数学人教版八年级下册直角三角形斜边上的中线的性质

合集下载

数学人教版八年级下册直角三角形斜边上的中线等于斜边的一半

数学人教版八年级下册直角三角形斜边上的中线等于斜边的一半

《直角三角形斜边上的中线等于斜边的一半》教学设计广州市第四中学邓丽丽一、教学内容与内容分析1、教学内容:直角三角形斜边上的中线等于斜边的一半性质的形成和应用。

2、内容分析:来源于人教版八年级数学下册19.2.1矩形一节,由矩形的对角线性质“矩形的对角线相等”我们得到了直角三角形的一个重要性质:“直角三角形斜边上的中线等于斜边的一半”。

本课主要内容是一、为什么说“直角三角形斜边上的中线等于斜边的一半”;二、“直角三角形斜边上的中线等于斜边的一半”的应用(包括应用于生活实际问题、应用于几何计算与证明)。

利用倍长中线法,利用对称的性质构造全等三角形,以及构造中位线法证明直角三角形斜边上的中线等于斜边的一半,总结中点辅助线模型,为中考常见题型中的中点问题的解决提供了基础和方法。

二、教学目标与目标分析1、教学目标(1)知识与技能目标:能掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用,能利用添辅助线证明有关中点的几何问题;(2)过程与方法目标:通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感悟化归思想;(3)情感与态度目标:通过提供丰富的,有吸引力的探索活动和现实生活中的问题,让学生领悟数学源于生活用于生活,鼓励学生大胆思考,勇于探索,从中获得成功的体验,激发学生的学习兴趣。

三、教学重点与教学难点:教学重点:直角三角形斜边上的中线性质定理的证明与应用。

教学难点:直角三角形斜边上的中线性质定理的证明与应用。

3、突出重点、突破难点的方法与策略:☆突出重点的方法:通过设置情境问题,引导学生思考、探究和讨论,在学生的自主探究过程中突出重点☆突破难点的方法:通过教师的启发引导,充分运用多媒体教学手段,开展小组讨论、探讨交流、归纳总结来突出主线,层层深入,逐一突破难点。

四、教学方法:根据本节课的教学内容、教学目标以及学生的认知特点和实际水平,教学上本节课采用“情景引入——探索新知——应用新知”的教学方法,并将学生分成几个小组,实行以个人自主探究、小组合作交流为主,教师适当引导为辅的教学模式。

