线性规划问题的算法综述

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,很多问题都可以归结为线性规划问题,例如资源分配、生产计划、运输调度等。

下面我们将通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法1、图解法对于只有两个决策变量的线性规划问题,可以使用图解法来求解。

其步骤如下:(1)画出约束条件所对应的可行域。

(2)画出目标函数的等值线。

(3)根据目标函数的优化方向,平移等值线,找出最优解所在的顶点。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10\\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件所对应的可行域:对于$x + 2y \leq 8$,当$x = 0$时,$y = 4$;当$y = 0$时,$x =8$,连接这两点得到直线$x +2y =8$,并取直线下方的区域。

运筹学中的线性规划算法

运筹学中的线性规划算法

运筹学中的线性规划算法运筹学是运筹学家在解决一些管理决策问题(通常是最优化问题)时开发出来的一类数学方法。

运筹学与现代计算机科学和算法理论密切相关。

这里我们主要讲述一种在运筹学中被广泛使用的算法——线性规划算法。

一、线性规划的定义及特点线性规划是运筹学中应用最广泛的一类优化问题,它是在一组线性等式和不等式的约束条件下,最小化或最大化某一线性函数的优化问题。

形式化地,一个线性规划(LP)问题可以表示为$$\begin{aligned}& \text{maximize } c^Tx \\& \text{subject to } Ax \le b \\& \ \ \ \ \ \ \ \ \ \ \ \ x \ge 0\end{aligned}$$其中 $c \in \mathbb{R}^n$ 和 $b \in \mathbb{R}^m$,矩阵 $A \in \mathbb{R}^{m\times n}$。

注意到这里的不等式约束均为“小于等于”形式,并且 $x$ 的每一个分量都不可以为负数。

线性规划具有如下重要特点:1. 线性规划问题必须有线性约束,即线性规划问题只考虑目标函数和约束条件都是线性函数的情况。

2. 一般情况下,线性规划问题的最优解必须满足最优性约束,即必须取到目标函数的最大(小)值的点必须满足所有的约束条件。

3. 线性规划问题的最优解只能出现在可行点集的顶点处,这样的点集被称为线性规划问题的基本可行解集。

二、线性规划求解的基本思路及方法线性规划求解的基本思路是:先将可行域化为一个凸多面体,找到其顶点(基本可行解集),然后逐一检查这些顶点,直到找到最优解。

线性规划算法有多种,常见的有单纯形法、内点法、分支定界法等。

其中最广泛应用的是单纯形法。

1. 单纯形法单纯形法是由美国运筹学家乔治·丹尼尔(George Dantzig)在20世纪40年代发明的。

其主要思想是:从一个初始可行点开始,对于不满足约束条件的变量(非基变量),通过一些变换(如高斯消元)寻找到下一个可行解(即将一个非基变量变成基变量),如果找到更优解,则继续上述寻找过程,直至无法找到更优解。

线性规划问题的解法

线性规划问题的解法

线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。

线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。

本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。

一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。

它通过在可行解空间中不断移动,直到找到目标函数的最优解。

单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。

2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。

3. 进行迭代:通过不断移动至更优解来逼近最优解。

首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。

通过迭代进行入基和出基操作,直到无法找到更优解为止。

4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。

单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。

但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。

二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。

与单纯形法相比,内点法具有更好的数值稳定性和运算效率。

内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。

首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。

每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。

内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。

此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。

三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。

线性规划问题的求解算法和应用

线性规划问题的求解算法和应用

线性规划问题的求解算法和应用线性规划是一种常见的数学优化问题,求解线性规划问题具有广泛的应用。

本文将对线性规划相关算法进行介绍,并讨论线性规划在实际问题中的应用。

一、线性规划基本概念线性规划是指在一定约束条件下,优化一个线性目标函数的问题。

线性规划问题的一般形式如下:\begin{equation}\begin{aligned} \max/min & \quadc_{1}x_{1}+c_{2}x_{2}+...c_{n}x_{n} \\ \text{s.t.} & \quada_{11}x_{1}+a_{12}x_{2}+...a_{1n}x_{n}\leq b_{1} \\ & \quada_{21}x_{1}+a_{22}x_{2}+...a_{2n}x_{n}\leq b_{2} \\ & \quad ... \\ & \quad a_{m1}x_{1}+a_{m2}x_{2}+...a_{mn}x_{n}\leq b_{m} \\ & \quad x_{i}\geq 0(i=1,2,...,n) \end{aligned}\end{equation}其中,$c_{i}$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_{i}$是约束条件的右端常数,$x_{i}$是决策变量。

