石英光学玻璃。具有优良的透紫外性能,特别是在短波紫外区,其透

过性能远远地胜过所有其他玻璃,在185mμ处的透过率可达90%,是185—2500mμ波段范围内的优良光学材料。 2.JGS2(紫外光学石英光学玻璃) 它是用氢氧熔化的光学石英光学玻璃。它是透过220—2500mμ波段范围内的良好材料。 3.JGS3:(红外石英光学玻璃) 它是具有较高的透红外性能,透过率高达85%以上,其应用波段范围260—3500mμ的光学材料。石英光学玻璃物理性能

导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 0 0εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

电介质和磁介质的比较

物本1102班201109110118 梁秀杰

一、电介质和磁介质的定义 电介质 定义:能够被电极化的介质。在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。在正弦条件下,各向同性的电介质满足下列关系式:式中是电导率,是电常数,是角频率,是实相对电常数。各向异性介质可能仅在某些方向是介电的。 电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化: ①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化; ②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移 极化; ③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电 场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。 磁介质 定义:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质引。磁介质在磁场作用下内部状态的变化叫做磁化。真空也是一种磁介质。磁场强度与磁通密度间的关系决定于所在之处磁介质的性质。这种性质来源于物质内分子、原子和电子的性状及其相互作用,有关理论属于固体物理学的重要内容。 在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。 实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即cm =C/T,C 称为居里常数,T为热力学温度,此关系称为居里定律。

常见介质介电常数

薅H2O (水) 78.5 螅HCOOH (甲酸) 58.5 袃HCON(CH3)2 (N,N-二甲基甲酰胺)36.7 蕿CH3OH (甲醇) 32.7 芇C2H5OH (乙醇) 24.5 薄CH3COCH3 (丙酮) 20.7 羃n-C6H13OH (正己醇)13.3 羀CH3COOH (乙酸或醋酸) 6.15 螅 莃温度对介电常数的影响 肃C6H6 (苯) 2.28 肇CCl4 (四氯化碳) 2.24 蒇n-C6H14 (正己烷)1.88 肂电介质的相对介电常数

【正文】:@@1.判别乳状液的类型和稳定性常规测定乳状液类型的方法主要有染料法,冲淡法,电导法,荧光法和润湿滤纸法,这些方法均简单易行其实利用介电常数测试法也可以判别乳状液的类型,其道理同电导法类似电导法所依据的原理是水和油电导率的差异,当乳状液为WO型时,由于外相是油,乳状液的电导率很小,当乳状液为O W型时,由于外相是水,乳状液的电导率很大水和油不仅在电导率方面有差异,在介电常数方面也有很大区别一般纯净原油的相对介电常数接近2,纯净水的相对介电常数接近80,所以原油乳状液的相对介电常数基本介于2和80之间当原油乳状液的外相为油时,乳状液的介电性质同油的性质类似,所以测得的介电常数偏小当乳状液的外相为水时,乳状液的介电性质同水的性质类似,所以介电常数偏大,因此,根据被测乳状液介电常数的大小,可判断乳状液的类型曾测试两种原油乳状液的相对介电常数分别是6.8和75.4,初步判断前一种是WO型,后一种是OW型,当用染料法和润湿滤纸法进行验证后,确认判断结果是正确的,这说明用介电常数测试法判别乳状液的类型是可行的 For personal use only in study and research; not for commercial use

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 0200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

介电常数

脆化温度brittle temperature 塑料低温力学行为的一种量度。以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度。 屈服点(yield point) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2, (MPa=10^6(10的6次方)Pa,Pa: 帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规

定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 什么是介电常数,介电损耗,介电强度?[科学电力 ] 收藏转发至天涯微博 悬赏点数 10 6个回答 屋里有灯不黑啊2009-05-12 10:15:37 什么是介电常数,介电损耗,介电强度? 回答 换一张 码:

登录并发表取消 回答 heyerijue2009-05-12 10:15:55 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permeablity),又称诱电率. 介电强度(dielectric strength)是指单位厚度的绝缘材料在击穿之前能够承受的最高电压,即电场强度最大值,单位是 kV/mm。包括塑料 010********-05-12 10:16:02