2019年人教版八下数学《18.2 直角三角形斜边上的中线》专项复习资料

2019年人教版八下数学《18.2 直角三角形斜边上的中线》专项复习资料

2019年人教版八下数学《18.2 直角三角形斜边上的中线》专项复习资料一.选择题(共10小题)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.22.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.273.如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=80°,那么∠GHE等于()A.5°B.10°C.20°D.30°【1】【2】【3】4.如图,∠MON=90°,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B在边ON上运动时,A 随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为()A.2.4 B.C.D.5.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点,则DC和EF的大小关系是()A.DC>EF B.DC<EF C.DC=EF D.无法比较6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD=()A.22.5°B.30°C.36°D.45°【4】【5】【6】7.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=10,BD=8,则MN为()A.3 B.4 C.5 D.68.如果三角形中一边上的中线等于这边的一半,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形9.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°10.如图,△ABC中,AB、BC、CA的中点分别是E,F,G,AD是高.则下列选项正确的有()个(1)∠EDG=∠EFG;(2)∠B=∠BDE;(3)∠CDG=∠C;(4)∠GFC=∠ADE.A.1 B.2 C.3 D.4【7】【9】【10】二.填空题(共10小题)11.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC 于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于.12.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE,若AE=6.5,AD=5,则AC=;△ABE的周长是.13.把一副三角板如图放置,E是AB的中点,连接CE、DE、CD,F是CD的中点,连接EF.若AB=4,则S△CEF=.【11】【12】【13】14.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连结OC.若AC=4,BC=3,AB=5,则OC的长度的最大值是.15.如图,在四边形ABCD中,BC⊥AC于点C,BE⊥AD于点E,∠BAC=60°,点G是AB的中点,已知BC=,则GE的长是.16.如图,在△ABC中,∠ACB=90°,AC=8,BC=3,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C 随之在y轴上运动,在运动过程中,点B到原点O的最大距离为.【14】【15】【16】17.如图所示,在平面直角坐标系中,矩形ABCD定点A、B在y轴、x轴上,当B在x轴上运动时,A随之在y 轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.18.一个直角三角形斜边上的中线长为10,周长为48,则此直角三角形的面积为.19.如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=°.20.如图是一副三角尺拼成的四边形ABCD,E为斜边BD中点,则∠ACE=.【17】【19】【20】21.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.22.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.23.如图所示,四边形ABCD由一个∠ACB=30°的Rt△ABC与等腰Rt△ACD拼成,E为斜边AC的中点,求∠BDE 的大小.24.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.25.△ABC中,BE⊥AC,CF⊥AB,D为BC中点,设EB与CF相交于K,N为KA的中点,探索DN和EF的位置关系.26.已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.27.小明在学习矩形这一节时知道“直角三角形斜边上的中线等于斜边的一半”,由此引发他的思考,这个定理的逆命题成立吗?即:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是否为直角三角形?通过探究,小明发现这个猜想也成立,以下是小明的证明过程:已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°爱动脑筋的小明发现用本学期所学知识也能证明这个结论,并想出了图2、图3两种不同的证明思路,请你选择其中一种,把证明过程补充完整:28.引理:如图1所示已知Rt△ABC中,CD是斜边AB上的中线,则CD=AD=DB=AB应用格式为:∵CD是斜边AB上的中线,∴CD=AD=DB=AB如图2所示已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB直线于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(本题需要用引理)(2)若AE=3,CH=5.求边AC的长.29.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.《直角三角形斜边上的中线》专项提升参考答案与试题解析一.选择题(共10小题)1.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH 的长是()A.2.5 B.C. D.2【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.2.(2015秋•无锡期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM 的周长是()A.17 B.21 C.24 D.27【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,又∵EF=7,∴△EFM的周长=EF+ME+FM=7+5+5=17.故选A.3.(2015春•威海期末)如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=80°,那么∠GHE等于()A.5°B.10°C.20°D.30°【解答】解:连接AH,CH,∵在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点,∴AH=CH=BD.∵点G时AC的中点,∴HG是线段AC的垂直平分线,∴∠EGH=90°.∵∠BEC=80°,∴∠GEH=∠BEC=80°,∴∠GHE=90°﹣80°=10°.故选B.4.(2014春•范县期末)如图,∠MON=90°,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B 在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为()A.2.4 B.C.D.【解答】解:如图,取AB的中点D,连接CD.∵△ABC是等边三角形,且边长是2,∴BC=AB=2,∵点D是AB边中点,∴BD=AB=1,∴CD===,即CD=;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,由(1)得,CD=,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故选:C.5.(2016•东明县一模)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点,则DC和EF 的大小关系是()A.DC>EF B.DC<EF C.DC=EF D.无法比较【解答】解:∵E、F分别为AC、BC的中点,∴EF=AB,在Rt△ABC中,D是AB的中点,∴CD=AB,∴CD=EF,故选:C.6.(2015春•唐山期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD=()A.22.5° B.30°C.36°D.45°【解答】解:∵∠ACB=90°,∠ACD=3∠BCD,∴∠BCD=90°×=22.5°,∠ACD=90°×=67.5°,∵CD⊥AB,∴∠B=90°﹣22.5°=67.5°,∵E是AB的中点,∠ACB=90°,∴CE=BE,∴∠BCE=∠B=67.5°,∴∠ECD=∠BCE﹣∠BCD=67.5°﹣22.5°=45°,故选D.7.(2015秋•邗江区期中)已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=10,BD=8,则MN为()A.3 B.4 C.5 D.6【解答】解:连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM=5,又N是BD的中点,∴BN=DN=BD=4,∴MN==3,故选:A.8.(2015春•邵阳县期末)如果三角形中一边上的中线等于这边的一半,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【解答】解:∵三角形中一边上的中线等于这边的一半,∴这个三角形是直角三角形.故选B.9.(2016•保定三模)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.10.(2014秋•新泰市期末)如图,△ABC中,AB、BC、CA的中点分别是E,F,G,AD是高.则下列选项正确的有()个(1)∠EDG=∠EFG;(2)∠B=∠BDE;(3)∠CDG=∠C;(4)∠GFC=∠ADE.A.1 B.2 C.3 D.4【解答】解:∵AD是高,且E是AB的中点,∴DE=BE=AE,∴∠B=∠BDE,∠EAD=∠ADE,故(2)正确.同理,∠DAG=∠ADG,∠CDG=∠C,则(3)正确,(4)错误;又∵AB、BC、CA的中点分别是E,F,G,∴EF∥AC,FG∥AE,∴四边形AEFG是平行四边形,∴∠EFG=∠EAG=∠EAD+∠DAG=∠ADE+∠ADG=∠EDG.故(1)正确.故选C.二.填空题(共10小题)11.(2012•鞍山)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为:.12.(2012秋•义乌市期末)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE,若AE=6.5,AD=5,则AC= 6.5;△ABE的周长是25.【解答】解:∵AD⊥AB,∴△ABD为直角三角形.又∵点E是BD的中点,∴BD=AE=BE=6.5,∴∠EAB=∠B,∴∠AEC=∠B+∠EAB=2∠B=∠C,即∠AEC=∠C,∴AE=AC=6.5.在Rt△ABD中,AD=5,BD=2AE=2×6.5=13∴AB=12(勾股定理),∴△ABE的周长是AB+AE+BE=12+6.5+6.5=25.故答案分别是:6.5;25.13.(2014•松北区一模)把一副三角板如图放置,E是AB的中点,连接CE、DE、CD,F是CD的中点,连接EF.若AB=4,则S△CEF=.【解答】解:作DG⊥CE于点G.∵AB=4∴CE=BC=AB=2,DE=AB=2,∵∠CED=∠DEB+∠CEB=90°+60°=150°,∴∠DEG=180°﹣150°=30°.在直角△DEG中,DG=DE=×2=1.∴S△CDE=CE•DG=×2×1=1,∵F是CD中点.∴S△CEF=S△CDE=×1=.故答案是:.14.(2015秋•宜兴市校级期中)如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连结OC.若AC=4,BC=3,AB=5,则OC的长度的最大值是5.【解答】解:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴CE=AB,∵OE+CE≥OC,∴OC的最大值为OE+CE,即OC的最大值=AB=5,故答案为5.15.(2014•丹东一模)如图,在四边形ABCD中,BC⊥AC于点C,BE⊥AD于点E,∠BAC=60°,点G是AB的中点,已知BC=,则GE的长是1.【解答】解:设AB=2x,∵BC⊥AC,∠BAC=60°,∴∠ABC=90°﹣60°=30°,∴AC=AB=x,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,即(2x)2=x2+()2,解得x=1,∴AB=2,∵BE⊥AD,点G是AB的中点,∴GE=AB=x=1.故答案为:1.16.(2014•路南区三模)如图,在△ABC中,∠ACB=90°,AC=8,BC=3,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为9.【解答】解:作AC的中点D,连接OD、BD.∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵BD===5,OD=AD=AC=4,∴点B到原点O的最大距离为5+4=9.故答案是:9.17.(2016•郑州校级模拟)如图所示,在平面直角坐标系中,矩形ABCD定点A、B在y轴、x轴上,当B在x 轴上运动时,A随之在y轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为+1.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2,∴OE=AE=AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE===,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为+1.故答案为:+1.18.(2011秋•诸暨市校级期中)一个直角三角形斜边上的中线长为10,周长为48,则此直角三角形的面积为96.【解答】解:∵直角三角形斜边上的中线长为10,∴斜边的长为20,设两直角边分别为x、y,∵周长为48,∴x+y=48﹣20=28,平方得,x2+2xy+y2=784,根据勾股定理,x2+y2=202=400,∴2xy=784﹣400=384,∴xy=96,即直角三角形的面积为96.故答案为:96.19.(2015秋•南京期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=75°.【解答】解:∵∠ACB=90°,点E是AB中点,∴EC=EA=EB=AB,∴∠ECA=∠CAB=30°,∴∠CEB=60°,∵AD=BD,点E是AB中点,∴DE⊥AB,即∠AED=90°,∴∠DEC=180°﹣90°﹣60°=30°,∵∠ADB=90°,点E是AB中点,∴DE=AB,∴ED=EC,∴∠EDC=75°,故答案为:75.20.(2014秋•鄄城县期中)如图是一副三角尺拼成的四边形ABCD,E为斜边BD中点,则∠ACE=15°.【解答】解:根据直角三角形性质,∵E为斜边BD中点,∴CE=DB,AE=DB,即CE=AE,又根据题意及图知∠ADB=60°,∠CDE=45°,∴∠DEA=∠ADB=60°,∠DEC=90°,∴∠AEC=150°,又CE=AE,∴∠ACE=∠CAE=15°.故答案为:15°.三.解答题(共9小题)21.(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.22.(2014秋•沧浪区校级期中)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.【解答】(1)证明:∵DE⊥BC,∴∠DEB=90°,∵AD∥BC,∴∠ADE+∠DEB=180°,∴∠ADE=90°,∵G为AF的中点,∴DG=AG,∴∠DAF=∠ADG,∴∠DGC=∠DAF+∠ADG=2∠DAC,∵AD∥BC,∴∠ACB=∠DAC,∵∠ACD=2∠ACB,∴∠DGC=∠DCA,∴DC=DG;(2)解:∵在Rt△DEC中,∠DEC=90°,DG=DC=5,CE=2,∴由勾股定理得:DE==.23.(2014春•海盐县校级期末)如图所示,四边形ABCD由一个∠ACB=30°的Rt△ABC与等腰Rt△ACD拼成,E 为斜边AC的中点,求∠BDE的大小.【解答】解:∵点E是Rt△ABC,Rt△ACD斜边AC的中点,∴BE=DE=AC=CE,DE⊥AC,∴∠ACB=∠EBC,∠BDE=∠EBD,又∵∠ACB=30°,∴∠AEB=∠EBC+∠ECB=30°+30°=60°∴∠BED=∠BEA+∠DEA=60°+90°=150°∴∠BDE=(180°﹣∠BED)=(180°﹣150°)=15°.24.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.【解答】证明:连接BM、CN,∵BA=BD,DM=MA,∴BM⊥AD,∴∠BMC=90°,又BP=PC,∴MP=BC,同理,NP=BC,∴MP=NP,∴△PMN是等腰三角形.25.△ABC中,BE⊥AC,CF⊥AB,D为BC中点,设EB与CF相交于K,N为KA的中点,探索DN和EF的关系.【解答】解:∵BE⊥AC,CF⊥AB,D为BC中点,∴DE=DF=BC,连接NE、NF,∵N为KA的中点,∴NE=NF=AK,∴DN垂直平分EF.26.(2012秋•海淀区期末)已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.【解答】解:(1)结论:BM=DM,∠BMD=2∠BCD.理由:∵BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,∴BM=DM=CE;又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;同理可得∠DME=2∠DCM;∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD证法一:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=MC,又点M是Rt△BEC的斜边EC的中点,∴DM=EC=MC,∴BM=DM;∵BM=MC,DM=MC,∴∠CBM=∠BCM,∠DCM=∠CDM,∴∠BMD=∠EMB﹣∠EMD=2∠BCM﹣2∠DCM=2(∠BCM﹣∠DCM)=2∠BCD,即∠BMD=2∠BCD.证法二:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=ME;又点M是Rt△DEC的斜边EC的中点,∴DM=EC=MC,∴BM=DM;∵BM=ME,DM=MC,∴∠BEC=∠EBM,∠MCD=∠MDC,∴∠BEM+∠MCD=∠BAC=90°﹣∠BCD,∴∠BMD=180°﹣(∠BMC+∠DME),=180°﹣2(∠BEM+∠MCD)=180°﹣2(90°﹣∠BCD)=2∠BCD,即∠BMD=2∠BCD.(3)所画图形如图所示:图1中有BM=DM,∠BMD=2∠BCD;图2中∠BCD不存在,有BM=DM;图3中有BM=DM,∠BMD=360°﹣2∠BCD.解法同(2).27.(2015春•瑶海区期末)小明在学习矩形这一节时知道“直角三角形斜边上的中线等于斜边的一半”,由此引发他的思考,这个定理的逆命题成立吗?即:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是否为直角三角形?通过探究,小明发现这个猜想也成立,以下是小明的证明过程:已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°爱动脑筋的小明发现用本学期所学知识也能证明这个结论,并想出了图2、图3两种不同的证明思路,请你选择其中一种,把证明过程补充完整:【解答】证明:如图2,延长CD至E,使DE=CD,连接AE、BE;又∵AD=DB,∴四边形ACBE是平行四边形,又∵CD=AB,CD=CE,∴四边形ACBE是矩形,∴∠ACB=90°,∴△ABC为直角三角形.28.(2015秋•启东市校级月考)引理:如图1所示已知Rt△ABC中,CD是斜边AB上的中线,则CD=AD=DB=AB 应用格式为:∵CD是斜边AB上的中线,∴CD=AD=DB=AB如图2所示已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB直线于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(本题需要用引理)(2)若AE=3,CH=5.求边AC的长.【解答】解:(1)①连接CD,∵∠ACB=90°,D为AB的中点,AC=BC,∴CD=AD=BD,又∵AC=BC,∴CD⊥AB,∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF,∴DE=DF.②连接DG,∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠CDG又∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH.(2)分两种情况:①如图,当E在线段AC上时,∵CG=GH=EG=GF,∴CH=EF=5,∵△ADE≌△CDF,∴AE=CF=3,∴在Rt△ECF中,由勾股定理得:CE==4,∴AC=AE+EC=3+4=7;②如图,当E在线段CA延长线上时,AC=EC﹣AE=4﹣3=1.③E在AC延长线上时,AC=AE﹣CE,AC=3﹣4=﹣1(舍去).综合上述,AC=7或1.29.(2016春•广饶县期末)如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.【解答】解:(1)如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC,=2(180°﹣∠A),=360°﹣2∠A,∴∠DME=180°﹣(360°﹣2∠A),=2∠A﹣180°.。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

