全等三角形的相关模型总结

合集下载

全等三角形的五大基本模型及题型归纳总结

全等三角形的五大基本模型及题型归纳总结

全等三角形的基本模型一、平移模型常见的平移模型:例1:如图,在四边形ABCD中,AD∥BC且AD=BC,点E在边AB上,点F在AB的延长线上,且AE =BF.求证:∠ADE=∠BCF.例2:如图,AB∥DE,AB=DE,BE=CF.求证:AC∥DF.二、轴对称模型常见的轴对称类型:例3:如图3-ZT-5,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是() A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD例4:如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有______ 对全等三角形.例5:如图,点D,E分别在AB,AC上,AB=AC,BD=CE.求证:BE=CD.例6:如图3-ZT-8,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF. 试证明下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM.三、旋转模型常见的旋转模型例7:如图,已知∠AOB=90°,OM是∠AOB的平分线,三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.两个特殊的旋转模型:(一)绕点型:(手拉手模型)(1)自旋转(2)共旋转(典型的手拉手模型)例7:在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。

4) △AGB ≌△DFB 5) △EGB ≌△CFB 6) BH 平分∠AHC 7) GF ∥AC练习:1. 如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。

4) AE 与DC 的交点设为H,BH 平分∠AHC2. △ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC3. 已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2. 如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD与BE的位置关系,并说明理由.(二)半角模型:说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

全等三角形的10个模型(一)2024

全等三角形的10个模型(一)2024

全等三角形的10个模型(一)引言概述:全等三角形是指两个或多个三角形的对应边和对应角完全相等的情况。

全等三角形在几何学中有广泛的应用,不仅在证明和推导定理时起到重要的作用,还在实际问题的解决中提供了有力的工具。

本文将介绍十个关于全等三角形的模型。

这些模型旨在帮助读者更好地理解和运用全等三角形的性质和应用。

正文:1. 模型一:完全相等的三边- 全等三角形的基本条件就是三边相等。

- 通过边的对应关系确定两个三角形是否全等。

- 证明时可利用边长相等的性质进行推导。

2. 模型二:完全相等的两边和夹角- 如果已知两个三角形的两边和夹角都相等,则这两个三角形全等。

- 通过边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。

3. 模型三:完全相等的两角和夹边- 如果已知两个三角形的两角和夹边都相等,则这两个三角形全等。

- 边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。

4. 模型四:等腰三角形和全等条件- 等腰三角形是指两边相等或两角相等的三角形。

- 如果两个三角形中有一个是等腰三角形,且两个等腰三角形的两边或两角都相等,则这两个三角形全等。

5. 模型五:直角三角形和全等条件- 直角三角形是指其中一个角为90度的三角形。

- 如果两个三角形中有一个是直角三角形,且两个直角三角形的两边或两个锐角均相等,则这两个三角形全等。

总结:通过十个模型的介绍,我们可以看到全等三角形是几何学中一个重要而广泛应用的概念。

理解全等三角形的性质和应用对于解决几何问题具有重要意义。

在实际问题中,我们常常可以利用全等三角形的模型来推导和证明定理,从而得出更深入的结论。

全等三角形八大基本模型

全等三角形八大基本模型

全等三角形八大基本模型全等三角形是初中数学中非常重要的内容,掌握全等三角形的基本模型有助于解决各类题目。

下面我们将详细介绍八大基本模型,以便于大家更好地理解和应用。

一、引言全等三角形是指具有相同形状和大小的两个三角形。

在解决全等三角形问题时,我们需要掌握基本模型,以便于快速判断三角形是否全等。

全等三角形的基本模型有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、两角一边(AAS)、一边一角一边(SAS)、两边一角(SSA)和角一边一角(AAA)。

二、边边边(SSS)全等三角形当两个三角形的三条边分别相等时,这两个三角形全等。

判断方法:比较三边长度是否相等。

三、边角边(SAS)全等三角形当两个三角形的两边和夹角分别相等时,这两个三角形全等。

判断方法:比较两边长度和夹角是否相等。

四、角边角(ASA)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。

判断方法:比较两个角和一边是否相等。

五、角角边(AAS)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。

判断方法:比较两个角和一边是否相等。

六、两角一边(AAS)全等三角形当两个三角形有两个角和一个边相等时,这两个三角形全等。

判断方法:比较两个角和一个边是否相等。

七、一边一角一边(SAS)全等三角形当两个三角形的一边和一角分别相等时,这两个三角形全等。

判断方法:比较一边和一角是否相等。

注意:此条件仅在角的另一边也相等时成立。

八、两边一角(SSA)全等三角形当两个三角形的两边和夹角分别相等时,这两个三角形全等。

判断方法:比较两边长度和夹角是否相等。

注意:此条件仅在角的另一边也相等时成立。

九、角一边一角(AAA)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。

判断方法:比较两个角和一边是否相等。

注意:此条件仅在边的另一端角也相等时成立。

十、总结全等三角形八大基本模型是我们解决全等三角形问题的基石。

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结49762

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结49762

一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形:例1。

如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD , 证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立? (2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分AHC ∠?二、倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