介电常数, 用于衡量绝缘体储存电能的性能. 它是两块金属板之间以绝缘材料为介质时的电

静电场中的导体和电介质

第六章 静电场中的导体和电介质 将一个带电物体移近一个导体壳,带电体单独在导体空腔内激发的电场是否等于零静电屏蔽的效应是如何体现的 答:带电体单独在导体空腔内激发的电场不为零。静电屏弊效应体现在带电体的存在使导体腔上的电荷重新分布(自由电子重新分布),从而使得导体空腔内的总电场为零。 将一个带正电的导体 A 移近一个接地的导体 B 时,导体 B 是否维持零电势其上面是否带电 答:导体B 维持零电势,其上带负电。 在同一条电场线上的任意两点 a 、b ,其场强大小分别为a E 及b E ,电势分别为a V 和b V ,则以下结论正确的是: (1 ) b a E E =; (2 ) b a E E ≠; (3) b a V V = ; (4) b a V V ≠ 。 答:同一条电场线上的两点,电场强度可以相同,也可以不同,但沿着电场线电势降低,所以选(4)。 电容器串、并联后的等值电容如何决定在什么情况下宜用串联什么情况下宜用并联 解:串: ∑=i i c c 1 1 并:∑=i i c c 当手头的电容器的电容值比所需要的电容值小,宜用并联。当手头的电容器的耐压值比所需要的大,宜采用电容器串联。 两根长度相同的铜导线和铝导线,它们两端加有相等的电压.问铜线中的场强与铝线中的场强之比是多少铜线中的电流密度与铝线中的电流密度之比是多少(已知 m 1082m,104487?Ω?=ρ?Ω?=ρ--..铝铜) 答:电压V 相同和导线长度l 相同,则电场强度E 相同; 由 ρ σE E j = = 得:1107 10 4410827 8=??=ρρ= ? ρ=ρ--..铜 铝铝 铜铝铝铜铜j j j j

电介质和磁介质的比较

一、电介质和磁介质的定义 电介质 定义:能够被电极化的介质。在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。在正弦条件下,各向同性的电介质满足下列关系式:式中是电导率,是电常数,是角频率,是实相对电常数。各向异性介质可能仅在某些方向是介电的。 电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化: ①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化; ②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移 极化; ③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电 场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。 磁介质 定义:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质引。磁介质在磁场作用下内部状态的变化叫做磁化。真空也是一种磁介质。磁场强度与磁通密度间的关系决定于所在之处磁介质的性质。这种性质来源于物质内分子、原子和电子的性状及其相互作用,有关理论属于固体物理学的重要内容。 在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。 实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即cm =C/T,C 称为居里常数,T为热力学温度,此关系称为居里定律。

第九章静电场中的导体与电介质

第九章 静电场中的导体与电介质 1 第九章 静电场中的导体与电介质 §9-1 导体和电介质 【基本内容】 一、导体周围的电场 导体的电结构:导体内部存在可以自由移动的电荷,即自由电子。 静电平衡状态:导体表面和内部没有电荷定向移动的状态。 1、导体的静电平衡条件 (1)导体内部场强处处为零0=内E ; (2)导体表面的场强和导体表面垂直。 2、静电平衡推论 (1) 静电平衡时,导体内部(宏观体积元内)无净电荷存在; (2) 静电平衡时,导体是一个等势体,其表面是一个等势面。 3、静电平衡时导体表面外侧附近的场强 εσ= E 4、静电平衡时导体上的电荷分布 (1) 实心导体:电荷只分布在导体表面。 (2)空腔导体(腔内无电荷):内表面不带电,电荷只分布在导体外表面。 (3)空腔导体(腔内电荷代数和为q ):内表面带电q -,导体外表面的电荷由电荷的守恒定律决定。 5、静电屏蔽 导体上电荷分布的结果,使空腔内部电荷的运动不影响导体外部的电场;导体外部电荷的运动,不影响导体空腔内部的电场。 二、电介质与电场 1、电介质的极化 (1)电介质的极化:在外电场作用下,电介质表面和内部出现束缚电荷的现象。 (2)极化的微观机制 电介质的分类:(1)无极分子电介质——分子的正、负电荷中心重合的电价质;(2)有极分子电介质——分子的正、负电荷中心不重合的电介质。 极化的微观机制:在外电场作用下,(1)无极分子正、负电荷中心发生相对位移,形成电偶极子,产生位移极化;(2)有极分子因有电偶矩沿外电场取向,形成取向极化。 2、电介质中的电场 (1)电位移矢量 E D ε= 其中ε——介电质的介电常数,0εεεr =,r ε——介电质的相对介电常数。