人教版八年级全册知识点归纳

人教版八年级全册知识点归纳

ACBD八年级上、下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性(即0,0≥≥a a )2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式 (1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式)0,0(>≥=b a bab a 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方(或开方),再乘除,最后加减,有括号的先算括号里的。

第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。

,那么这个三角形是直角三角形。

3. 互逆命题:题设、结论正好相反的两个命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

4.直角三角形的性质(1)直角三角形的两个锐角互余。

(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

(3)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

(4)、直角三角形斜边上的中线等于斜边的一半第十八章 平行四边形1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

(2012年1月最新最细)2011全国中考真题解读120考点汇编矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半一、选择题1.(2011•南通)如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=4cm.考点:翻折变换(折叠问题)。

分析:根据题意推出AB= A'B=2,由AE=CE推出AB1=B1C,即AC=4.解答:解:∵AB=2cm,A'B=AB,,∴A'B=2,∵矩形ABCD,AE=CE,∴∠ABE=∠AB1E=90°,∵AE=CE,∴A'B='B C,∴AC=4.故答案为4.点评:本题主要考察翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB= A'B.2.(2011江苏无锡,5,3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质。

专题:推理填空题。

分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项错误;B、菱形和矩形的对角线都相等;故本选项正确;C、菱形和矩形的对角线都互相平分;故本选项正确;D、菱形对角相等,但不互补;故本选项正确;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.(2011•宁夏,2,3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AB 的长是( )A 、2B 、4C 、23D 、43考点:矩形的性质;等边三角形的判定与性质。

分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD 中,AO=21AC ,DO=21BD ,AC=BD , ∴AO=DO , 又∵∠AOD=60°, ∴∠ADB=60°, ∴∠ABD=30°, ∴AB AD=tan30°, 即AB 2=33, ∴AB=23. 故选C .点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.4.(2011台湾,29,4分)如图,长方形ABCD 中,E 为BC 中点,作∠AEC 的角平分线交AD 于F 点.若AB =6,AD =16,则FD 的长度为何?( )A .4B .5C .6D .8考点:矩形的性质;角平分线的性质;勾股定理。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

新人教版八年级数学全册知识点总结

新人教版八年级数学全册知识点总结

新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

直角三角形斜边上的中线等于斜边的一半教学设计

直角三角形斜边上的中线等于斜边的一半教学设计

《直角三角形斜边上的中线等于斜边的一半》教学设计广州市第四中学邓丽丽一、教学内容与内容分析1、教学内容:直角三角形斜边上的中线等于斜边的一半性质的形成和应用。

2、内容分析:来源于人教版八年级数学下册19.2.1 矩形一节,由矩形的对角线性质“矩形的对角线相等”我们得到了直角三角形的一个重要性质:“ 直角三角形斜边上的中线等于斜边的一半” 。