专题02 全等三角形中的六种模型梳理

专题02 全等三角形中的六种模型梳理

专题02 全等三角形中的六种模型梳理专题02 全等三角形中的六种模型梳理全等三角形是初中数学中一个非常重要的概念,也是平面几何中的基础知识之一。

全等三角形指的是具有相同形状和大小的三角形,它们的对应边长和对应角度都相等。

在学习全等三角形的过程中,我们可以通过六种模型来更好地理解和应用这一概念。

本文将以深度和广度的要求,全面探讨全等三角形的六种模型,帮助读者更好地理解和掌握这一知识点。

1. 回顾全等三角形的概念在深入探讨全等三角形的六种模型之前,我们首先需要回顾一下全等三角形的概念。

在平面几何中,如果两个三角形的对应边长和对应角度都相等,我们就称它们为全等三角形。

全等三角形的性质包括边长相等、对应角度相等、周长相等和面积相等。

这些性质是我们理解全等三角形的基础,也是之后探讨六种模型的重要依据。

2. 全等三角形的基本模型我们来看全等三角形的基本模型。

当两个三角形的对应边和对应角均相等时,这两个三角形就是全等的。

这是最基本的全等三角形模型,也是其他五种模型的基础。

通过这个基本模型,我们可以理解全等三角形的定义和性质,为之后的探讨打下基础。

3. 侧边-夹角-侧边模型我们来探讨侧边-夹角-侧边模型。

当两个三角形的一个对应边和夹角以及另一个对应边均相等时,这两个三角形也是全等的。

这个模型在实际问题中经常用到,比如通过已知一个角和两边的长短来确定两个三角形是否全等。

这个模型的理解和运用可以帮助我们更好地解决实际问题。

4. 夹角-边-夹角模型接下来,我们继续探讨夹角-边-夹角模型。

当两个三角形的一个夹角和两个对应边的夹角均相等时,这两个三角形也是全等的。

这个模型的理解有助于我们在解题过程中更灵活地运用全等三角形的性质,从而更快地解决问题。

5. 边-边-边模型我们来看一下边-边-边模型。

当两个三角形的三条边分别相等时,这两个三角形也是全等的。

这个模型在实际问题中也经常用到,通过边长的关系来判断两个三角形是否全等。

(完整版)全等三角形经典模型总结

(完整版)全等三角形经典模型总结

全等三角形相关模型总结一、角均分线模型(一)角均分线的性质模型辅助线:过点G 作 GE⊥射线 ACA、例题1、如图,在△ ABC中,∠ C=90°, AD 均分∠ CAB,BC=6cm,BD=4cm,那么点 D 到直线 AB 的距离是cm.2、如图,已知,∠1=∠ 2,∠ 3=∠ 4,求证: AP 均分∠ BAC.B、模型牢固1、如图,在四边形ABCD中, BC> AB,AD= CD,BD 均分∠ ABC,求证:∠ A+∠ C= 180° .(二)角均分线+垂线,等腰三角形必表现A、例题辅助线:延长ED 交射线 OB 于 F辅助线:过点 E 作 EF∥射线 OB例 1、如图,在△ABC中,∠ ABC= 3∠ C, AD 是∠ BAC的均分线, BE⊥ AD 于 F .1求证: BE( AC AB) .例 2、如图,在△ ABC中,∠ BAC的角均分线 AD 交 BC 于点 D,且 AB= AD,作 CM⊥ AD 交1AD 的延长线于M. 求证:AM( AB AC) .2(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON 上取点 B,使 OB= OA,从而使△ OAC≌△ OBC .A、例题1、如图,在△ ABC 中,∠ BAC=60°,∠ C=40°, AP 均分∠ BAC交 BC 于 P, BQ 均分∠ ABC 交AC 于 Q,求证: AB+ BP= BQ+ AQ .2、如图,在△ ABC 中, AD 是∠ BAC的外角均分线, P 是 AD 上异于点 A 的任意一点,试比较PB+ PC与 AB+ AC的大小,并说明原由 .B、模型牢固1、在△ ABC中, AB> AC, AD 是∠ BAC的均分线, P 是线段 AD 上任意一点(不与 A 重合) . 求证: AB-AC> PB- PC .2、如图,△ ABC中, AB= AC,∠ A= 100°,∠ B 的均分线交 AC 于 D,求证: AD+BD=BC .3、如图,△ ABC中, BC=AC,∠ C= 90°,∠ A 的均分线交 BC 于 D,求证: AC+ CD= AB .二、等腰直角三角形模型(一)旋转中心为直角极点,在斜边上任取一点的旋转全等:操作过程:(1)将△ ABD 逆时针旋转 90°,得△ ACM ≌ △ ABD,从而推出△ ADM 为等腰直角三角形 .(2)辅助线作法:过点 C 作 MC⊥ BC,使 CM= BD,连接 AM.(二)旋转中心为斜边中点,动点在两直角边上转动的旋转全等:操作过程:连接AD.(1)使 BF=AE(或 AF= CE),导出△ BDF ≌ △ADE.(2)使∠ EDF+∠ BAC= 180°,导出△ BDF ≌ △ ADE.A、例题1、如图,在等腰直角△ ABC中,∠BAC= 90°,点 M 、N 在斜边 BC上滑动,且∠ MAN =45°,试试究 BM、 MN 、 CN 之间的数量关系 .2、两个全等的含有 30°, 60°角的直角三角板 ADE 和 ABC,按以以下图放置, E、A、 C 三点在一条直线上,连接 BD,取 BD 的中点 M ,连接 ME、 MC.试判断△ EMC 的形状,并证明你的结论.B、模型牢固1、已知,以以下图,Rt△ABC中, AB= AC,∠ BAC=90°, O 为 BC中点,若 M 、N 分别在线段 AC、 AB 上搬动,且在搬动中保持AN= CM.(1)试判断△ OMN 的形状,并证明你的结论.(2)当 M、 N 分别在线段AC、 AB 上搬动时,四边形AMON 的面积如何变化?2、在正方形ABCD中, BE= 3,EF= 5, DF=4,求∠ BAE+∠ DCF为多少度 .(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,以以下图:A、例题应用1、如图,在等腰直角△ABC 中, AC= BC,∠ ACB= 90°, P 为三角形ABC内部一点,满足 PB= PC, AP= AC,求证:∠ BCP= 15° .三、三垂直模型(弦图模型)A、例题已知:以以下图,在△ ABC中, AB= AC,∠ BAC= 90°, D 为 AC 中点, AF⊥ BD 于点 E,交 BC 于 F,连接 DF .求证:∠ ADB=∠ CDF .变式 1、已知:以以下图,在△ABC中, AB= AC,AM = CN, AF⊥ BM 于 E,交 BC 于 F,连接NF .求证:( 1)∠ AMB=∠ CNF;(2) BM= AF+ FN .变式 2、在变式 1 的基础上,其他条件不变,可是将BM 和 FN 分别延长交于点P,求证:( 1) PM= PN;( 2) PB= PF+ AF .四、手拉手模型1、△ ABE和△ ACF均为等边三角形结论:( 1)△ ABF≌△ AEC .(2)∠ BOE=∠ BAE=60° .(3) OA 均分∠ EOF .(四点共圆证)拓展:△ ABC和△ CDE均为等边三角形结论:( 1) AD= BE;(2)∠ ACB=∠ AOB;(3)△ PCQ为等边三角形;(4) PQ∥ AE;(5) AP=BQ;(6) CO均分∠ AOE;(四点共圆证)(7) OA= OB+OC;(8) OE=OC+ OD .((7),( 8)需构造等边三角形证明)例、如图①,点 M为锐角三角形 ABC内任意一点,连接 AM、BM、 CM.以 AB为一边向外作等边三角形△ ABE,将 BM绕点 B 逆时针旋转 60°获取 BN,连接 EN.(1)求证:△ AMB≌△ ENB;(2)若 AM+BM+CM的值最小,则称点 M为△ ABC的费尔马点.若点 M为△ ABC的费尔马点,试求此时∠ AMB、∠ BMC、∠ CMA的度数;(3)小翔受以上启示,获取一个作锐角三角形费尔马点的简略方法:如图②,分别以△ABC 的 AB、 AC 为一边向外作等边△ABE和等边△ ACF,连接CE、BF,设交点为M,则点M 即为△ ABC的费尔马点.试说明这种作法的依据.2、△ ABD 和△ ACE均为等腰直角三角形结论:( 1) BE= CD;(2) BE⊥ CD .3、四边形ABEF和四边形ACHD均为正方形结论:( 1) BD= CF;( 2)BD⊥ CF .变式 1、四边形 ABEF和四边形 ACHD均为正方形, AS⊥ BC 交 FD 于 T,求证:( 1) T 为 FD 中点;( 2)SV ABC SV ADF .变式 2、四边形 ABEF和四边形 ACHD均为正方形, T 为 FD 中点, TA 交 BC于 S,求证: AS⊥ BC .360 4、如图,以△ ABC的边 AB、 AC为边构造正多边形时,总有:1 2 180n五、半角模型条件: 1 , 且 + =180 ,两边相等.2思路: 1、旋转辅助线:①延长CD到 E,使 ED=BM,连 AE 或延长 CB到 F,使 FB=DN,连 AF②将△ ADN绕点 A 顺时针旋转 90°得△ ABF,注意:旋转需证F、 B、 M三点共线结论:( 1) MN = BM+ DN;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 、∠ MND .2、翻折(对称)辅助线:①作AP⊥ MN 交 MN 于点 P②将△ ADN、△ ABM分别沿 AN、 AM翻折,但必然要证明M、P、 N 三点共线 .A、例题例1、在正方形 ABCD中,若 M、 N 分别在边 BC、 CD 上搬动,且满足 MN = BM+DN,求证:( 1)∠ MAN = 45°;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 和∠ DNM .变式:在正方形 ABCD中,已知∠ MAN =45°,若 M 、N 分别在边 CB、DC 的延长线上搬动,AH⊥MN ,垂足为 H,(1)试试究线段 MN 、BM、 DN 之间的数量关系;(2)求证: AB= AH例 2、在四边形 ABCD 中,∠ B +∠ D = 180°, AB = AD ,若 E 、 F 分别为边 BC 、 CD 上的点,且满足 EF =BE + DF ,求证: EAF 1BAD .2变式:在四边形 ABCD 中,∠ B = 90°,∠ D = 90°, AB = AD ,若 E 、 F 分别为边 BC 、CD 上的点,且 EAF1 BAD ,求证: EF = BE +DF .2。