线性规划的基本概念包括可行解、最优解、最优值等。

可行解是指满足约束条件的解。

最优解是指目标函数取得最优值时的决策变量取值。

最优值是指目标函数在可行解集合中取得的最大或最小值。

二、线性规划的求解方法线性规划的求解方法主要分为两种:单纯形法和内点法。

下面对这两种方法进行简要介绍。

1. 单纯形法单纯形法是目前解决线性规划问题的最主要方法。

其基本思想是通过不断地在可行解集合内移动,最终找到最优解。

它的具体步骤是:选择一个基本可行解作为起始点,然后通过寻找相邻可行解的方式来不断移动,直至找到最优解。

线性规划的求解算法

线性规划的求解算法

线性规划的求解算法 线性规划(linear programming )是运筹学中的一个重要分支,在现代工业、农业、商业、交通运输、国防军事及经济管理等诸多领域都有着广泛重要的应用。

在数学系的竞赛数学建模中,也多次应用线性规划来建模从而解决实际问题。

在这里介绍单纯性法和对偶单纯形法两种求解线性规划的方法。

一、单纯形法算法主体思想标准线性规划简记如下:LP-max LP-mins.t {0Ax b x =≥ s.t {0Ax b x =≥ 这里只以LP-min 为例。

1、算法思想单纯形法是在已知一个可行基的前提下采用的解决线性规划的算法。

步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。

用R (i )记录单位矩阵I 中元素1的位置。

(2)求{}0min |0,1j j a j n t >≤≤@若t 不存在,则得到最优解;(i),1R i n x a += (i=1,2,...m ).其他j x =0,停。

否则,转到(3)。

(3)求,1min{|0,1}i n it it a a i m a λ+>≤≤@。

若λ不存在,则LP-min 无下届,所以无最优解,停;否则,求,1min (i)|,0,1(s)i n it it a R a i m R a λ+⎧⎫=>≤≤⎨⎬⎩⎭@,转到(4)。

(4)sjsj sta a a ⇐,(j=1,2....n+1) ij ij sj it a a a a ⇐-,(i=0,1,2...m;i ≠s;j=1,2,....,n+1), (s)t R ⇐,转到(2).二、对偶单纯形法对偶单纯形法是在已知一个正则基的条件下的求解线性规划的方法。

步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。

线性规划问题的算法综述

线性规划问题的算法综述

线性规划问题的算法综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。

现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。

线性规划就是在满足线性约束下,求线性函数的极值。

毋庸置疑,数学规划领域的重大突破总是始于线形规划。

提到线性规划算法,人们最先想到的是单纯形法和内点法。

单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。

把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。

显然不属于前者,即两者都有需要改进之处。

几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。

1数学模型线性规划问题通常表示成如下两种形式:标准型、规范型。

设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数;线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。

在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。

线性规划的解法

线性规划的解法

线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。

在现实生活中,许多问题都可以用线性规划求解。

如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。

线性规划的解法有多种,下面我们就来对其进行详细的介绍。

1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。

单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。

单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。

2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。

这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。

对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。

3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。

内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。

内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。

4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。

这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。

总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。

希望本文能够对您有所帮助。

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将介绍线性规划问题的解法和最优解分析。

一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。

线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。

二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。

1. 图形法图形法适用于二维或三维的线性规划问题。

它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。

首先,将约束条件转化为不等式,并将其绘制在坐标系上。

然后,确定目标函数的等高线或等高面,并绘制在坐标系上。

最后,通过观察等高线或等高面与约束条件的交点,找到最优解。

图形法简单直观,但只适用于低维的线性规划问题。

2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。

它通过在可行域内不断移动,直到找到最优解。

单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。

它通过选择一个基本变量和非基本变量,来构造一个新的可行解。

然后,通过计算目标函数的值来判断是否找到了最优解。

如果没有找到最优解,则继续迭代,直到找到最优解为止。

单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。

线性规划问题的四种求解方法

线性规划问题的四种求解方法

2x +3y ≥160 ∴ 3x -y ≥130
x ≥0 y ≥0 成本 c =400 +7x +5y
令 7x +5y =λ(2 x +3y )+μ(3x -y)(λ、
μ是待定系数)
作出以上不等式组所表示的平面区域 , 即 可行域 .可行域为一五边形 , 五个顶点对应的 z 值如下表
(x , y) (0, 0)(4, 0)(4, 2)(2, 3)(0 , 3) z = 200x +300y 0 800 1400 1300 900
乙地
5
9
6
10x +20y ≤130
则 4000 x +1000y ≤24000
x ≥0 y ≥0 x +2y ≤13
即 4x +y ≤24 x ≥0 ,y ≥0 总年利润 z =12x +18y
作出以上不等式组所表示的平面区域 , 即
可行域 .由 z =12x +18y 得y =-23 x +1z8 , 则
美元 .但政府核准的外汇是 130 万美元 , 并要求 该种产品分别为 200 吨 、450 吨和 400 吨 .每吨
总维护费不得超过人民币 24000 元 .问每种机 运费如下表(单位 :元):
器应购买多少台时 , 才能使工厂获得的年利润 最大 ?
解 :设购买第一种机 器
A
B
C
甲地
6
3
5
x 台 , 购买第二种机器 y上点 C 成本如下表 :
时 , 等值线的值最小 .z 有最小值 5650 元 , 此时 x =0 、y =300 , 故甲地产品运往 B 地 ;乙地产 品运往 A 、B 、C 三地分别为 200 吨 、150 吨 、400

