线性规划问题的算法综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划问题的算法综述
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!
线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。线性规划就是在满足线性约束下,求线性函数的极值。
毋庸置疑,数学规划领域的重大突破总是始于线形规划。提到线性规划算法,人们最先想到的是单纯形法和内点法。单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。显然不属于前者,即两者都有需要改进之处。几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。
1数学模型
线性规划问题通常表示成如下两种形式:标准型、规范型。
设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数;
线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。20世纪70年代末,上述分支领域都得到了极大发展,但是却都不完善。而且数学规划领域中存在许多Nfkhard问题,如TP问题,整数规划问题等。这些问题的基本模型都可以写成线性规划形式,因此通过对线性规划算法的进一步研究,可以进一步启发及推动数学规划领域内其他分支的发展。
2边界点算法
由于单纯形法与基线算法都是在可行集的边界上
取得最优值,故合称单纯形法与基线法为边界点算法。单纯形法是线性规划使用最早也是目前实际应用中最流行和求解新型规划问题最有效的算法之一。它实施起来相当简单特别对中小规模问题效果显著。单纯形法最早是由Damzg于1947年夏季首先提出来的。1953年Dantzig为了改进单纯形法每次迭代中积累起来的进位误差,提出改进单纯形法12。1954年美国数学家CELmH3针对对偶问题提出一种在数学上等价于用改进单纯形法求解的对偶线形规划。1974年CuretN41提出了求解一般线性规划问题的原对偶单纯形法,该算法与对偶单纯形法类似,但是原对偶单纯形法允许我们从一个非基础对偶可行解开始算法求解。
1972年Klee等举例证明了单纯形算法的时间复杂性有可能是指数型。1973年,Jeoslowoi和Zdeh7又分别进一步指出常用的对偶单纯形法、原一对偶单纯形法等都是指数级的。
这就让人们产生两个疑问:①是否存在单纯形法的某种改型,用它求解线性规划问题是多项式时算法。
对于问题①,研究者们对单纯形法采用了一系列改进技术如数据的预处理方法、更好的退化性处理、更好的局部价格向量计算、原一对偶最速下降边算法的应用、更快和更稳定的矩阵分解、更好的Cach存贮
的应用、以及阶段1和阶段2的组合算法等。但是仍未能从理论上证明线形规划算法是多项式时间的。
近年来国内也出现了一批致力于线形规划算法研究的学者,但是国内学者的研究主要集中在对单纯形法的突破研究上,如基线法|8_’最钝角原理1111等。
最钝角及投影主元标算法都是针对单纯形算法存在退化现象就如何选择最优入基、离基做出的一系列研究及改进。退化现象是单纯形法一直以来需解决的难题,为了克服退化问题许多学者提出了有限主元规则:扰动法、字典序规则、Blad规则1171等,其中Bind规则由于其简单而备受关注,但是这些有限主元规则的实际应用方面并不令人满意,甚至都不能和Dantzg规则相比。1990年,潘平奇教授在文献[11]给出了线性规划问题最优基的一个启发式刻画特征:最钝角原理。最钝角原理是引人反映目标梯度与约束梯度夹角大小的“主元标”乍为确定变量进基优先性的依据,潘教授的数值试验11819表明此规则明显优于Bland规则。然而潘的方法仅适用于只含不等式约束的线性规划问题。为便于求解标准线性规划问题,许多学者在其基础上又提出了对偶主元标法。由于对偶主元标法是利用严格互补松弛来推导过度的,针对这一问题,又有学者提出了投影主元标法。
除此之外还有一系列最钝角原理在非人工变量两阶段算法1M21及亏基情况下的应用研究。这些研究表明,最钝角原理是克服单纯形法退化的一种有效方法。
基线算法的概念是1996年阮国桢教授提出来的1891,这种算法是单纯形法的发展,名字由来一方面是相对单纯形法(基点法)提出,另一方面是使用
基线算法的主要思想是:
其中疋FTX1;eRbERm为一个m阶单位矩阵。n 是问题的维数,m是0
计算出当前基线表对应的可行值区间[J-”。若h
…,n-L贝IJv为最优值,或者转SteP4
Sep旋转基表,更新BaP旋转基表时通常只使用有限软上界行的负可旋主元。对于负可旋主元的选择主要实现方法有:最大负主元算法[221,行列最好主元算法[231,保硬主元算法[24251等。
基线算法操作简单迭代次数少,求解速度快。相对单纯形法来说,单纯形法最多能搜索与当前极点相邻的n个极点,而基线算法能搜索11个二维面,这是基线算法能够快速求解LP问题的关键所在。
发展至今,基线算法已有其对偶算法[271,群部分算法[‘目标规划[29301,锥上算法[311等一整套的理论基础和一系列具体的快速实现算法12632,围绕着是否存在着多项式的基线算法,在计算复杂度方面作深入的研究将对线性规划的发展具有十分深远的意义。
3割平面法
线性规划算法中割平面思想的应用主要是指椭球法。1979年Khanchiaii33!改进Yudin和Nan-