专题02 全等三角形中的六种模型梳理

专题02 全等三角形中的六种模型梳理

专题02 全等三角形中的六种模型梳理一、概述全等三角形是初中数学中一个重要且常见的概念,对于几何学的学习具有重要的意义。

在全等三角形的学习中,有六种基本模型,它们是解决全等三角形问题的重要工具。

本文将对全等三角形中的六种模型进行深入探讨和梳理,帮助读者更加全面地理解和掌握这一知识点。

二、模型一:SSS全等模型在全等三角形中,如果两个三角形的三条边分别相等,则可以确定它们是全等三角形,这就是SSS全等模型。

如果已知两个三角形的三边分别相等,那么这两个三角形一定是全等的。

模型二:SAS全等模型SAS全等模型是指如果两个三角形的一条边和夹角以及另一边的长度分别相等,则可以确定它们是全等三角形。

如果已知两个三角形的一个角和两边分别相等,那么可以确定这两个三角形是全等的。

模型三:ASA全等模型在全等三角形中,如果两个三角形的一个角和两个角边相等,则可以确定它们是全等三角形,这就是ASA全等模型。

如果已知两个三角形的一个角和两个角边分别相等,那么可以确认这两个三角形是全等的。

模型四:HL全等模型HL全等模型是指如果两个直角三角形的斜边和一个直角边的长度分别相等,则可以确定它们是全等三角形。

如果已知两个直角三角形的斜边和一个直角边的长度分别相等,那么可以确定这两个三角形是全等的。

模型五:LL全等模型LL全等模型是指如果两个三角形的两个角和一个边分别相等,则可以确定它们是全等三角形。

如果已知两个三角形的两个角和一个边分别相等,那么可以确定这两个三角形是全等的。

模型六:对顶全等模型对顶全等模型是指如果两个三角形的两个对顶角和一个边分别相等,则可以确定它们是全等三角形。

如果已知两个三角形的两个对顶角和一个边分别相等,那么可以确定这两个三角形是全等的。

三、总结与回顾通过上述对全等三角形中六种模型的梳理,我们可以发现几何学中的相似和全等的概念是非常重要的。

在实际问题中,我们可以通过判断形状的相似或全等,推断出一些未知的信息,帮助我们解决问题。

人教版八年级数学全等三角形的常见模型总结(精选

人教版八年级数学全等三角形的常见模型总结(精选

人教版八年级数学全等三角形的常见模型总结(精选.)人教版八年级数学全等三角形常见模型总结要点梳理:全等三角形的判定与性质:一般三角形:边角边(SAS)、判角边角(ASA)、定角角边(AAS)、边边边(SSS)。