线性规划模型的求解方法

线性规划模型的求解方法

线性规划模型的求解方法线性规划是数学中的一个分支,是用来解决优化问题的方法。

一般来说,它适用于那些具有一定限制条件,但是希望达到最优解的问题。

在实际应用中,无论是在工业、商业还是管理等领域,都可以使用线性规划模型来进行求解。

本文将详细介绍线性规划模型的求解方法,包括单纯形算法、内点法和分支定界法。

1、单纯形算法单纯形算法是线性规划求解中最常用的方法,它是基于不等式约束条件的优化算法,主要是通过这些不等式约束来定义一些可行域并寻找最优解。

单纯形算法的基本思路是将约束条件重写为等式,然后再将变量从这些等式中解出来,最后根据这些解来判断是否找到最优解。

举例来说,假设有如下线性规划的问题:$$\begin{aligned}\text { maximize } \quad &60 x_{1}+40 x_{2} \\\text { subject to } \quad &x_{1}+x_{2} \leq 100 \\&2 x_{1}+x_{2} \leq 150 \\&x_{1}+2 x_{2} \leq 120 \\&x_{1}, x_{2} \geq 0\end{aligned}$$我们可以将这些约束条件重写为等式:$$\begin{aligned}x_{3} &=100-x_{1}-x_{2} \\x_{4} &=150-2 x_{1}-x_{2} \\x_{5} &=120-x_{1}-2 x_{2}\end{aligned}$$然后我们可以利用这些等式来解出每个变量的取值,从而得到最优解。