本课主要内容是一、为什么说“直角三角形斜边上的中线等于斜边的一半”;二、“直角三角形斜边上的中线等于斜边的一半”的应用(包括应用于生活实际问题、应用于几何计算与证明)。

利用倍长中线法,利用对称的性质构造全等三角形,以及构造中位线法证明直角三角形斜边上的中线等于斜边的一半,总结中点辅助线模型,为中考常见题型中的中点问题的解决提供了基础和方法。

二、教学目标与目标分析1、教学目标(1)知识与技能目标:能掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用,能利用添辅助线证明有关中点的几何问题;(2)过程与方法目标:通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感悟化归思想;(3)情感与态度目标:通过提供丰富的,有吸引力的探索活动和现实生活中的问题,让学生领悟数学源于生活用于生活,鼓励学生大胆思考,勇于探索,从中获得成功的体验,激发学生的学习兴趣。

三、教学重点与教学难点:教学重点:直角三角形斜边上的中线性质定理的证明与应用。

教学难点:直角三角形斜边上的中线性质定理的证明与应用。

3、突出重点、突破难点的方法与策略:☆ 突出重点的方法:通过设置情境问题,引导学生思考、探究和讨论,在学生的自主探究过程中突出重点☆ 突破难点的方法:通过教师的启发引导,充分运用多媒体教学手段,开展小组讨论、探讨交流、归纳总结来突出主线,层层深入,逐一突破难点。

四、教学方法:根据本节课的教学内容、 教学目标以及学生的认知特点和实际水平, 教学上本节课采用 “情景引入——探索新知——应用新知” 的教学方法, 并将学生分成几个小组, 实行以个人 自主探究、小组合作交流为主,教师适当引导为辅的教学模式。

人教版八年级下册三角形的中位线定理

人教版八年级下册三角形的中位线定理
一、知识方面: 1、三角形中位线概念:
连接三角形两边中点的线段叫做三角形的中位线.
2、三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半.
二、思想方法方面:倍长短线,转化思想.
平行四边形的判定 (3)
----三角形的中位线定理
温故知新
两组对边分别平行的四边形是平行四边形

边 两组对边分别相等的四边形是平行四边形
行 四
一组对边平行且相等的四边形是平行四边形


角 两组对角分别相等的四边形是平行四边形



对角线 对角线 互相平分 的四边形是平行四边形
情景导入
如图,A、B两点被池塘隔开,在AB外选一点
5
F6
∴DF= 1 BC=5cm
2
同理:EF=
1
AB=6cmB源自36 CDE= 12 AC=3cm
E 10
∴三角形DEF2的周长=DF+EF+DE=14cm。 你有何
发现?
5:如图,△ABC中,D是AB上一点,且
AD=AC , AE⊥CD于E,F是CB的中点。
求证:BD=2EF
证明:
C
A D A C , A E C D C E D E ( 等 腰 三 角 形 三 线 合 一 )
F是CB的中点
EF
∴CF BF
∵CE=DE,CF=BF
EF1BD,即BD2EFA
2
B D
6、如图,△ABC中,D、E、F分别是AB、AC、BC的中点, 中线AF与DE中位线有什么特殊的关系?证明你的猜想。
AF与DE互相平分 理由如下: 证明:连接DF
∵ E,F分别是AC、BC的中点 ∴EF∥AB, EF=½ AB ∵ D是AB中点 ∴AD =½ AB; ∴ EF∥AD, EF=AD ∴四边形ADFE平行四边形

八年级数学《巧用设疑激思,探究直角三角形的斜边上中线的性质》教学案例人教版

八年级数学《巧用设疑激思,探究直角三角形的斜边上中线的性质》教学案例人教版

设疑激思的教学案例《巧用设疑激思,探究直角三角形的斜边上中线的性质》内容提要:“学起于思,思源于疑。

”在课堂教学中,适时适度的设疑,巧妙的设疑,能充分调动学生的学习积极性,激发求知欲望,开拓学生思维,提高教学效果。

直角三角形斜边上的高等于斜边的一半,在与勾股定理,等腰三角形的相关内容结合时,常常作为一个条件来应用。

关键词:案例设疑激思直角三角形斜边中线所谓设疑激思,就是根据学生的好奇心理和求知欲望,在教学中,教师运用一定的方式、方法、技巧设置问题,制造疑惑,然后引导学生带着问题探究学习,充分发挥学生的主体作用,进而完成教学任务的一种教学方法。

“学起于思,思源于疑。

”在课堂教学中,适时适度的设疑,巧妙的设疑,能充分调动学生的学习积极性,激发求知欲望,开拓学生思维,提高教学效果。

本文拟尝试用一节习题课,来体现设疑激思法在数学教学中的应用Array人教版八年级数学下册矩形一节,由矩形的对角线性质“矩形的对角线相等”我们得到了直角三角形的一个重要性质:“直角三角形斜边上的中线等于斜边的一半”1如图:△ABC中,∠ACB=90o,点D是斜边AB的中点,则CD=AB2对于这条性质,教材的要求较低,但在与其他相关的知识结合时,运用却相当广泛,并且这条性质常常作为一个重要的条件出现,为了使学生熟练地掌握和运用,我在习题课上分层次设置了一下几个设疑激思的环节,来提高学生“设疑——探究——释疑”的能力。

一、基本应用:1、如图Rt △ABC 中,ACB =90o ,AC =5,BC =12,求斜边上的中线CD 的长 解(略)2、如图,Rt △ABC 中,CD 是斜边AB 上的中线,如果CD =5,AC =6,你能求出BC 的长吗?设计理念:直接应用性质,可以使所有学生有愉悦的体验,进而提高兴趣,增强信心。

解:∵CD 是斜边AB 上的中线,CD =5 ∴斜边AB =10 根据勾股定理,得 BC 2=AB 2-AC 2=64 ∴BC =8探究结论:这条性质说明了直角三角形斜边上的中线与斜边的数量关系,只要给出了性质的题设,我们就可以利用结论进行计算。

第2讲 直角三角形的性质--学生版

第2讲 直角三角形的性质--学生版

第2讲 直角三角形的性质知识要点--直角三角形的性质(1)(2) 一、普通直角三角形的性质: 性质一:直角三角形两锐角互余. 数学语言: ∵∠C=90°∵∠A+∠B=90°(直角三角形两锐角互余)性质二:直角三角形斜边上的中线等于斜边的一半。

数学语言:∵∠BCA=90°,D 是AB 的中点 ∵AB CD 21=(直角三角形斜边上的中线等于斜边的一半)二、基本图形:(定理的实质)1、直角三角形斜边上的中线把直角三角形分成两个等腰三角形。