直角三角形:斜边、直角边定理(HL)。

性质:对应边相等,对应角相等(其他对应元素也相等,如对应边上的垂高相等)。

备判定:三角形全等必须有一组对应边相等。

注类型一:角平分线模型应用1.角平分性质模型:利用角平分线的性质。

例题解析:例1:如图1,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是多少?答案】作DE⊥XXX于点E,DE=3cm。

例2:如图2,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC。

答案】如图2,由角平分线的性质可知,PM=PN,PN=PQ,故PM=PQ,又因为PA是角BAC的平分线,所以XXX平分∠BAC。

类型二:角平分线模型应用2.角平分线,分两边,对称全等(截长补短构造全等)。

例题解析:例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠XXX于P,BQ平分∠XXX于Q,求证:AB+BP=BQ+AQ。

答案】如图1,过O作OD∥BC交AB于D,∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又因为OD∥BP,所以∠PBO=∠DOB,又∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠XXX∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

如图,将△ADE逆时针旋转60°,使△ADE≌△ABC,从而得到△MDE≌△MAC,因为M为BD的中点,所以ME=MC,因此△EMC为等腰三角形,且∠MDE=∠MAC=30°,所以△EMC为等腰直角三角形。

全等三角形经典模型总结

全等三角形经典模型总结

全等三角形经典模型总结1.S-A-S(边-角-边)全等法则:当一个三角形的两边和夹角分别等于另一个三角形的两边和夹角时,两个三角形全等。

例如,在三角形ABC和DEF中,如果AB=DE,∠ABC=∠DEF,并且BC=EF,那么三角形ABC全等于三角形DEF。

2.A-S-A(角-边-角)全等法则:当一个三角形的两角和夹边分别等于另一个三角形的两角和夹边时,两个三角形全等。

例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,BC=EF,并且∠BCA=∠EFD,那么三角形ABC全等于三角形DEF。

3.S-S-S(边-边-边)全等法则:当两个三角形的三边分别对应相等时,两个三角形全等。

例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且AC=DF,那么三角形ABC全等于三角形DEF。

4.H-L(高-底)全等法则:如果两个三角形的高和底分别相等,那么这两个三角形全等。

例如,在三角形ABC和DEF中,如果h1是三角形ABC的高,b1是它的底,h2是三角形DEF的高,b2是它的底,如果h1=h2,b1=b2,则三角形ABC全等于三角形DEF。

5.A-A-S’(角-角-边)全等法则:若三角形的两个角和两个边分别与另一三角形的两个相对角和边对应,则两个三角形全等。

例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,∠BCA=∠EFD,并且AC/DF=BC/EF,那么三角形ABC全等于三角形DEF。

6.1-1-1全等法则:如果两个三角形的边长度分别相等,那么这两个三角形全等。

例如,在三角形ABC和DEF中,如果AB=DE,AC=DF,并且BC=EF,那么三角形ABC全等于三角形DEF。

7.1-1-边(边-边)全等法则:如果两个三角形的两个边和一个夹角分别相等,那么这两个三角形全等。

例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且∠ABC=∠DEF,那么三角形ABC全等于三角形DEF。

全等三角形证明模型整理及方法总结

全等三角形证明模型整理及方法总结

全等三角形证明模型整理及方法总结Title: Model Organization and Method Summary for the Proof of Congruent TrianglesIntroduction:The concept of congruent triangles is a fundamental idea in geometry, indicating that two triangles have the same shape and size but may differ in position.Proving that two triangles are congruent is a common task in mathematical problem-solving.This document aims to provide a comprehensive summary of the models and methods used for proving congruent triangles.全等三角形是指在几何学中具有相同形状和大小的三角形,但可能位置不同。

证明两个三角形全等是数学问题解决中的常见任务。

本文旨在提供证明全等三角形的模型和方法的全面总结。

Method 1: SSS CongruenceOne of the most straightforward methods for proving congruence between two triangles is the SSS (Side-Side-Side) method.According to this method, if all three pairs of corresponding sides of two triangles are equal in length, then the triangles are congruent.SSS全等是一种最直观的证明两个三角形全等的方法。

全等三角形模型总结及经典练习题

全等三角形模型总结及经典练习题

全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。

二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。

图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。

全等三角形八大基本模型

全等三角形八大基本模型

全等三角形八大基本模型摘要:一、全等三角形的概念和性质二、全等三角形的判定方法三、八大基本模型概述1.手拉手模型2.一线三垂直模型3.一线三等角模型4.等腰三角形中边边角模型5.背对背模型6.半角旋转模型7.角分线模型8.正方形手拉手模型四、八大基本模型的应用举例五、总结与展望正文:全等三角形是初中数学中的一个重要内容,掌握全等三角形的性质和判定方法对于解决几何问题具有重要意义。