通常情况下,单纯形算法利用较小的限制空间集合来缩小可行的解空间集合,并通过一定的规则,比如说乘子法则来找到最优的解。

2、内点法内点法则是比单纯形算法更快的一个线性规划求解方法,它通过不停地迭代,将可行域中的点从内部向最优解方向移动,从而找到最优解。

在实际应用中,内点法通常能够达到非常高的精确度,而且与单纯型算法相比,它在数值计算方面更加稳定。

线性规划问题的解

线性规划问题的解

线性规划问题的解线性规划(Linear Programming, LP)是数学规划的一种重要方法,其应用领域十分广泛。

线性规划的目标是在给定的线性约束条件下,寻找使目标函数最大或最小的变量取值。

本文将介绍线性规划问题的解以及如何求解线性规划问题。

一、线性规划问题的解的基本概念1. 可行解:满足线性约束条件的变量取值被称为可行解。

可行解集合构成了解空间。

2. 最优解:在可行解集合中,使目标函数取得最大或最小值的可行解被称为最优解。

二、线性规划问题的求解方法线性规划问题的求解方法通常有两种:图形法和单纯形法。

1. 图形法:适用于二维或三维线性规划问题,即变量的个数较少,可以通过绘制图形来确定最优解。

图形法的基本思路是绘制等式约束和不等式约束的直线或平面,并通过观察它们的交点或交线来确定可行解和最优解。

2. 单纯形法:适用于多维线性规划问题,即变量的个数较多。

单纯形法通过迭代计算,逐步逼近最优解。

其基本思路是从一个初始可行解开始,通过调整变量的取值来提高目标函数的值,直到找到最优解或确定问题无解。

三、线性规划问题的示例下面以一个简单的线性规划问题为例。

假设有两种产品A和B,它们的生产需要使用以下资源:钢材、机器时数和人工时数。

每单位产品A需要2吨钢材、4机器时数和6人工时数;每单位产品B需要3吨钢材、5机器时数和4人工时数。

公司目前有100吨钢材、120机器时数和150人工时数可用。

已知产品A的利润为1000元/单位,产品B的利润为2000元/单位。

问如何安排生产,使得利润最大化?1. 建立数学模型:令x为产品A的产量,y为产品B的产量。

则目标函数为最大化利润:1000x+2000y。

约束条件为:2x+3y≤100(钢材约束),4x+5y≤120(机器时数约束),6x+4y≤150(人工时数约束),x≥0,y≥0。

2. 通过图形法找到可行解和最优解:先绘制钢材约束的直线2x+3y=100,机器时数约束的直线4x+5y=120,人工时数约束的直线6x+4y=150。

线性规划与最优化问题的求解算法

线性规划与最优化问题的求解算法

线性规划与最优化问题的求解算法线性规划(Linear Programming)是数学中一种重要的优化方法,用于解决线性约束条件下的最优化问题。

在实际应用中,线性规划被广泛运用于工程、经济、管理等领域,是一种强大的决策分析工具。

为了解决线性规划及其他最优化问题,人们开发了多种求解算法。

一、单纯形法(Simplex Method)单纯形法是最常用的线性规划求解方法之一。

它通过不断迭代来寻找问题的最优解。

单纯形法的基本思想是通过交换变量的值来达到更优解的目的。

在每次迭代中,通过选择一个入基变量(进入基本解)和一个出基变量(离开基本解),逐步优化目标函数的值,直到找到最优解。

二、内点法(Interior Point Method)内点法是另一种有效的线性规划求解算法。

与单纯形法不同的是,内点法从问题的内部(可行解域)开始搜索最优解,而不是从边界(顶点)开始。

内点法的核心思想是通过迭代找到目标函数值逼近最优解的过程。

内点法相对于单纯形法在大规模问题上具有更高的求解效率,但在处理一些特殊问题时可能存在较大的挑战。

三、分支定界法(Branch and Bound Method)分支定界法是一种通用的最优化问题求解算法,适用于各种类型的优化问题,包括线性和非线性规划问题。

它通过将问题划分为一系列子问题,并逐步缩小最优解的搜索范围,最终找到全局最优解。

分支定界法具有较高的可行性和可靠性,但在处理大规模问题时存在计算复杂性的问题。

四、梯度下降法(Gradient Descent Method)梯度下降法是一种常用于非线性规划问题的求解方法。

它利用函数的梯度信息来指导搜索方向,并通过迭代逐步优化目标函数的值。

梯度下降法有多种变体,包括批量梯度下降法、随机梯度下降法等。

梯度下降法在非凸问题的求解上具有较好的效果,但可能存在陷入局部最优解和收敛速度慢等问题。

总结:线性规划及最优化问题是现实生活中经常遇到的一类问题,求解这类问题的算法也因此应运而生。

线性规划问题的基本概念及求解方法

线性规划问题的基本概念及求解方法

线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。

线性规划问题广泛应用于经济、工业、运输、物流等各个领域。

本文将讲述线性规划问题的基本概念和求解方法。

一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。

目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。

二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。

1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。

它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。

对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。

2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。

它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。

单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。

但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。

三、线性规划的应用线性规划在各个领域中都有着广泛的应用。

以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。

这种问题通常涉及到对物流成本、物流时间等多种因素的优化。

2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。

这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。

3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。

线性规划问题的优化算法研究

线性规划问题的优化算法研究

线性规划问题的优化算法研究线性规划是数学中的一个重要领域,它研究的是如何在一些限制条件下优化线性函数的取值。

这个问题可以用优化算法来解决,这样的算法在现代社会中得到了广泛的应用。

这篇文章将探讨线性规划问题的优化算法研究,介绍在实践中常用的一些方法以及它们的优劣。

一、线性规划问题的定义在介绍线性规划问题的优化算法之前,我们需要先了解线性规划问题的定义。

线性规划问题指的是在满足一定的约束条件下,使目标函数达到最优化的问题。

而目标函数和约束条件必须都是线性的。

也就是说,目标函数和约束条件都必须可以表示为变量的线性组合。

这个问题的一般形式可以表示为如下的式子: maximize cTxsubject to Ax<=bx>=0其中,c是一个n维向量,A是一个m*n矩阵,b是一个m维向量,x是一个n 维向量。