∵∠BCA=90°,D 是AB 的中点∵BD=CD DA=DC ((直角三角形斜边上的中线等于斜边的一半。

) ∵∠B=∠DCB ∠A=∠DCA (等边对等角)2、直角三角形斜边上的中线等于斜边的一半的两个逆命题都是真命题,但不是定理,不可以直接使用。

(1)已知:BD=CD=AD ,我们怎么证明∠BCA=90°?(2)已知:BD=CD ,∠BCA=90°,我们怎么证明DA=DC ?【例1】(1)直角三角形的两个锐角(2)直角三角形斜边上的中线等于 (3)ABC Rt ∆中,︒=∠90ACB ,︒=∠48A ,则=∠B(4)ABC Rt ∆中,︒=∠90ACB ,D 为斜边AB 的中点,若10=AB ,则CD =【例2】(1)ABC Rt ∆中,︒=∠90C ,︒=∠20A ,D 为BC 边中点,则BCD ∠的度数是 度 (2)ABC Rt ∆中,CD 是斜边AB 上的高,︒=∠25A ,那么BCD ∠= 度(3)如果直角三角形的面积是12,斜边上的高是2,那么斜边上的中线长是 (4)等腰直角三角形斜边上的中线为5cm ,则这个三角形的面积为 2cm【例3】如图,在△ABC 中,AD 平分∠BAC ,交BC 于点D ,BE ⊥AD ,交AD 的延长线于点E ,BF =EF .求证:EF ∥AC .【例4】如图,ABC ∆中,︒=∠90ACB ,D 为AB 的中点,CD BE ⊥于F ,交AC 于E ,求证:CBE A ∠=∠【例5】已知:如图,ABC Rt ∆和ADC Rt ∆,∠ABC =∠ADC =90°,点E 是AC 的中点.求证:∠EBD =∠EDB .【例6】已知,如图BCD ∆中,BD CE ⊥于点E ,点A 是边CD 的中点,EF 垂直平分线段AB (1)求证:CD BE 21=(2)当BC AB =,︒=∠25ABD 时,求ACB ∠的度数第22题图EDCBA【例7】已知,如图,在ABC ∆中,︒=∠45ACB ,AD 是边BC 上的高,G 是AD 上一点,联结CG 点E 、F 分别是AB 、CG 的中点,且DF DE =,求证:GD BD =【例8】已知:如图,在ABC ∆中,BD 、CE 分别是边AC 、AB 上的高,点M 是BC 的中点,且DE MN ⊥,垂足为点N 。

人教版八年级数学下册第十八章-平行四边形专题攻克试卷(含答案详细解析)

人教版八年级数学下册第十八章-平行四边形专题攻克试卷(含答案详细解析)