全等三角形的判定方法主要包括SSS、SAS、ASA、AAS 和HL 五种,其中SSS 和HL 是全等三角形的常见判定方法。

在实际应用中,全等三角形八大基本模型可以帮助我们更好地理解和解决几何问题。

这八大基本模型分别是:1.手拉手模型:这种模型是通过两个全等三角形的对应边相互牵手而形成的。

比如,若ABC 和DEF 是两个全等三角形,那么我们可以通过AB 与DE、BC 与EF、AC 与DF 的相互牵手形成一个新的全等三角形ABC。

2.一线三垂直模型:这种模型是通过一条直线与三个垂直的线段组成的。

比如,若AB 是直线,BC、CD 和DE 是垂直于AB 的线段,那么三角形ABC 和三角形DEB 是全等的。

3.一线三等角模型:这种模型是通过一条直线与三个相等的角组成的。

比如,若AB 是直线,∠ABC、∠BCD 和∠CDA 是相等的角,那么三角形ABC 和三角形CDA 是全等的。

4.等腰三角形中边边角模型:这种模型是通过对等腰三角形的一腰和一底边以及一个顶角进行操作而形成的。

比如,若AB=AC 是等腰三角形的腰,BC 是底边,∠ABC 是顶角,那么三角形ABC 和三角形ACB 是全等的。

5.背对背模型:这种模型是通过两个全等三角形的对应边背靠背而形成的。

比如,若ABC 和DEF 是两个全等三角形,那么我们可以通过AB 与DF、BC 与DE、AC 与EF 的相互背靠背形成一个新的全等三角形ABC。

6.半角旋转模型:这种模型是通过将一个全等三角形绕其一边的一半旋转而形成的。

全等三角形的相关模型总结汇总

全等三角形的相关模型总结汇总

全等的相关模型总结一、角平分线模型应用1.角平分性质模型:辅助线:过点G作—射线(1).例题应用:①如图1,在「'ABC中,• C = 90,AD平分.CAB,BC =6cm,BD =4cm,那么点D到直线的距离是 _____ . _____②如图2,已知,• 1-/2,- 3"4.求证:AP平分.BAC.图1 图2①2 (提示:作-交于点日②;N1 =也2 二PM =PN 丁乂3=乂4 PN = PQ ”•” PM =PQ,「” PA平分N BAC⑵.模型巩固:练习一:如图3,在四边形中,>,,平分/BAC ..求证:.A . C =180练习四:如图7,/ A =90,AD // BC ,P 是的中点,平分/.练习二:已知如图4,四边形中, .B . D =180°,BC 二CD.求证:AC 平分.BAD.练习三:如图5, Rt^ABC 中,NACB=90°, CD 丄AB,垂足为D , AF 平分Z CAB, 于点F.(1) 求证:.(2) 将图5中的△沿向右平移到A DE '的位置,使点E '落在边上,其他条件不变,如图猜想:BE '于又怎样的数量关系?请证明你的结论.交于点E,交6所示,是图5图6求证:平分/•练习五:如图8,>,/ A 的平分线与的垂直平分线相交于 D,自D 作丄,丄,垂足分别为 E , F .求证:.练习七: 如图10, D 、E 、F 分别是△的三边上的点,,且△的面积与△的面积相等,求证:平分/。

2.角平分线+垂线,等腰三角形比呈现练习六:如图9所示,在△中,边的垂直平分线交△的外角平分线于点 D, F 为垂足,丄于E ,并且>。

求证:―。

C图9(1).例题应用:①•如图1所示,在△中,/ 3/ C,是/的平分线,丄于 F 。

1 求证:BE (AC - AB) 2②•已知:如图2,在 从BC 中,NBAC 的角平分线AD 交BC 于D,且AB = AD,1 作CM _AD 交AD 的延长线于 M.求证:AM (AB AC)2辅助线:延长交射线于 F 辅助线:过点E 作//射线证明:延长交于点 F 。

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结

一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形:例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立 (2)AG 是否与CE 相等(3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分AHE ∠例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ∆≅∆是否成立 (2)AG 是否与CE 相等(3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分AHE ∠例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,问:(1)DBC ABE ∆≅∆是否成立 (2)AE 是否与CD 相等(3)AE 与CD 之间的夹角为多少度 (4)HB 是否平分AHC ∠二、倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

八上:全等三角形的常见模型

八上:全等三角形的常见模型

全等三角形是初中几何的重点,是研究图形性质的基础,在几何证明中有着广泛的应用,在几何证明的过程中,存在着一些全等三角形的经典的模型.这一讲我们会把常见的全等模型分享给大家,希望能让大家对全等的理解更进一步!一、手拉手模型1、等边三角形手拉手已知:如图,ABC△均为等边三角形.△和ADE结论:ABD∠.∠=︒;AP平分BPE△≌ACE△;60BPC2、等腰直角三角形手拉手已知:如图,ABC△均为等腰直角三角形.△和ADE结论:ABD∠.∠=︒;AP平分BPEBPC△;90△≌ACE3、等腰三角形手拉手已知:如图,ABC∠=∠.△均为等腰三角形,且BAC DAE△和ADE结论:ABD∠.∠=∠;AP平分BPE△;BPC BAC△≌ACE二、三垂直模型1、已知:如图,正方形EFGH的各顶点在正方形ABCD的边上.结论:EAF△.△≌HDE△≌GCH△≌FBG2、已知:如图,正方形ABCD中,AG BH⊥,CE DF⊥.⊥,BH CE结论:ABG△.△≌DAF△≌BCH△≌CDE3、已知:如图,正方形ABCD中,点F为CD上一点,连接BF,作AE BF⊥交BC于点E.结论:ABE△.△≌BCF三、角含半角模型1、正方形角含半角已知:如图,正方形ABCD中,点,E F分别为边BC,CD上的点,且45∠=︒.EAF结论:EF DF BE =+;AEF ABE ADF S S S =+△△△.2、等腰直角三角形角含半角已知:如图,等腰直角三角形ABC △中,点D ,E 为斜边BC 上的点,且45DAE ∠=︒.结论:222DE BD CE =+.3、 对角互补模型1) 已知:如图,90AOB DCE ∠=∠=︒,OC 平分AOB ∠.结论:CD CE =;OD OE +; 212ODCE S OC =四边形. 2) 已知:如图,2120AOB DCE ∠=∠=︒,OC 平分AOB ∠.结论:CD CE =;OD OE OC +=;2ODCE S =四边形.全等三角形是初中几何的重点,是研究图形性质的基础,这一讲我们对于全等三角形中常见的模型进行了总结,但是这些内容更偏重理论,希望能够在此抛砖引玉,引发大家对学习方法上的思考,并能在平时学习中对全等三角形的模型多加理解和运用.。

