平面解析几何知识点归纳
平面解析几何-高考复习知识点
平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。
2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。
例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
高中平面解析几何知识点总结
高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
平面解析几何
平面解析几何----仅供学习者参考。
平面解析几何是运用代数方法,在笛卡尔直角坐标系中(坐标系还有斜坐标系,极坐标系)研究几何图形的性质,它的主要研究对象是直线,二次曲线。
一、直线。
1、有向线段。
定义:规定了方向的直线叫有向直线,规定了起点和终点的线段叫做有向线段。
例如A 、B 分别是线段AB 的起点和终点,则AB 为正,BA 为负。
一条有向线段的长度,连同表示它的方向的正、负号,叫做这条有向线段的数量,例如AB 的数量是+5,则BA 的数量是-5。
记作AB=+5,BA=-5。
∴AB=-BA。
2、两点间的距离。
点()111y x P ,和()222y x P ,是平面上任意两点。
则21P P ,两点的距离是:()()21221221y y x x p p -+-=3、线段定比分点的坐标。
定义:设P点把有向线段21p p 分成p p 1和2pp 两部分,那么有向线段p p 1和2pp 的数量比。
就是P点分21p p 所成的比。
通常用“λ”表示,即λ=21pp pp ,分点P的坐标为 λλ++=121x x x ,λλ++=121y y y ,(1-≠λ)4、直线的倾斜角。
定义:一条直线向上方向和x 轴的正方向所成的最小正角,叫做这条直线的倾斜角。
上图中角βα,都是倾斜角,(当直线与x 轴平行时,倾斜角为0,当直线与y 轴平行时,倾斜角为90º。
这是斜率不存在。
)倾斜角的范围是0≤α<π。
5、直线的斜率。
定义:一条直线倾斜角的正切叫做这条直线的斜率。
即αtan =k (α=2π时k 不存在)。
已知直线上两点()111y x P ,和()222y x P ,,斜率)(211212x x x x y y k ≠--=。
6、两条直线平行的充要条件。
设不重合的两条直线1l 和2l 的斜率分别是1k 和2k ,直线平行1l 和2l 的充要条件是:21k k =。
即1l ∥2l ⇔21k k =。
平面解析几何知识点归纳
平面解析几何知识点归纳平面解析几何是研究平面上点、直线、圆及其相关性质和相互关系的数学分支。
在平面解析几何中,我们通过坐标系的建立和运用向量的概念,可以方便地描述和研究平面上的各种几何图形和问题。
本文将对平面解析几何中的一些重要知识点进行归纳,以帮助读者更好地理解和掌握这些知识。
1. 坐标系的建立平面解析几何中,坐标系是最基本的工具之一。
一般来说,我们可以建立直角坐标系、极坐标系或其他特定的坐标系来描述平面上的点。
以直角坐标系为例,我们用x轴和y轴分别表示水平和垂直方向,将一个点P的位置用有序数对(x, y)表示,其中x称为点P的横坐标,y称为点P的纵坐标。
2. 点的坐标计算对于已知坐标系的平面上的点P(x, y),我们可以通过给定的信息计算出点的坐标。
例如,已知点A和点B的坐标,我们可以通过运用向量的加法和数乘运算,求得点P的坐标。
设向量OA的坐标为A(x1,y1),向量OB的坐标为B(x2, y2),则向量OP的坐标为P(x, y),其中P 的坐标满足向量OP = 向量OA + 向量OB。
3. 向量的定义和运算在平面解析几何中,向量是重要的概念之一。
向量可以表示有大小和方向的量,并且可以与点一一对应。
向量的表示方法有很多种,常见的有坐标表示和位置向量表示。
在坐标表示中,向量通常用有序数对(x, y)表示。
在位置向量表示中,我们用一个固定点O与向量表示的点P的坐标差,来表示向量OP。
向量的运算包括加法、减法和数乘。
设向量u = (x1, y1),向量v = (x2, y2),实数k,向量u与v的加法定义为:u + v = (x1 + x2, y1 + y2);向量u与v的减法定义为:u - v = (x1 - x2, y1 - y2);向量u的数乘定义为:k * u = (kx1, ky1)。
4. 直线的方程直线是平面几何中的基本要素之一。
在平面解析几何中,我们可以通过直线上的点和直线的斜率来确定直线的方程。
高中数学平面解析几何知识点总结
平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
平面解析几何知识点总结
第一部分直线一、直线的斜率和倾斜角1.倾斜角α(1)定义:直线l 向上的方向与x 轴正方向所称的角叫直线的倾斜角(2)范围:1800<≤α2.斜率直线倾斜角的正切值叫做这条直线的斜率,记作αtan =k (1)倾斜角为 90的直线没有斜率(2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时应考虑到斜率的存在与不存在两种情况,否则会产生漏解。
(3)经过),(),,(2211y x B y x A 两点的直线的斜率为k ,则当21x x ≠时,1212tan x x y y k --==α;当21x x =时, 90=α,斜率不存在(4)切线斜率的求法:设平面曲线的方程为0),(=y x F ,则该曲线在),(00y x 点的斜率为)(')('00y F x F k -=,其中)('0x F 表示),(y x F 对x 求导得到的函数在0x x =下的值,)('0y F 表示),(y x F 对y 求导得到的函数在0y y =下的值。
若平面曲线方程为)(x f y =,则该曲线在),(00y x 点的斜率为)('0x f k =,其中)('0x f 表示)(x f 对x 求导得到的函数在0x x =下的值。
若平面曲线的参数方程为)(),(t y y t x x ==,则该曲线在0t t =时的点的斜率为)(')('00t x t y k =,其中)('0t y 表示)(t y 对t 求导得到的函数在0t t =下的值,其中)('0t x 表示)(t x 对t 求导得到的函数在0t t =下的值。
3.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x.线性规划问题平面区域的非线性规划第二部分解析几何中的范围问题(研究性学习之二)在直线与圆锥曲线相交问题中,关于直线的斜率或纵截距的取值范围,关于圆锥曲线的离心率、长轴长(或实轴长)、短轴长(或虚轴长)等有关参量的取值范围,是解析几何高考命题以及备考复习的重点问题。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