人教版八年级数学下册第十八章-平行四边形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)'∥,则1、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在B'处,若20ADB∠=︒,要使AB BD∠的度数应为()BAFA.20°B.55°C.45°D.60°2、如图,四边形ABCD和四边形AEFG都是矩形.若20∠=︒,则DGFBAG∠等于()A.70︒B.60︒C.80︒D.45︒3、如图,在四边形ABCD中,AD BC∆面积为21,AB的垂直平分线MN分别交BC=,BDC∥,6,AB AC 于点,M N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为( )A .5B .6C .7D .84、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A .梯形的下底是上底的两倍B .梯形最大角是120︒C .梯形的腰与上底相等D .梯形的底角是60︒5、在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ;②AN :AB =AM :AC ;③BN =2AN ;④当∠ABC =60°时,MN ∥BC ,一定正确的有( )A .①②③B .②③④C .①②④D .①④6、在□ABCD 中,AC =24,BD =38,AB =m ,则m 的取值范围是( )A .24<m <39B .14<m <62C .7<m <31D .7<m <127、如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,8,AE ⊥BC ,垂足为点E ,则AE 的长是()A.B.C.485D.2458、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.49、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是()A.2.5 B.6 C.6.5 D.1310、如图,下列条件中,能使平行四边形ABCD成为菱形的是()A.AB CD=B.AD BC=C.AB BC=D.AC BD=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,若6BE =,8DF =,则EF =_________.2、如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为_____.3、点D 、E 分别是△ABC 边AB 、AC 的中点,已知BC =12,则DE =_____4、已知正方形ABCD 的一条对角线长为______.5、如图,矩形ABCD 中,AC 、BD 相交于点O 且AC =12,如果∠AOD =60°,则DC =__.三、解答题(5小题,每小题10分,共计50分)1、如图,在长方形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,将∠B 沿直线AE 折叠,使点B 落在点B '处.(1)如图1,当点E与点C重合时,CB'与AD交于点F,求证:FA=FC;(2)如图2,当点E不与点C重合,且点B'在对角线AC上时,求CE的长.2、在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.(1)观察猜想:如图(1),DP与CP之间的数量关系是,DP与CP之间的位置关系是.(2)类比探究:将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决:若BC=3BD=将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB 时,请直接写出线段CP的长.3、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.4、已知:如图,在ABC 中,AD DB =,BE EC =,AF FC =.求证:AE DF 、互相平分.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,AE 交CD 于点F ,且已知AB =8,BC =4(1)判断△ACF 的形状,并说明理由;(2)求△ACF 的面积;5、如图,DE 是ABC ∆的中位线,延长DE 到F ,使EF DE =,连接BF .求证:BF DC =.---------参考答案-----------一、单选题1、B【解析】【分析】设直线AF 与BD 的交点为G ,由题意易得90DAB ∠=︒,则有70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,由平行线的性质可得B AF BGA '∠=∠,然后可得BAF BGA ∠=∠,进而问题可求解.【详解】解:设直线AF 与BD 的交点为G ,如图所示:∵四边形ABCD 是矩形,∴90DAB ∠=︒,∵20ADB ∠=︒,∴70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,∵AB BD '∥,∴B AF BGA '∠=∠,∴BAF BGA ∠=∠, ∴180552ABG BAF ︒-∠∠==︒; 故选B .【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.2、A【解析】【分析】由题意可得∠AGF =∠DAB =90°,由平行线的性质可得DGA BAG ∠=∠,即可得∠DGF =70°.【详解】解:∵四边形ABCD 和四边形AEFG 都是矩形∴∠AGF =∠DAB =90°,DC //AB∴20DGA BAG ∠=∠=︒∴902070DGF AGF DGA ∠=∠-∠=︒-︒=︒故选:A .【点睛】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.3、C【解析】【分析】连接AQ ,过点D 作DH BC ⊥,根据垂直平分线的性质得到PA PB =,再根据PB PQ AP PQ AQ +=+≥计算即可;【详解】连接AQ ,过点D 作DH BC ⊥,∵6BC =,BDC ∆面积为21, ∴1212BC DH =,∴7DH =,∵MN 垂直平分AB ,∴PA PB =,∴PB PQ AP PQ AQ +=+≥,∴当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小,∵AD BC ∥,∴7AQ DH ==,∴PB PQ +的值最小值为7;故选C .【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键.4、D【解析】【分析】如图(见解析),先根据平角的定义可得123180∠+∠+∠=︒,再根据123∠=∠=∠可求出12360∠=∠=∠=︒,由此可判断选项,B D ;先根据等边三角形的判定与性质可得,60DE CD CDE =∠=︒,再根据平行四边形的判定可得四边形ABCE 是平行四边形,根据平行四边形的性质可得AE BC =,然后根据菱形的判定可得四边形DEFG 是菱形,根据菱形的性质可得DE EF AD ==,最后根据线段的和差、等量代换可得,2CD AD BC AD ==,由此可判断选项,A C .【详解】解:如图,123180,123∠+∠+∠=︒∠=∠=∠,12360∴∠=∠=∠=︒,AD BC ,1801120ADC ∴∠=︒-∠=︒,梯形ABCD 是等腰梯形,160,120,ABC BAD ADC CD CE ∴∠=∠=︒∠=∠=︒=,则梯形最大角是120︒,选项B 正确;没有指明哪个角是底角,∴梯形的底角是60︒或120︒,选项D 错误;如图,连接DE ,,260CD CE =∠=︒,CDE ∴是等边三角形,,60DE CD CDE ∴=∠=︒,180ADC CDE ∴∠+∠=︒,∴点,,A D E 共线,360ABC ∠=∠=︒,AB CE ∴,AB CE =,∴四边形ABCE 是平行四边形,AE BC ∴=,60CGF CDE ∠=∠=︒,DE FG ∴,EF DG ,EF FG =,∴四边形DEFG 是菱形,DE EF AD ∴==,CD AD ∴=,2BC AE AD DE AD ==+=,选项A 、C 正确;故选:D .【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.5、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN==故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.6、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得1122AE CE AC===,1192BE DE BD===,然后在ABE中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,∴1122AE CE AC===,1192BE DE BD===,在ABE中,AB m=,∴19121912m-<<+,即731m<<,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.7、D【解析】【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=4,AO⊥BO,∴BC,∴S菱形ABCD=16824 22BD AC⋅=⨯⨯=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=24245 BC=,故选:D.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8、C【解析】【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=12CD=14BC=2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.9、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边13,所以,斜边上的中线长113 6.52=⨯=.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质.10、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可.【详解】解:A 、▱ABCD 中,本来就有AB =CD ,故本选项错误;B 、▱ABCD 中本来就有AD =BC ,故本选项错误;C 、▱ABCD 中,AB =BC ,可利用邻边相等的平行四边形是菱形判定▱ABCD 是菱形,故本选项正确;D 、▱ABCD 中,AC =BD ,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形,故本选项错误.故选:C .【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.二、填空题1、14【解析】【分析】过点A 作AE 的垂线,交CD 延长线于点G ,先根据正方形的性质、三角形全等的判定定理证出ABE ADG ≅△△,根据全等三角形的性质可得,6AE AG BE DG ===,再根据三角形全等的判定定理证出AFG AFE ≅,根据全等三角形的性质即可得出答案.【详解】解:如图,过点A 作AE 的垂线,交CD 延长线于点G ,四边形ABCD 是正方形,,90AB AD B BAD ADC ∴=∠=∠=∠=︒,90BAE DAE ∴∠+∠=︒,AG AE ⊥,90DAG DAE EAG ∴∠+∠=∠=︒,BAE DAG ∴∠=∠,在ABE △和ADG 中,90BAE DAG AB AD B ADG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ABE ADG ASA ∴≅,,6AE AG BE DG ∴===,8DF =,14GF DF DG ∴=+=,又,45AG AE EAF ⊥∠=︒,45EAF GAF ∴=∠=∠︒,在AFG 和AFE △中,AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ()AFG AFE SAS ∴≅,14∴==,GF EF故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.2【解析】【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【详解】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=12AD=12,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如图,过点D作DH⊥EC于H,∴EH CH=,1122 DH CD==,∴CH==∴CE=2CH本题考查了轴对称-最短路线问题,菱形的性质,平行四边形的判定和性质,含30度角的直角三角形的性质,平移的性质,正确地理解题意是解题的关键.3、6【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=12,BC=6,∴DE=12故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、6【解析】【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.解:正方形ABCD的一条对角线长为123236,2S故答案为:6.【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.5、【解析】【分析】根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,∴OA=OD=12AC=12×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴DC故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.三、解答题1、(1)见解析;(2)CE=52.【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得90EB C'∠=,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt△CEB'中,根据勾股定理EC2=EB'2+B C'2列方程求解即可;【详解】解:(1)如图1,∵四边形ABCD是矩形,∴AD BC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵90EB C'∠=,如图2,设CE= x,∵四边形ABCD 是矩形,∴∠B =90°,∴AC 2=AB 2+BC 2= 32+42=25,∴AC =5,由折叠可知:90AB E B '∠=∠=,AB AB 3'==,4EB EB x '==-,∴B C '=5-3=2,在Rt △CEB '中,EC 2=EB '2+B C '2∴x 2=(4-x )2+22,∴x =52,∴CE =52.【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2、(1)PD =PC ,PD ⊥PC ;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得PD PC =,根据角之间的关系即可PD PC ⊥,即可求解;(2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得PQ,即可求解.【详解】解:(1)∵∠ACB=90°,AC=BC,∴45BAC ABC∠=∠=︒,∵DE AB⊥,∴90ADE BDE ACB∠=∠=∠=︒,∵点P为AE的中点,∴12DP AE CP AP===,∴PDA PAD∠=∠,PAC PCA∠=∠,∴22290 DPC DPE CPE DAP CAP DAC∠=∠+∠=∠+∠=∠=︒,∴PD PC⊥故答案为:PD PC=,PD PC⊥.(2)结论成立.理由如下:过点P作PT⊥AB交BC的延长线于T,交AC于点O.则90APO BPT OCT∠=∠=∠=︒∴45A AOP∠=∠=︒,45COT AOP∠=∠=︒∴PA PO=,OC CT=,45CTO∠=︒由勾股定理可得:OT =∴45PBT CTO ∠=∠=︒∴PB PT =∴PE BE OP OT +=+∵点P 为AE 的中点,∴PA PE PO ==∴BE OT =在Rt BDE 中,BD DE =,∴BE =,45DBE T ∠=∠=︒=∴CT BD =∴()DBP CTP SAS ≌,∴PD PC BPD CPT =∠=∠,,∴90DPC BPT ∠=∠=︒,∴PD PC ⊥.(3)如图3﹣1中,当点E 在BC 的上方时,过点P 作PQ ⊥BC 于Q .则DE PQ AC ∥∥,PE PA =∴DQ CQ=∵3BC BD==∴CD=由(2)可得,PD PC⊥,PD PC=,∴PCD为等腰直角三角形∴12 PQ CD=∴12PQ CD DQ===由勾股定理得,4PC PD==如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.3、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠D=∠ECF,则可证明△ADE≌△FCE(ASA);(2)由平行四边形的性质证出AB=BF,由全等三角形的性质得出AE=FE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D =∠ECF ,∵E 为CD 的中点,∴ED =EC ,在△ADE 和△FCE 中,D ECF ED ECAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)∵四边形ABCD 为平行四边形,∴AB =CD ,AD ∥BC ,∴∠FAD =∠AFB ,又∵AF 平分∠BAD ,∴∠FAD =∠FAB .∴∠AFB =∠FAB .∴AB =BF ,∵△ADE ≌△FCE ,∴AE =FE ,∴BE ⊥AF .【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.4、证明见解析【分析】连接,DE EF ,由三角形中位线定理可得DE AC ∥,EF AB ∥,可证四边形ADEF 是平行四边形,由平行四边形的性质可得AE ,DF 互相平分;【详解】证明:连接,DE EF ,∵AD =DB ,BE =EC ,∴DE AC ∥,∵BE =EC ,AF =FC ,∴EF AB ∥,∴四边形ADEF 是平行四边形,∴AE ,DF 互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.(1)△ACF 是等腰三角形,理由见解析;(2)10;5、见解析【分析】由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.【详解】∵DE是ABC∆的中位线∴DE∥AB,12DE AB=,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四边形ABFD为平行四边形∴AD=BF∴BF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.。