全等三角形模型总结

全等三角形模型总结

全等三角形模型总结⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎪⎪⎩⎩⎨平移全等模型对称(翻折)全等模型旋转全等模型半角全等模型三垂直全等模型全等三角形中的重要模型一线三等角全等模型等腰(直角)三角形中的手拉手全等模型手拉手全等模型等边三角形中的手拉手全等模型一般手拉手全等模型 模型1、平移全等模型,如下图:模型2. 对称(翻折)全等模型,如下图:模型3. 旋转全等模型,如下图:模型4、半角全等模型【解题技巧】过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转(或者补短)到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转(或者补短)——证全等——得到相关结论.模型5、三垂直全等模型如图:模型6、一线三等角全等模型如图:模型7、手拉手全等模型1).等边三角形中的手拉手全等模型如图,△ABC与△CDE均为等边三角形,连接AE、BD,则△BCD≌△ACE.图1 图2图3 图42).等腰(直角)三角形中的手拉手全等模型1.如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD≌△ACE.2.两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE3).一般手拉手全等模型如图1,在任意△ABC中,分别以AB、AC为边作等边△ADB、△ACE,连接DC、BE,则△ADC≌△ACE.如图2,在任意△ABC中,分别以AB、AC为边作正方形ABDE、ACFG,连接EC、BG,则△AEC≌△ABG.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等的相关模型总结⼀一、⻆角平分线模型应⽤用1.⻆角平分性质模型:辅助线:过点G作GE射线AC(1).例例题应⽤用:①如图1,在,那么点D到直线AB的距离是cm.②如图2,已知,,..图1图2①2(提示:作DE AB交AB于点E)②,,,,.(2).模型巩固:练习⼀一:如图3,在四边形ABCD中,BC>AB,AD=CD,BD平分..求证:图3练习⼆二:已知如图4,四边形ABCD中,图4练习三:如图5,交CD于点E,交CB于点F.(1)求证:CE=CF.(2)将图5中的△ADE沿AB向右平移到的位置,使点落在BC边上,其他条件不不变,如图6所示,是猜想:于CF⼜又怎样的数量量关系?请证明你的结论.图5图6练习四:如图7,,P是AB的中点,PD平分∠ADC.求证:CP 平分∠DCB .AD ECBP 2143图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,⾃自D 作DE ⊥AB ,DF ⊥AC ,垂⾜足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外⻆角平分线AD 于点D ,F 为垂⾜足,DE ⊥AB 于E ,并且AB>AC 。

求证:BE -AC=AE 。

图9练习七:如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的⾯面积与△DBF 的⾯面积相等,求证:AD 平分∠BAC 。

2.⻆角平分线+垂线,等腰三⻆角形⽐比呈现辅助线:延⻓长ED交射线OB于F辅助线:过点E作EF∥射线OB (1).例例题应⽤用:①.如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。

求证:证明:延⻓长BE交AC于点F。

②.已知:如图2,在,分析:此题很多同学可能想到延⻓长线段CM,但很快发现与要证明的结论毫⽆无关系。

⽽而此题突破⼝口就在于AB=AD,由此我们可以猜想过C点作平⾏行行线来构造等腰三⻆角形.证明:过点C作CE∥AB交AM的延⻓长线于点E.例例题变形:如图,,,求证:①②(3).模型巩固:练习⼀一、如图3,ΔABC是等腰直⻆角三⻆角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延⻓长线于点E。

求证:BD=2CE。

图3练习⼀一变形:如图4,在△ODC 中,,过点E作图4练习⼆二、如图5,已知△ABC 中,CE 平分∠ACB ,且AE ⊥CE ,∠AED +∠CAE =180度,求证:DE ∥BC图5练习三、如图6,AD ⊥DC ,BC ⊥DC ,E 是DC 上⼀一点,AE 平分∠DAB ,BE 平分∠ABC ,求证:点E 是DC 中点。

图6ACDEBABC D E练习四、①、如图7(a),∥.图7(a)图7(b)图7(c)②、如图7(b),③、如图7(c),其他条件不不变.则在图7(b)、图6(c)两种情况下,DE与BC还平⾏行行吗?它与三边⼜又有怎样的数量量关系?请写出你的猜测,并证明你的结论.(提示:利利⽤用三⻆角形中位线的知识证明线平⾏行行)练习五、如图8,在直⻆角三⻆角形中,,的平分线交于.⾃自作交于,交于.⾃自作于,求证:.图8练习六、如图9所示,在中,,为的中点,是的平分线,若且交的延⻓长线于,求证.图9练习六变形⼀一:如图10所示,是中的外⻆角平分线,于,是的中点,求证且.图10练习六变形⼆二:如图11所示,在中,平分,,于,求证.图11练习七、如图12,在中,,的平分线交与.则有.那么如图13,已知在中,,,.求证:.图12图13练习⼋八、在中,,的平分线交于,过作,为垂⾜足,求证:.练习九、是的⻆角平分线,交的延⻓长线于,交于.求证:.3.⻆角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA上取点B,使OB=OA,从⽽而使≌△OBC.(1).例例题应⽤用:①、在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ。

思路路分析:1)题意分析:本题考查全等三⻆角形常⻅见辅助线的知识:作平⾏行行线。

2)解题思路路:本题要证明的是AB+BP=BQ+AQ。

形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为⼏几条相等线段的和即可得证。

可过O作BC的平⾏行行线。

得△ADO≌△AQO。

得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了了。

④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从⽽而得以解决。

⼩小结:通过⼀一题的多种辅助线添加⽅方法,体会添加辅助线的⽬目的在于构造全等三⻆角形。

⽽而不不同的添加⽅方法实际是从不不同途径来实现线段的转移的,体会构造的全等三⻆角形在转移线段中的作⽤用。

从变换的观点可以看到,不不论是作平⾏行行线还是倍⻓长中线,实质都是对三⻆角形作了了⼀一个以中点为旋转中⼼心的旋转变换构造了了全等三⻆角形。

②、如图所示,在中,是的外⻆角平分线,是上异于点的任意⼀一点,试⽐比较与的⼤大⼩小,并说明理理由.【解析】,理理由如下.【解析】在上截取,连结,根据证得≌,∴,⼜又中,,,∴(2)、模型巩固:练习⼀一、.如图,在△ABC 中,AD ⊥BC 于D ,CD =AB +BD ,∠B 的平分线交AC 于点E ,求证:点E 恰好在BC 的垂直平分线上。

