对三种频域变换的理解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对三种频域变换的理解
这三种变换都非常重要!任何理工学科都不可避免需要这些变换。
这三种变换的本质是将信号从时域转换为频域。傅里叶变换的出现颠覆了人类对世界的认知:世界不仅可以看作虽时间的变化,也可以看做各种频率不同加权的组合。举个不太恰当的例子:一首钢琴曲的声音波形是时域表达,而他的钢琴谱则是频域表达。
三种变换由于可以将微分方程或者差分方程转化为多项式方程,所以大大降低了微分(差分)方程的计算成本。
另外,在通信领域,没有信号的频域分析,将很难在时域理解一个信号。因为通信领域中经常需要用频率划分信道,所以一个信号的频域特性要比时域特性重要的多。
具体三种变换的分析(应该是四种)是这样的:
傅里叶分析包含傅里叶级数与傅里叶变换。傅里叶级数用于对周期信号转换,傅里叶变换用于对非周期信号转换。
但是对于不收敛信号,傅里叶变换无能为力,只能借助拉普拉斯变换。(主要用于计算微分方程)
而z变换则可以算作离散的拉普拉斯变换。(主要用于计算差分方程)
为什么要变换?
一切的变换的意义,都是为了能在数学上面表达一个波的形状到底是什么。一开始我们可以用一个冲激函数以时间的顺序排成一排,再每个乘以各自的系数(线性组合),就能得到纸面上一个波的形状。后来,伟大的傅里叶同学发现,不仅使冲激函数,用复指数信号叠加之后乘上各自的系数,也可以表达几乎所有的波的波形。而且!用复指数信号表达的输出计算方式比卷积有规律很多,而这个规律可以从频域上面看出来。这个发现,使得信号的变换进步了一大步。
周期信号可以用傅里叶级数表示,非周期信号用傅里叶变换表示。这个再展开讲就偏题了。奉上以前的傅里叶公式笔记一张(*^__^*)(来自知乎用户牛咩咩)
拉普拉斯变换:傅里叶变换对信号的要求比较高,适应于本身衰减得快的信号。为了扩大傅里叶变换的应用范围,使其能用于更多不稳定系统的分析,人们在计算过程中人为的添上一个负指数函数作为系数,让一些不衰减的信号更快衰减,方便换算。这就是拉布拉斯变换的由来。拉普拉斯变换用于连续信号。
拉布拉斯变换:
其中
把带回公式可得
跟傅里叶变换的公式对比起来看,是不是只差了个系数?
因为变换要收敛才有意义,所以收敛域讨论的是让积分之后有意义。这个稍微涉及了一点微积分的知识。最后的答案在直角坐标系看,分界线平行于Y轴。
Z变换:和拉普拉斯变换的目的类似,把离散时间傅里叶变换公式的替换成为z,再乘以一个加权系数表示z的模(通常等于1),就进化成了z变换。z变换用于离散信号。
z变换:
其中
带进去就可以还原了。
同样,Z变换的收敛域是要让算出的值有意义,通过等比公式展开之后可以看到,需要z小于或者大于某个值才可以,用极坐标来看,就是个圆域。
从复平面来说,傅里叶分析直注意虚数部分,拉普拉斯变换则关注全部复平面,而z 变换则是将拉普拉斯的复平面投影到z平面,将虚轴变为一个圆环。(不恰当的比方就是那种一幅画只能通过在固定位置放一个金属棒,从金属棒反光才能看清这幅画的人物那种感觉。)
怎么理解?
我假定现在大家对这些变换已有一些了解,至少知道这些变换怎么算。好了,接下来我将从几个不同的角度来阐述这些变换。
一个信号,通常用一个时间的函数来表示,这样简单直观,因为它的函数图像可
以看做信号的波形,比如声波和水波等等。很多时候,对信号的处理是很特殊的,比如说线性电路会将输入的正弦信号处理后,输出仍然是正弦信号,只是幅度和相位有一个变化(实际上从数学上看是因为指数函数是线性微分方程的特征函数,就好像矩阵的特征向量一样,而这个复幅度对应特征值)。
因此,如果我们将信号全部分解成正弦信号的线性组合(傅里叶变换)
那么就可以用一个传递函数
来描述这个线性系统。倘若这个信号很特殊,例如,傅里叶变换在数学上不存在,这个时候就引入拉普拉斯变换来解决这个问题
这样一个线性系统都可以用一个传递函数
来表示。所以,从这里可以看到将信号分解为正弦函数(傅里叶变换)或者复指数函数(拉普拉斯变换)对分析线性系统至关重要。
如果只关心信号本身,不关心系统,这几个变换的关系可以通过这样一个过程联系起来。
首先需要明确一个观点,不管使用时域还是频域(或s域)来表示一个信号,他们表示的都是同一个信号!关于这一点,你可以从线性空间的角度理解。同一个信号,如果采用不同的坐标框架(或者说基向量),那么他们的坐标就不同。例如,采用
作为坐标,那么信号就可以表示为,而采用则表示为傅里叶变换的形式。线性代数里面讲过,两个不同坐标框架下,同一个向量的坐
标可以通过一个线性变换联系起来,如果是有限维的空间,则可以表示为一个矩阵,在这里是无限维,这个线性变换就是傅里叶变换。
如果我们将拉普拉斯的
域画出来,他是一个复平面,拉普拉斯变换是这个复平面上的一个复变函数。而这个函数沿虚轴的值就是傅里叶变换。到现在,对信号的形式还没有多少假定,如果信号是带宽受限信号,也就是说只在一个小范围内(如)不为0。
根据采样定理,可以对时域采样,只要采样的频率足够高,就可以无失真地将信号还原出来。那么采样对信号的影响是什么呢?从s平面来看,时域的采样将沿虚轴方向作周期延拓!这个性质从数学上可以很容易验证。
z变换可以看做拉普拉斯变换的一种特殊形式,即做了一个代换,T是采样的周期。这个变换将信号从s域变换到z域。请记住前面说的那个观点,s域和z域表示的是同一个信号,即采样完了之后的信号。只有采样才会改变信号本身!从复平面上来看,这个变换将与轴平行的条带变换到z平面的一个单叶分支
你会看到前面采样导致的周期延拓产生的条带重叠在一起了,因为具有周期性,所以z域
不同的分支的函数值是相同的。换句话说,如果没有采样,直接进行z变换,将会得到一个多值的复变函数!所以一般只对采样完了后的信号做z变换!
这里讲了时域的采样,时域采样后,信号只有间的频谱,即最高频率只有采样频率一半,但是要记录这样一个信号,仍然需要无限大的存储空间,可以进一步