其中n和m为问题的维度。

二、单纯形法单纯形法是解决线性规划问题的经典算法,是在二十世纪50年代被提出的。

该算法从初始的解开始,通过每一步去改变解,直至找到最优解。

单纯形法通过在可行域内移动的枢纽点来遍历整个可行域,寻求优化解。

该算法的时间复杂度为O(2^n),在很多情况下效率不高。

三、内点法内点法是一个比较新颖的算法,和单纯形法相比,在时间上更具有优势。

它通过在可行域中找出一些内点,在这些点上求解,直至找到最优解。

这个过程中会存在很多障碍,但是最终它可以得到一个稳定的解。

内点法的时间复杂度为O(n^3L),其中L是内点法算法的迭代次数。

这个算法的运算时间随着L的增加而增加,但是L通常是比较小的。

实践证明,内点法比单纯形法快很多。

四、分支定界法分支定界法不是一种直接求解线性规划问题的算法,但是在实践中也被广泛应用。

它将问题分成几个小的集合,然后一步步去求解每一个子问题。

每一次问题的分解都会产生一些新的问题,而分支定界法就是依次去解决这些新问题。

这个算法的时间复杂度随着问题的维度增加而增加,但是对于一些十分大的问题,分支定界法通常是一个非常好的选择。

数学建模:常见的线性规划问题求解方法

数学建模:常见的线性规划问题求解方法

数学建模:常见的线性规划问题求解方法1. 引言在数学建模中,线性规划是一种常见的数学模型。

它通常用于求解优化问题,在多个约束条件下找到使目标函数最大或最小的变量值。

本文将介绍几种常见的线性规划问题求解方法。

2. 单纯形法单纯形法是一种经典且高效的线性规划问题求解方法。

它通过不断移动基变量和非基变量来搜索可行解集,并在每次移动后更新目标函数值,直到达到最优解。

该方法适用于标准形式和松弛法形式的线性规划问题。

2.1 算法步骤1.初始化:确定基变量和非基变量,并计算初始相应坐标。

2.计算检验数:根据当前基变量计算检验数,选取检验数最小的非基变量作为入基变量。

3.计算转角系数:根据入基变量计算转角系数,并选择合适的出基变量。

4.更新表格:进行行列交换操作,更新表格中的各项值。

5.结束条件:重复2-4步骤,直至满足结束条件。

2.2 优缺点优点: - 单纯形法的时间复杂度较低,适用于小规模线性规划问题。

- 可以处理带等式约束和不等式约束的线性规划问题。

缺点: - 在某些情况下,单纯形法会陷入梯度消失或梯度爆炸的情况,导致无法找到最优解。

- 处理大规模问题时,计算量较大且可能需要较长时间。

3. 内点法内点法是另一种常见的线性规划求解方法。

与单纯形法不同,内点法通过在可行域内搜索目标函数的最优解。

它使用迭代过程逼近最优解,直到满足停止条件。

3.1 算法步骤1.初始化:选取一个可行解作为初始点,并选择适当的中心路径参数。

2.计算对偶变量:根据当前迭代点计算对偶变量,并更新目标函数值。

3.迭代过程:根据指定的迭代更新方程,在可行域内搜索目标函数的最优解。

4.结束条件:重复2-3步骤,直至满足结束条件。

3.2 优缺点优点: - 内点法相对于单纯形法可以更快地收敛到最优解。

- 在处理大规模问题时,内点法的计算效率更高。

缺点: - 内点法需要选择适当的中心路径参数,不当的选择可能导致迭代过程较慢。

- 对于某些复杂的线性规划问题,内点法可能无法找到最优解。

线性规划的解法

线性规划的解法

线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。

在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。

本文将介绍线性规划的解法及其应用。

一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。

解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。

二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。

该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。

具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。

2. 选择一个初始基本可行解。

3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。

4. 选择一个进入变量和一个离开变量,即确定下一个顶点。

5. 进行变量的调整,即计算新的基本可行解。

6. 重复3-5步,直到找到最优解。

三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。

与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。

内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。

它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。

四、应用举例线性规划方法在各个领域都有广泛的应用。

线性规划问题的求解方法与实践

线性规划问题的求解方法与实践

线性规划问题的求解方法与实践线性规划是一种常见的优化问题,可以用来研究诸如资源分配、生产优化等问题。

线性规划问题的求解方法也十分重要,常用的方法有单纯形法、内点法、整数规划等。

本文将从理论和实践两个层面讨论线性规划问题的求解方法。

一、单纯形法单纯形法是一种求解线性规划问题的标准算法,在实践中得到广泛应用。

其基本思想是将线性规划问题转化为标准型,并通过不断的迭代来达到最优解。

标准型是指将目标函数和限制条件均转化为等式的形式。

具体来说,假设有线性规划问题:max c1*x1 + c2*x2 + … + cn*xns.t.a11*x1 + a12*x2 + … + a1n*xn ≤ b1a21*x1 + a22*x2 + … + a2n*xn ≤ b2…am1*x1 + am2*x2 + … + amn*xn ≤ bm其中,x1~xn为决策变量,c1~cn为目标函数的系数,a11~amn 为各限制条件的系数,b1~bm为约束条件的右值。