练习⼆二、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC 练习三、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D ,求证:AC +CD =AB练习四、已知:在△中,的平分线和外⻆角的平分线相交于交于求证:EADBCACDABD练习五、在△中,平分,是中点,连结,求证:变式:已知:在△中,平分,求证:练习六、已知:如图,在四边形ABCD 中,AD ∥BC,BC=DC,CF 平分∠BCD,DF ∥AB,BF 的延⻓长线交DC 于点E.求证:(1)BF=DF ;(2)AD=DE.练习七、已知如图,在四边形ABCD 中,AB+BC=CD+DA ,∠ABC 的外⻆角平分线与∠CDA 的外⻆角平分线交于点P .求证:∠APB=∠CPDA B CDFE练习⼋八、如图,在平⾏行行四边形ABCD(两组对边分别平⾏行行的四边形)中,E,F分别是AD,AB边上的点,且BE、DF交于G点,BE=DF,求证:GC是∠BGD的平分线。

练习九、如图,在△ABC中,∠ACB为直⻆角,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.练习⼗十、如图所示,已知中,平分,、分别在、上.,.求证:∥【补充】如图,在中,交于点,点是中点,交的延⻓长线于点,交于点,若,求证:为的⻆角平分线.4.中考巡礼:(1).如图1,OP 是∠AOB 的平分线,请你利利⽤用图形画⼀一对以OP 为所在直线为对称轴的全等三⻆角形,请你参考这个全等三⻆角形的⽅方法,解答下列列问题。

①、如图2,在△ABC 中,∠ACB 是直⻆角,∠B=60,AD 、CE 是∠BAC 、∠BCA 的⻆角平分线,相交于点F ,请你判断并写出EF 与DF 之间的数量量的关系。

②、如图3,在△ABC 中,∠ACB 不不是直⻆角,⽽而(1)中的其他条件不不变,请问,(1)中的结论是否任然成⽴立?若成⽴立,请证明;若不不成⽴立,请说明理理由。

(2).如图,在平⾯面直⻆角坐标系中,B (-1,0),C (1,0)D 为y 轴上的⼀一点,点A 为第⼆二象限内⼀一动点,且∠BAC=2∠BDO ,过点D 作DM ⊥AC 于M ,①、求证:∠ABD=∠ACD ;②、若点E 在BA 的延⻓长线上,求证:AD 平分∠CAE ;③、当点A 运动时,(AC-AB )/AM 的值是否发⽣生变化?若不不变,求其值;若变化,请说明理理由。