平面解析几何知识点归纳
平面解析几何知识点归纳◆知识点归纳 直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 X 围:直线的倾斜角α的取值X 围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=3.直线方程的几种形式能力提升斜率应用例1.函数)1(log )(2+=x x f 且0>>>c b a ,那么cc f b b f a a f )(,)(,)(的大小关系例2.实数y x ,满足)11(222≤≤-+-=x x x y ,试求23++x y 的最大值和最小值两直线位置关系 两条直线的位置关系设两直线的方程分别为:222111:b x k y l +=或0:22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++0222111C y B x A C y B x A直线间的夹角:①假设θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②假设θ为1l 和2l 的夹角,那么12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A 时,o90=θ;直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;距离问题1.平面上两点间的距离公式),(),,(222111y x P y x P 那么 )()(121221y y x x P P -+-=2.点到直线距离公式点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=3.两平行线间的距离公式两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,那么1l 与2l 的距离为2221BA C C d +-=4.直线系方程:假设两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,那么过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或)(222C y B x A +++0)(111=++C y B x A λ (λ为常数)对称问题1.中点坐标公式:点),(),,(2211y x B y x A ,那么B A ,中点),(y x H 的坐标公式为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问题。
平面解析几何知识点汇总
1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x .6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. ③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. ② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x yg x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y kx x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ;条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过点11(,)A x y ,22(,)B x y 的圆系方程:1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程.(2)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(3)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线. 16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)过圆220x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:0000()()022D x x E y y x x y y F ++++++=. (4) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(5) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z ,则AB =19、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。
高中平面解析几何知识点总结 (1)
高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
高考数学中的平面解析几何知识点整理
高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。
平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。
本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。
一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。
笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。
极坐标系是以圆心为原点,以极轴为基准线的坐标系。
一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。
二、直线直线是平面解析几何中最基本也最重要的图形。
直线的斜率、截距和两点式都是需要掌握的公式。
斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。
三、圆圆是平面上与一个点距离相等的点的集合。
圆的一般式、标准式、参数式都是需要掌握的公式。
一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。
四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。
椭圆的标准式、参数式和离心率都是需要掌握的公式。
标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。
五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。
抛物线的标准式、参数式和焦距都是需要掌握的公式。