八年级数学常考点精练(苏科版):专题16 直角三角形斜边上的中线(解析版)

八年级数学常考点精练(苏科版):专题16 直角三角形斜边上的中线(解析版)

专题16直角三角形斜边上的中线知识点一直角三角形斜边上的中线性质1.直角三角形斜边上的中线等于斜边的_____.【答案】一半【解析】【详解】试题解析:根据在直角三角形中,斜边上的中线等于斜边的一半得解.故答案为一半.2.Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于_____.【答案】5【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=12AB,∵AB=10,∴CD=12×10=5.故答案为5.【点睛】本题考查了直角三角形斜边上的中线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3.如图,在Rt ABC△中,斜边AB上的中线5CD ,则AB ________.【答案】10【解析】【分析】根据直角三角形斜边上中线性质得出AB =2CD ,代入求出即可.【详解】解:∵CD 是直角三角形ABC 斜边AB 上的中线,CD =5,∴AB =2CD =10,故答案为:10.【点睛】本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.4.如图, ABC 中,90ACB ,CD 是AB 边上的中线,且12CD AB ,则AB 的长为______.【答案】8【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半解答.【详解】解:∵∠ACB =90°,D 是AB 边的中点,12CD AB ,∵12CD AB 8AB 故答案为:8.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.5.若直角三角形斜边上的高是4cm ,斜边上的中线是5m ,则这个直角三角形的面积是_____.【答案】20m 2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求出斜边的长,再根据三角形的面积公式列式计算即可得解.【详解】解:∵直角三角形斜边上的中线长是5m∴斜边长为10m∵直角三角形斜边上的高是4m ∴这个直角三角形的面积=12×10×4=20m 2故答案为20m 2【点睛】本题考查直角三角形斜边上中线的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.6.如图,在Rt ABC 中,90ACB ,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ,8AD ,则CP 的长为().A .8B .4C .16D .6【答案】B【解析】【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度.【详解】∵D A BA ,∴BD =AD=8,∵P 点是BD 的中点,90ACB∴CP =12BD =4,故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.7.如图,AD 是ABC 的角平分线,点E 为AC 的中点,连结DE .若10AB AC ,8BC ,则CDE △的周长为()A .20B .12C .14D .13【答案】C【解析】【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD=BD ,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=12AC ,然后根据三角形的周长公式列式计算即可得解.【详解】解:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD ⊥BC ,CD=BD=12BC=4,∵点E 为AC 的中点,∴DE=CE=12AC=5,∴△CDE 的周长=CD+DE+CE=4+5+5=14.故选:C .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.知识点二斜边上中线分割直角三角形成两个等腰三角形8.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A =26°,则∠BDC 的度数是()A .26°B .38°C .42°D .52°【答案】D【解析】【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据三角形的外角性质求出求出即可.【详解】解:∵∠ACB=90 ,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26 ,∴∠BDC=∠A+∠DCA=26 +26 =52 .故选:D.【点睛】本题考查了对三角形的外角性质,直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.9.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=_____.【答案】50°【解析】【分析】由“直角三角形的两个锐角互余”得到∠A=50°,根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【详解】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点睛】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.10.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.【答案】30【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°.故答案为30.【点睛】考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.11.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=_____°.【答案】34°.【解析】【分析】由∠ACB=90°,D是AB的中点,可得出CD=BD=AD,结合∠B的度数可得出∠BCD的度数,再由∠ACD和∠BCD互余可求出∠ACD的度数.【详解】解:∵∠ACB=90°,D是AB的中点,∴CD=BD=AD=12AB,∴∠BCD=∠B=56°,∴∠ACD=∠ACB﹣∠BCD=90°﹣56°=34°.故答案为34°.【点睛】本题考查了直角三角形斜边上的中线以及等腰三角形的性质,牢记“在直角三角形中,斜边上的中线等于斜边的一半”是解题的关键.12.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=______.【答案】10°【解析】【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【详解】∵∠ACB=90 ,∠B=50 ,∴∠A=40 ,∵∠ACB=90 ,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50 ,∠DCA=∠A=40 ,由翻折变换的性质可知,∠B′CD=∠BCD=50 ,∴∠ACB′=∠B′CD−∠DCA=10 ,故答案为10 .【点睛】本题考查直角三角形斜边上的中线.知识点三斜边上的中线应用13.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为5km ,则M ,C 两点间的距离为()A .2kmB .2.5kmC .3kmD .4km【答案】B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半直接可以得出答案.【详解】∵AC ,BC 互相垂直,ABC 是直角三角形,M ∵是AB 的中点, 1 2.52CM AB ,故选B .【点睛】本题考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出12CM AB 是解此题的关键.14.如图,有一架梯子斜靠在与地面(OM )垂直的墙(ON )上,在墙角(点O 处)有一只猫紧紧盯住位于梯子(AB )正中间(点P 处)的老鼠,等待与老鼠距离最小时扑捉,把梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,猫与老鼠的距离()A .不变B .变小C .变大D .无法判断【解析】【分析】根据直角三角形斜边的中线等于斜边的一半,即可解答.【详解】如图,连接OP ,由题意可知:点P 为AB 的中点,∠AOB =90 ,在Rt AOB 中,12OP AB ,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,OP 始终等于AB 的一半,故OP 的长不变,即猫与老鼠的距离不变.故选:A【点睛】本题主要考查了直角三角形形斜边中线的性质,解题的关键是熟练掌握直角三角形形斜边中线的性质,并会利用数学建模思想.知识点四共斜边的两个直角三角形的斜边上的中线相等15.如图,四边形ABCD 中,90ACB ADB ,取AB 中点E ,连接DE ,CE ,CD ,则EDC △为______三角形.【答案】等腰【解析】【分析】根据题意结合直角三角形中“斜中半”定理即可推出结论.由题ABC ADB,均为直角三角形,且都以AB为斜边,∵E为AB的中点,∴1122CE AB DE AB CE DE,,,即:EDC为等腰三角形,故答案为:等腰.【点睛】本题考查直角三角形中“斜中半”定理,理解并灵活运用定理是解题关键.16.如图,点C为线段AB的中点,90AMB ANB,则CMN△是_______________三角形.【答案】等腰【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵90AMB ANB∴在Rt△ABM中,C是斜边AB上的中点,∴MC=12AB,同理在Rt△ABN中,CN=12AB,∴MC=CN∴CMN△是等腰三角形,故答案为:等腰.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.三、解答题(共0分)17.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=30°,求∠ACB的度数;(2)已知∠A=40°,求∠ACB的度数;(3)已知∠A=x°,求∠ACB的度数;(4)请你根据解题结果归纳出一个结论.【答案】(1)90°;(2)90°;(3)90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【解析】【分析】(1)(2)(3)利用等腰三角形及三角形内角和定理即可求出答案;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【详解】解:(1)∵在△ABC中,CD是AB上的中线,且DA=DC,∠A=30°∴∠ACD=30°∵∠CDB是△ACD的外角∴∠CDB=60°∵DB=CD∴∠DCB=∠B=60°∴∠ACB=∠ACD+∠DCB=30°+60°=90°;(2)若∠A=40°,同(1),可知∠ACD=40°,∠CDB=40°+40°=80°∠DCB=12(180°﹣∠CDB)=12(180°﹣80°)=50°∴∠ACB=∠ACD+∠DCB=40°+50°=90°;(3)若∠A=x°,同(1),可知∠ACD=x°,∠CDB=x°+x°=2x°∠DCB=12(180°﹣∠CDB)=12(180°﹣2x°)=90°﹣x°,故∠ACB=∠ACD+∠DCB=x°+90°﹣x°=90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直线三角形斜边上的中线的性质.18.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【答案】(1)见解析,(2)40°【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半证明EM=FM即可;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,然后根据平角等于180°列式计算即可求出∠EMF.【详解】(1)证明:∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=12BC,FM=12BC,∴BM=FM,∴△MEF是等腰三角形;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME=180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.19.如图,已知ABC 的高BD CE 、相交于点O M N ,、分别是BC AO 、的中点,求证:MN 垂直平分DE .(括号中需写本学期新学理由)【答案】见解析【解析】【分析】联结EN DN EM DM 、、、,根据直角三角形斜边中线等于斜边一半可得EN DN EM DM ,,进而判断M N 、在线段DE 的垂直平分线上,即可证明MN 垂直平分DE【详解】证明:联结EN DN EM DM 、、、,∵BD AC ,CE AB ,∴90AEC ADB BEC BDC ,∵M N 、是BC AO 、的中点,∴1111,,,2222EN AO DN AO EM BC DM BC (直角三角形斜边中线等于斜边一半),∴EN DN EM DM ,,∴M N 、在线段DE 的垂直平分线上(垂直平分线的逆定理),∴MN 垂直平分DE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,垂直平分线的判定,掌握以上性质定理是解题的关键.。