AOMNEF 图1AB CD EF图2ABCD EF图3⼆二、等腰直⻆角三⻆角形模型1.在斜边上任取⼀一点的旋转全等:操作过程:(1).将△ABD逆时针旋转,使△ACM≌△ABD,从⽽而推出△ADM为等腰直⻆角三⻆角形.(但是写辅助线时不不能这样写)(2).过点C作,连AM导出上述结论.2.定点是斜边中点,动点在两直⻆角边上滚动的旋转全等:操作过程:连AD.(1).使BF=AE(AF=CE),导出△BDF≌△ADE.(2).使∠EDF+∠BAC=,导出△BDF≌△ADE.(1)、例例题应⽤用:①.解析:⽅方法⼀一:过点C作,⽅方法⼆二:②.证明:⽅方法⼀一:连接AM,证明△MDE≌△MAC.特别注意证明∠MDE=∠MAC.⽅方法⼆二:过点M作MN⊥EC交EC于点N,得出MN为直⻆角梯形的中位线,从⽽而导出△MEC为等腰直⻆角三⻆角形.(2)、练习巩固:①已知:如图所示,Rt△ABC中,AB=AC,,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.①、是判断△OMN的形状,并证明你的结论.②、当M、N分别在线段AC、AB上移动时,四边形AMON的⾯面积如何变化?思路路:两种⽅方法:②在正⽅方形ABCD中,BE=3,EF=5,DF=4,求∠BAE=∠DCF为多少度.提示如右图:3.构造等腰直⻆角三⻆角形(1)、利利⽤用以上的1和2都可以构造等腰直⻆角三⻆角(略略);(2)、利利⽤用平移、对称和弦图也可以构造等腰直⻆角三⻆角.如下图:图3-1图3-2操作过程:在图3-2中,先将△ABD以BD所在的直线为对称轴作对称三⻆角形,再将此三⻆角形沿⽔水平⽅方向向右平移⼀一个正⽅方形边⻓长的⻓长度单位,使A与M,D与E重合.例例题应⽤用:已知:平⾯面直⻆角坐标系中的三个点,,求∠OCA+∠OCB的度数.4.将等腰直⻆角三⻆角形补全为正⽅方形,如下图:图4-1图4-2例例题应⽤用:思路路:构造正⽅方形ACBM,可以构造出等边△APM,从⽽而造出,⼜又根据,可得,再由于,故⽽而得到从⽽而得证.例例题拓拓展:若△ABC不不是等腰直⻆角三⻆角形,即,⽽而是,其他条件不不变,求证:∠2=2∠1.练习巩固:在平⾯面直⻆角坐标系中,A(0,3),点B的纵坐标为2,点C的纵坐标为0,当A、B、C 三点围成等腰直⻆角三⻆角形时,求点B、C的坐标.(1)、当点B为直⻆角顶点:图1图2(2)、当点A为直⻆角顶点:图3图4(3)、当点C为直⻆角顶点:图5图6三、三垂直模型(弦图模型)①.②.③.由△ABE≌△BCD导出由△ABE≌△BCD导由△ABE≌△BCD导出ED=AE-CD出EC=AB-CD BC=BE+ED=AB+CD1.例例题应⽤用:例例1.已知:如图所示,在△ABC中,AB=AC,,D为AC中点,AF⊥BD于E,交BC于F,连接DF.求证:∠ADB=∠CDF.思路路:⽅方法⼀一:过点C作MC⊥AC交AF的延⻓长线于点M.先证△ABD≌△CAM,再证△CDF≌△CMF即可.⽅方法⼆二:过点A作AM⊥BC分别交BD、BC于H、M.先证△ABH≌△CAF,再证△CDF≌△ADH即可.⽅方法三:过点A作AM⊥BC分别交BD、BC于H、M.先证Rt△AMF≌Rt△BMH,得出HF∥AC.由M、D分别为线段AC、BC的中点,可得MD为△ABC的中位线从⽽而推出MD∥AB,⼜又由于,故⽽而MD⊥AC,MD⊥HF,所以MD为线段HF的中垂线.所以∠1=∠2.再由∠ADB+∠1=∠CDF+∠2,则∠ADB=∠CDF.例例1拓拓展(1):已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥B M于E,交BC于F,连接NF.求证:①∠ADB=∠CDF.②BM=AF+FN思路路:同上题的⽅方法⼀一和⽅方法⼆二⼀一样.拓拓展(2):其他条件不不变,只是将BM和FN分别延⻓长交于点P,求证:①PM=PN,②PB=PF+AF.思路路:同上题的⽅方法⼀一和⽅方法⼆二⼀一样.例例2.如图2-1,已知AD∥BC,△ABE和△CDF是等腰直⻆角三⻆角形,∠EAB=∠CDF=,AD=2,BC=5,求四边形AEDF的⾯面积.图2-1解析:如图2-2,过点E、B分别作EN⊥DA,BM⊥DA交DA延⻓长线于点N、M.过点F、C分别作FP⊥AD,CQ⊥AD交AD及AD延⻓长线于点P、Q.∵△ABE和△CDF是等腰直⻆角三⻆角形,∴∠EAB=∠CDF=,AE=AB,DF=CD.∵EN⊥DA,BM⊥DA,FP⊥AD,CQ⊥AD,∴∠NMB=∠ENA=∠FPD=∠DQC=.∴∠ENA=∠MBA,∠FDP=∠QCD.∴△ENA≌△ABM,△FPD≌△DQC.∴N E=AM,PF=DQ.∴N E+PF=DQ+AM=MQ-AD.∵AD∥BC,CQ∥BM,∠BMN=,∴四边形BMQC是矩形.∴BC=MQ∵AD=2,BC=5∴N E+PF=5-2=3∴图2-22.练习巩固:(1)、如图(1)-1,直⻆角梯形ABCD中,AD∥BC,∠ADC=,是AD的垂直平分线,交AD于点M,以腰AB为边做正⽅方形ABFE,EP⊥于点P.求证:2EP+AD=2CD.(1)-1(1)-2(2)、如图,在直⻆角梯形ABCD中,∠ABC=,AD∥BC,AB=AC,E是AB的中点,CE⊥BD.①求证:BE=AD;②求证:AC是线段ED的垂直平分线;③△BCD是等腰三⻆角形吗?请说明理理由.四、⼿手拉⼿手模型1.△ABE和△ACF均为等边三⻆角形结论:(1).△ABF≌△AEC(2).∠BOE=BAE=(“⼋八字模型证明”)(3).OA平分∠EOF拓拓展:条件:△ABC和△CDE均为等边三⻆角形结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三⻆角形(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC (8)、OE=OC+OD((7),(8)需构造等边三⻆角形证明)2.△ABD和△ACE均为等腰直⻆角三⻆角形结论:(1)、BE=CD(2)BE⊥CD3.ABEF和ACHD均为正⽅方形结论:(1)、BD⊥CF(2)、BD=CF变形⼀一:ABEF和ACHD均为正⽅方形,AS⊥BC交FD于T,求证:①M为FD的中点.②⽅方法⼀一:⽅方法⼆二:⽅方法三:变形⼆二:ABEF和ACHD均为正⽅方形,T为FD的中点,求证:AS⊥BC4.当以AB、AC为边构造正多边形时,总有:∠1=∠2=.五、双垂直+⻆角平分线模型结论:AE=AF拓拓展:若AP平分∠BAD,其他条件不不变,求证:AP⊥CF六、半⻆角模型条件:思路路:(1)、延⻓长其中⼀一个补⻆角的线段(延⻓长CD到E,使ED=BM,连AE或延⻓长CB到F,使FB=DN,连AF)结论:①MN=BM+DN②③AM、AN分别平分∠BMN和∠DNM (2)、对称(翻折)思路路:分别将△ABM和△ADN以AM和AN为对称轴翻折,但⼀一定要证明M、P、N三点共线.(∠B+∠D=且AB=AD)例例题应⽤用:例例1、在正⽅方形ABCD中,若M、N分别在边BC、CD上移动,且满⾜足MN=BM+DN,求证:①.∠MAN=②.③.AM、AN分别平分∠BMN和∠DNM.思路路同上略略.例例1拓拓展:在正⽅方形ABCD中,已知∠MAN=,若M、N分别在边CB、DC的延⻓长线上移动,①.试探究线段MN、BM、DN之间的数量量关系.②.求证:AB=AH.提示如图:例例2.在四边形ABCD中,∠B+∠D=,AB=AD,若E、F分别在边BC、CD且上,满⾜足EF=BE+DF.求证:提示:练习巩固:如图,在四边形ABCD中,∠B=∠D=,AB=AD,若E、F分别在边BC、CD上的点,且.求证:EF=BE+DF.提示:。

相关文档
最新文档