将其转化为标准型:max cxs.t.Ax = bx ≥ 0其中,x = (x1, x2, …, xn)T,c和x为向量,A为mxn的矩阵,b为m维的向量。

线性规划问题的解可以存在于顶点中,而顶点又可以表示为n-m个线性约束的交点。

单纯形法就是借助这一点来求解问题,每次从一个顶点出发,向相邻的顶点移动,最终找到全局最优解。

二、内点法内点法是求解线性规划问题的另一种常见方法,也被称为封闭框架法。

其基本思想是通过构造一个特殊的迭代序列,将问题转化为无约束的非光滑的优化问题,然后使用牛顿迭代等方法求解。

内点法的优点在于可以直接求解非线性约束和整数规划问题,同时有较好的收敛性和鲁棒性。

内点法的基本思路是将约束条件改写为一组等效条件,并考虑在这些等效条件内部寻找最优解。

这些等效条件称为“内点”,表示在这些条件下寻找的最优解都在可行域内部。

例如,在松弛的线性规划问题中,对于每个限制条件,都可以构造一个内点,使得其满足该约束条件,并使用初始可行解来初始化算法。

线性规划的方法论

线性规划的方法论

线性规划的方法论线性规划(Linear Programming, LP)是一种运筹学方法,用于解决线性约束条件下的优化问题。

它的目标是找到一个最优的决策方案,使得目标函数值最大化或最小化。

线性规划在经济、管理、工程、决策科学等领域得到广泛应用,是运筹学的重要分支之一。

线性规划的方法论主要包括六个基本步骤:问题建模、目标函数的确定、约束条件的建立、单纯形法求解、解的解释和灵敏度分析。

下面我将逐一介绍这些步骤。

1. 问题建模问题建模是线性规划的第一步,需要将实际问题转化为数学模型。

首先需要明确决策变量,即需要进行决策的变量。

然后确定目标函数,即需要最大化或最小化的函数。

最后建立约束条件,即限制决策变量取值的条件。

2. 目标函数的确定目标函数是衡量决策结果优劣的函数,可以是最大化利润、最小化成本等。

目标函数的形式可以是线性函数、多项式函数或指数函数等,但在线性规划中,目标函数通常是线性函数。

3. 约束条件的建立约束条件是限制决策变量取值的条件,它们可以是等式约束或不等式约束。

线性规划中的约束条件是由给定的问题决定的,比如资源约束、技术约束等。

约束条件的形式需要与目标函数形式匹配,即线性约束条件与线性目标函数相匹配。

4. 单纯形法求解单纯形法是一种求解线性规划问题的算法,它通过不断迭代来找到最优解。

单纯形法的基本思想是从可行解中找到一个改进的方向,然后沿该方向进行移动,直到找到最优解为止。

单纯形法的求解过程中,需要对角度表和单纯形表进行操作,通过选择基本变量和非基本变量进行迭代计算。

5. 解的解释线性规划求解得到的解需要进行解释和分析。

解的解释是对最优解的实际意义进行解释,包括各个决策变量的取值以及目标函数的值。

解的分析是对解进行灵敏度分析,分析最优解的变化情况对问题的影响。

6. 灵敏度分析灵敏度分析是对线性规划解进行分析,分析结果对问题的解释和应用。

灵敏度分析可以分为参数变化分析和解的变化分析两个部分。

线性规划学习线性规划的解法

线性规划学习线性规划的解法

线性规划学习线性规划的解法线性规划是一种数学优化方法,用于解决一类特定的最优化问题。

线性规划的主要目标是在给定的线性约束条件下,找到一个线性目标函数的最大值或最小值。

本文将介绍线性规划的基本概念和解法。

Ⅰ. 线性规划的基本概念线性规划问题通常可以表示为以下形式:给定一组线性约束条件和一个线性目标函数,求解目标函数的最大值或最小值。

其中,线性约束条件可以表示为一组形如ax1 + bx2 + … + c ≤ d的不等式,线性目标函数为z = cx1 + dx2 + … + e。

Ⅱ. 线性规划的解法线性规划问题的求解方法有多种,下面将介绍其中两种常用的解法:单纯形法和内点法。

1. 单纯形法单纯形法是一种逐步改进的方法,通过迭代寻找最优解。

具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行基本解。

(2)选择进基变量:从非基变量中选择一个可以增大目标函数值的变量作为进基变量。

(3)选择出基变量:由于选择进基变量而产生的新的解是非可行解,需要选择一个基变量作为出基变量,并进行调整。

(4)迭代:重复进行步骤2和步骤3,直到找到满足条件的最优解。

2. 内点法内点法是一种基于迭代的方法,通过寻找线性规划问题的可行解来逼近最优解。

具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行解。

(2)构造路径方程:引入一个路径参数,并构造路径方程,将线性规划问题转化为一系列等价的非线性问题。

(3)迭代:通过求解路径方程的解,逐步逼近最优解。

Ⅲ. 实例分析下面通过一个实例来说明线性规划问题的解法。

假设有一家制造公司生产两种产品A和B,分别需要通过机器X和机器Y进行加工。

机器X每小时可工作6小时,机器Y每小时可工作4小时。

产品A通过机器X加工需要1小时,产品B需要2小时;产品A通过机器Y加工需要2小时,产品B需要1小时。

产品A的利润为3万元,产品B的利润为2万元。

问该公司如何安排生产,才能使利润最大化?解:首先,设产品A的产量为x,产品B的产量为y,则目标函数为z = 3x + 2y。

_线性规划方法概述

_线性规划方法概述

而且使:
z cij xij min
i 1 j 1
m
n
资源利用问题
假设某地区拥有 m种资源,其中,第i种资源 在规划期内的限额为bi(i=1,2,…,m)。这m种 资源可用来生产 n种产品,其中,生产单位数量 的第j种产品需要消耗的第i种资源的数量为 aij(i=1,2,…,m;j=1,2, …,n),第j种产品的单 价为cj(j=1,2, …,n)。试问如何安排这几种产 品的生产计划,才能使规划期内资源利用的总 产值达到最大?
第五章 线性规划方法
线性规划及其单纯形求解方法
线性规划的对偶理论
运输问题的求解方法——表上作业法
线性规划是运筹学中发展较快、应用较广和比较 成熟的一个分支。它在实际应用中日益广泛与深 入, 已经被广泛地应用到工业、农业、商业与交 通运输规划,工程技术的优化设计,以及企业管 理等各个领域。 在地理学领域,线性规划,作为传统的计量地理 学方法之一,是解决有关规划、决策和系统优化 问题的重要手段。
C [CB , C N ]
目标函数记为: Z CB B1b (CN CB B1N ) X N
则对应于基B的基本解为:X B B 1b X N 0
最优解的判定:
当 CN C B B 1 N 0 时, 则由目标函数式可看出: 对应于对应于B的基本可行解为最优解,这时, B也被称为最优基。 由于 CN C B B 1 N 0与 C C B B 1 A 0 等价,故可得 最优解的判定定理: 对于基B ,若B 1b 0 ,且C C B B 1 A 0 则对应于基B 的基本解为最优解, B为最优基。 对目标函数与约束不等式运用矩阵变形得:
j
x j o xn k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划问题的算法综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。