统编教材部编版人教版八年级数学知识点体系复习学习资料上下册

统编教材部编版人教版八年级数学知识点体系复习学习资料上下册

八年级数学上册期末知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

怎么证明直角三角形斜边上的中线

怎么证明直角三角形斜边上的中线

怎么证明直角三角形斜边上的中线证明:直角三角形斜边中线等于斜边的一半。

设在直角三角形ABC中,∠BAC=90°,AD是斜边BC的中线,求证:AD=1/2BC。

【证法1】延长AD到E,使DE=AD,连接CE。

∵AD是斜边BC的中线,∴BD=CD,又∵∠ADB=∠EDC(对顶角相等),AD=DE,∴△ADB≌△EDC(SAS),∴AB=CE,∠B=∠DCE,∴ABCE(内错角相等,两直线平行)∴∠BAC+∠ACE=180°(两直线平行,同旁内角互补)∵∠BAC=90°,∴∠ACE=90°,∵AB=CE,∠BAC=ECA=90°,AC=CA,∴△ABC≌△CEA(SAS)∴BC=AE,∵AD=DE=1/2AE,∴AD=1/2BC。

【证法2】取AC的中点E,连接DE。

∵AD是斜边BC的中线,∴BD=CD=1/2BC,∵E是AC的中点,∴DE是△ABC的中位线,∴DEAB(三角形的中位线平行于底边)∴∠DEC=∠BAC=90°(两直线平行,同位角相等)∴DE垂直平分AC,∴AD=CD=1/2BC(垂直平分线上的点到线段两端距离相等)。

【证法3】延长AD到E,使DE=AD,连接BE、CE。

∵AD是斜边BC的中线,∴BD=CD,又∵AD=DE,∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),∵∠BAC=90°,∴四边形ABEC是矩形(有一个角是90°的平行四边形是矩形),∴AE=BC(矩形对角线相等),∵AD=DE=1/2AE,∴AD=1/2BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形斜边上的中线
20170327
【教学目标要求】
【知识与技能】
(1)掌握直角三角形的性质定理,并能灵活运用.
(2)继续学习几何证明的分析方法,懂得推理过程中的因果关系.知道数学内容中普遍存在的运动、变化、相互联系和相互转化的规律.
【过程与方法】
(1)经历探索直角三角形性质的过程,体会研究图形性质的方法.
(2)培养在自主探索和合作交流中构建知识的能力.
(3)培养识图的能力,提高分析和解决问题的能力,学会转化的数学思想方法.
【情感态度】
使学生对逻辑思维产生兴趣,在积极参与定理的学习活动中,不断增强主体意识、综合意识.
【教学重点】 直角三角形斜边上的中线性质定理的应用.
【教学难点】 直角三角形斜边上的中线性质定理的证明思想方法.
一、情境导入,初步认识
复习:直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?
引入:如果你是设计师:(提出问题)
某地将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。

而这三个公交站点的位置正好构成一个直角三角形。

如果你是设计师你会把地铁站的出口建造在哪里?
二、小组合作,获取新知
除了刚才同学们回答的性质外,直角三角形还具备哪些特殊性质?
1.实验操作:要学生拿出事先准备好的直角三角形的纸片.
(1)测量边AB 的长度;
(2)量一量斜边上的中线的长度.
让学生猜想斜边上的中线与斜边长度之间的关系.
2.提出命题: 直角三角形斜边上的中线等于斜边的一半.
3.证明命题: 你能否用演绎推理证明这一猜想?
C A
已知,如图,在Rt △ABC 中,∠ACB=90°,CD 是B 上的中线. 求证:CD=12AB. 4.得出定理:直角三角形斜边上的中线等于斜边的一半.
三、运用新知,深化理解
1.见课件PPt
四、课堂小结
1.直角三角形斜边上的中线等于斜边的一半.
2.有斜边上的中点,要考虑构造斜边上的中线或中位线.
五.布置作业:
见PPt
板书设计 (略) 数学语言表述为:在Rt △ABC 中
∵CD 是斜边AB
∴CD =AD =BD 2、如图,已知A D ⊥B D ,A C ⊥B C ,E 为A B 的中点,试判断D E 与C E 是否相等,并说明理由。

3、如图,在R t △A B C 中,E F 是中位线,C D
是斜边A B
上的中线,求证:E F =C D .。

相关文档
最新文档