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

静电场中的导体与电介质作业

静电场中的导体与电介质作业 1.题号:40743001 分值:10分 如图下所示,一半径为1R 的无限长导体,单位长度带电量为λ,外有一半径为2R , 单位长度带电量为λ-的圆筒形导体,两导体同轴,内外圆柱面间充满相对电容率为 r ε的均匀电介质。求:(1)该导体系统内外的电场分布;(2)两导体轴心处的电势(设 外圆筒面外任意一点P 的电势为零,P 点与中心轴的距离为P R );(3)电介质中的极化强度;(4)画出r E -曲线。 2.题号:40743002 分值:10分 半径为1R 的金属球带电荷量Q +,外罩一半径为2R 的同心金属球壳,球壳带电量 Q +,厚度不计,内外两球面间充满相对电容率为r ε的均匀电介 质。求:(1)该球面系统内外的电场分布;(2)球心处的电势;(3)电介质中的极化强度;(4)画出r E -曲线。 3.题号:40743003 分值:10分 一个半径为R 电容率为ε的均匀电介质球的中心放有点电荷q ,求(1)电介质球内、外电位移的分布;(2)电介质球内、外电场强度和电势的分布;(3)球体表面极化电荷的密度。 4.题号:40743004 分值:10分 如图所示,带电量为Q 、半径为0R 的金属球置于介电常量为ε,半径为R 的均匀介质球内。求(1)介质层内、

外的D 、E 的分布;(2)介质层内、外表面上的束缚电荷面密度。 5.题号:40843012 分值:10分 如下图所示,真空中的球形电容器的内、外球面的半径分别为1R 和2R ,所带电荷量为Q ±。求:(1)该系统各区间的场强分布;(2)该系统各区间的电势分布;(3)该系统的电容。 6.题号:40842020 分值:10分 (1).一电荷面密度为σ “无限大”均匀带电平面,若以该平面处为电势零点,试求带电平面 x >0 空间的电势分布。 (2).如图所示,真空中的球形电容器的内、外半径分别为1R 和2R ,所带电荷量为Q ±。求该电容器的电容。 静电场中的导体与电介质作业解答 1.题号:40743001 分值:10分 解答及评分标准: (1)由高斯定理得出电场分布:0 2032 022 1 11 =>= <<=

13静电场中的导体和电介质习题详解(精)

第1页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和 r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[] (A)E= Q4πε0r 2 , U=Q4πε0r Q4πε0r ; (B)E=0, U=(D)E=0, U= Q4πε0r1 Q4πε0r2 ;(C)E=0, U=; 。 答案:D 解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得

U= Q4πε0r + -Q4πε0r + Q4πε0r2 = Q4πε0r2 2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[] (A)0;答案:C 解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=- 3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C 解:由高斯定理得电位移 D= 4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半 Q4πr 2 (B) q2 ;(C)- q2 ;(D)-q。 q4πε0dRd +q2 q'4πε0R =0(球面上所有感应电荷到 q=- 。

Q4πε0εrr 2 ,D= Q4πε0r 2 ;(B)E= Q4πεrr 2 ,D= Q4πr 2 ; Q4πε0r 2 ,D= Q4πr 2 ;(D)E= Q4πε0r 2 ,D= Q4πε0r 2 。 ,而 E= D ε0 = Q4πε0r 2 。 第2页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个 质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]

导体和电介质

1一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(40R d q -πε. 2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,如果2d 1=d 2 两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2 (A) 1. (B) 2. (C) 3. (D) 4. 3 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点, 则在球壳内半径为r 的P 点处的场强和电势为: (A) 2 04r Q E επ=,r Q U 04επ=. (B) 0=E ,204r Q U επ=. (C) 0=E ,r Q U 04επ=. (D) 0=E , 104r Q U επ=. 4当一个带电导体达到静电平衡时: (A) 导体表面曲率较小处电荷密度较小. (B) 导体表面曲率较小处电势较高. (C) 导体内部任一点电势都为零. (D) 导体内任一点与其表面上任一点的电势差等于零. [ ] 5 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若内球壳带电荷Q ,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为 (A) U 1. (B) )(2 1 21U U +. (C) U 1 + U 2. (D) U 2. 6当平行板电容器充电后,去掉电源,在两极板间充满电介质,其中正确的结果是 (A) 极板上自由电荷减少 (B) 两极板间的电势差变大 (C) 两极板间电场强度变小 (D) 两极板间的电场强度不变 7一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,其正确的结论是: (A) 极板左半边电荷密度大. +Q

相关文档
最新文档