现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。

线性规划就是在满足线性约束下,求线性函数的极值。

毋庸置疑,数学规划领域的重大突破总是始于线形规划。

提到线性规划算法,人们最先想到的是单纯形法和内点法。

单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。

把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。

显然不属于前者,即两者都有需要改进之处。

几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。

1数学模型线性规划问题通常表示成如下两种形式:标准型、规范型。

设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数;线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。

在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。

20世纪70年代末,上述分支领域都得到了极大发展,但是却都不完善。

而且数学规划领域中存在许多Nfkhard问题,如TP问题,整数规划问题等。

这些问题的基本模型都可以写成线性规划形式,因此通过对线性规划算法的进一步研究,可以进一步启发及推动数学规划领域内其他分支的发展。

2边界点算法由于单纯形法与基线算法都是在可行集的边界上取得最优值,故合称单纯形法与基线法为边界点算法。

单纯形法是线性规划使用最早也是目前实际应用中最流行和求解新型规划问题最有效的算法之一。

它实施起来相当简单特别对中小规模问题效果显著。

单纯形法最早是由Damzg于1947年夏季首先提出来的。

1953年Dantzig为了改进单纯形法每次迭代中积累起来的进位误差,提出改进单纯形法12。

1954年美国数学家CELmH3针对对偶问题提出一种在数学上等价于用改进单纯形法求解的对偶线形规划。

1974年CuretN41提出了求解一般线性规划问题的原对偶单纯形法,该算法与对偶单纯形法类似,但是原对偶单纯形法允许我们从一个非基础对偶可行解开始算法求解。

1972年Klee等举例证明了单纯形算法的时间复杂性有可能是指数型。

1973年,Jeoslowoi和Zdeh7又分别进一步指出常用的对偶单纯形法、原一对偶单纯形法等都是指数级的。

这就让人们产生两个疑问:①是否存在单纯形法的某种改型,用它求解线性规划问题是多项式时算法。

对于问题①,研究者们对单纯形法采用了一系列改进技术如数据的预处理方法、更好的退化性处理、更好的局部价格向量计算、原一对偶最速下降边算法的应用、更快和更稳定的矩阵分解、更好的Cach存贮的应用、以及阶段1和阶段2的组合算法等。

但是仍未能从理论上证明线形规划算法是多项式时间的。

近年来国内也出现了一批致力于线形规划算法研究的学者,但是国内学者的研究主要集中在对单纯形法的突破研究上,如基线法|8_’最钝角原理1111等。

最钝角及投影主元标算法都是针对单纯形算法存在退化现象就如何选择最优入基、离基做出的一系列研究及改进。

退化现象是单纯形法一直以来需解决的难题,为了克服退化问题许多学者提出了有限主元规则:扰动法、字典序规则、Blad规则1171等,其中Bind规则由于其简单而备受关注,但是这些有限主元规则的实际应用方面并不令人满意,甚至都不能和Dantzg规则相比。

1990年,潘平奇教授在文献[11]给出了线性规划问题最优基的一个启发式刻画特征:最钝角原理。

最钝角原理是引人反映目标梯度与约束梯度夹角大小的“主元标”乍为确定变量进基优先性的依据,潘教授的数值试验11819表明此规则明显优于Bland规则。

然而潘的方法仅适用于只含不等式约束的线性规划问题。

为便于求解标准线性规划问题,许多学者在其基础上又提出了对偶主元标法。

由于对偶主元标法是利用严格互补松弛来推导过度的,针对这一问题,又有学者提出了投影主元标法。

除此之外还有一系列最钝角原理在非人工变量两阶段算法1M21及亏基情况下的应用研究。

这些研究表明,最钝角原理是克服单纯形法退化的一种有效方法。

基线算法的概念是1996年阮国桢教授提出来的1891,这种算法是单纯形法的发展,名字由来一方面是相对单纯形法(基点法)提出,另一方面是使用基线算法的主要思想是:其中疋FTX1;eRbERm为一个m阶单位矩阵。

n 是问题的维数,m是0计算出当前基线表对应的可行值区间[J-”。

若h…,n-L贝IJv为最优值,或者转SteP4Sep旋转基表,更新BaP旋转基表时通常只使用有限软上界行的负可旋主元。

对于负可旋主元的选择主要实现方法有:最大负主元算法[221,行列最好主元算法[231,保硬主元算法[24251等。

基线算法操作简单迭代次数少,求解速度快。

相对单纯形法来说,单纯形法最多能搜索与当前极点相邻的n个极点,而基线算法能搜索11个二维面,这是基线算法能够快速求解LP问题的关键所在。

发展至今,基线算法已有其对偶算法[271,群部分算法[‘目标规划[29301,锥上算法[311等一整套的理论基础和一系列具体的快速实现算法12632,围绕着是否存在着多项式的基线算法,在计算复杂度方面作深入的研究将对线性规划的发展具有十分深远的意义。

3割平面法线性规划算法中割平面思想的应用主要是指椭球法。

1979年Khanchiaii33!改进Yudin和Nan-ovski等[34]为凸规划开发的椭球法,获得了一个求解线形规划的多项式时间算法:椭球法。

对问题②做出了明确回答。

不同于单纯形法从一个基础可行解开始迭代,椭球法的特点是求解过程的每一阶段都有一个以某一点为中心的椭球,迭代是从一个包含最优解的较大的椭球迭代到包含最优解的较小的椭球直至逼近最优解。

为线性规划问题式()的规模。

其中,lg]是以2为底的对数,「?]表示刚刚大于括号值的整数。

则椭球法的时间复杂度为OML)Khachiar椭!球法的主要思想是:根据线性规划的强对偶定理,线性规划问题式()可以转为下列求可行域问题:2)从球开始,这个球大到包括式(3l1)的所有可行集X不断构造一系列椭球,第k次迭代的椭球为Ek 检验椭球中心&是否满足约束条件;若满足则停止,否则利用割平面球的半椭球$Ek=EH{aTA构造新的椭球更新椭球Ek+1为包含半椭球的最小体积椭球。

按照这种算法下去直到椭球中心位于目标集内,椭球中心即为问题式(31)的解;否则椭球体积太小以至不含问题式(31)的可行解。

由于Khachiarn椭球法从构造包含可行域的大的椭球出发,初始椭球体积有可能是天文数字,而且KhanCir椭球法利用K-K-T条件将原规划问题转化为可行域求解问题,扩大了求解规模的同时加入了等式约束,使得可行集体积为零。

虽然求解时,对等式进行摄动,可行集体积仍然很小。

初始椭球体积太大,最终椭球(包含可行集的最小椭球)体积又几乎为零,算法可能需要经过非常大的迭代步数才能收敛。

而且如果对偶问题无界则原问题不可行,因此当计算结果无解时不能判断是原问题无界呢还是原问题不可行。

不少研究者从加大每次迭代后椭球缩小比出发,提出了许多KhanCirn椭球法的改进算法:深切害J(deepeus)35-37、替代切割(surrogatecuts)381、平行切割(paUMeus)|39-411等。

最新成果是杨德庄等人提出的新的椭球法142,其优点在于引入目标束不等式及目标不等式组成,与原椭球法相比一方面大大缩小了算法求解规模,另一方面扩大了可行集的体积。

而且新算法中可行集切割及目标切割交替进行,加速了椭球体积的缩小。

不过令人失望的是即使最好的椭球法实施在计算上都难以与已有的单纯形法相比。

因此,实际中很少作为一般方法使用1431。

然而线性规划的其他解法如单纯形法、内点法都需要从一个基础解出发,然后确定迭代方向、迭代步长,因此每次迭代都需要计算目标函数和所有约束函数。

而椭球法的计算则简单得多,理论上来说椭球法对于约束条件多的问题更有效。

4内点法1984年KamarH441提出了一个比Khanchian法好的多项式时间算法的内点法,称为Kamaikar法。

由于该法引用了非线性规划中的牛顿投影,因此又称K_aka牧影法。

K_aka袪的提出在线性规划领域具有极大的理论意义。

与椭球法不同,这个新算法不仅在最坏情况下在时间复杂度上优于单纯形法,在大型实际问题中也有潜力与单纯形法竞争。

这一方法的提出掀起了一股内点法的研究热潮。

鉴于Kamaka?法的难读性,一些研究学者?对Kamaika 袪进行了适度的修改,使其简便易读。

然而直接用该方法编程解题的测试表明,与目前基于单纯形法的商用软件相比,并没有明显的优势1491。

因此很多研究者在Kamarka法的基础上深入研究并提出了各种修正内点法方法:仿射尺度法,对数障碍函数法,路径跟踪法算法等。

仿射比例调节法又分为原(Ptme)仿射比例调节法和对偶(Dua)方射比例调节法。

原仿射比例调节法是从原问题出发,用一个仿射变换代替投影变换,把坐标系从一个非负象限不是单纯形)映射到其本身。

该法1967年由前苏联学者Dkii5(0提出,但他的工作直到Bame1]等人再次研究该法后才被法,另一方面作了完全的收敛性的证明。

此外,1989年AdleP等发表了从原问题的对偶问题出发的对偶仿射比例调节法。

1986年G1531等人第一次把用于非线性规划的对数障碍函数法用于线性规划,并证明了对数障碍函数法和Kamarka投影法是等价的。

以后的研究表明kamaikaf法实际上是广义对数障碍函数法的一个特殊情形。

由于其计算方面的优越性,因此该法得到更多的研究和发展,该法也分为原对数障碍函数法和对偶对数障碍函数法。

原对偶(PrimaDua)各径跟踪法,实际上是原对偶障碍函数法,是MeidG19M541年提出的。

相关文档
最新文档