标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。
六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。
双曲线的标准式、参数式和离心率都是需要掌握的公式。
平面解析几何知识点总结
平面解析几何知识点总结在平面解析几何中,我们研究的是平面上的点、线和图形之间的关系,通过运用代数和几何的方法来解决相关问题。
本文将对平面解析几何的一些重要知识点进行总结,帮助读者更好地理解和掌握这一领域。
一、点的坐标表示平面解析几何中,用坐标表示点的位置是非常常见的。
一般情况下,我们使用直角坐标系来描述平面空间。
直角坐标系由两条相互垂直的坐标轴组成,通常记作x轴和y轴。
点在该坐标系中的位置可以通过一个有序数对(x, y)来表示,其中x是该点在x轴上的投影,y是该点在y轴上的投影。
二、直线的表示与性质1. 点斜式方程:对于已知一点P(x1, y1)和斜率k的直线L,可以使用点斜式方程y - y1 = k(x - x1)来表示该直线的方程式。
2. 截距式方程:对于已知直线L与x轴的截距a和与y轴的截距b的情况,可以使用截距式方程x/a + y/b = 1来表示该直线的方程式。
3. 斜截式方程:对于已知直线L的斜率k和与y轴的截距b的情况,可以使用斜截式方程y = kx + b来表示该直线的方程式。
4. 直线的性质:在平面解析几何中,直线有许多重要的性质,如平行、垂直、相交等。
其中,两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。
三、图形的表示与性质1. 点与点之间的距离:对于平面上的两个点A(x1, y1)和B(x2, y2),它们之间的距离可以使用勾股定理来计算,即d = √[(x2 - x1)² + (y2 -y1)²]。
2. 中点坐标:对于平面上的两个点A(x1, y1)和B(x2, y2),它们连线的中点的坐标可以通过取x轴和y轴的平均值来计算,即中点M的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。
3. 直线与直线的交点:两条直线的交点可以通过求解它们的方程组来确定。
如果两条直线有唯一交点,则它们必定相交于一点;如果两条直线重合,则它们有无数个交点;如果两条直线平行,则它们没有交点。
高中数学知识点归纳平面解析几何的性质与运算
高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。
本文将对平面解析几何的性质与运算进行归纳总结。
二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。
直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。
点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。
2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。
根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。
对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。
对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。
若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。
2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。
若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。
3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。
2024高考数学平面解析几何知识点
2024高考数学平面解析几何知识点
在2024年高考数学中,平面解析几何是一个重要的知识点,主要包括以下几个部分:
1. 有向线段和直线:了解有向线段和直线的概念,掌握直线的方程式和参数方程,理解直线的倾斜角、截距等概念。
2. 圆:掌握圆的标准方程和一般方程,理解圆心、半径、弦、直径等概念,会求圆的方程和圆心、半径等。
3. 椭圆、双曲线和抛物线:掌握椭圆、双曲线和抛物线的标准方程和性质,理解焦点、准线、离心率等概念,会求这些曲线的方程和相关性质。
4. 参数方程和极坐标:了解参数方程和极坐标的概念,掌握参数方程和极坐标的转换关系,会求参数方程和极坐标的方程。
5. 平面几何的基本概念:理解平面几何中的点、线、面的概念,掌握基本性质和定理,如平行线、垂直线、角等概念和性质。
6. 解析几何的基本方法:掌握解析几何中的基本方法,如向量法、解析法等,理解这些方法的几何意义和代数表示,能够运用这些方法解决一些平面几何问题。
7. 圆锥曲线的应用:理解圆锥曲线的应用,如椭圆用于卫星轨道、双曲线用于光学等,了解圆锥曲线在日常生活和科学研究中的应用。
以上是2024年高考数学平面解析几何的主要知识点,考生需要熟练掌握并能够灵活运用。
同时,也需要注重理解和应用,不要死记硬背。
平面解析几何知识点归纳
平面解析几何知识点归纳直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=倾斜角 斜率 方向向量 2πα≠⇒ t a nk α= ⇒ d =(cos ,sin )αα 或d =(1,)karctan ,0arctan ,0k k k k απ≥⎧=⎨+<⎩⇐ k =vu ⇐ (,)d u v =(0)u ≠3.直线方程的几种形式 名称方程方向向量法向量斜率 适用条件点方向式 00x x y y u v--= ()v u , ()u v ,- uv与坐标轴不垂直的直线点法向式 00()()0a x x b y y -+-=()a b ,-()a b ,所有直线斜截式 b kx y +=()k ,1 ()1,k - k 与x 轴不垂直的直线点斜式 )(00x x k y y -=-()k ,1 ()1,k - k截距式 1=+bya x 不过原点且与两坐标轴均不垂直的直线一般式0=++C By Ax )0(22≠+B A所有直线例1.已知直线斜率2k =,则倾斜角α= ,一个方向向量是 ,一个法向量是 。
2.过(1,4)A 、(3,1)B 的直线的一个方向向量是 ,斜率是 ,倾斜角是 。
3.直线)0,0(>>=+b a ab by ax 的倾斜角是 ,且不经过第 象限。
两直线位置关系 两条直线的位置关系位置关系222111::b x k y l b x k y l +=+= 0:0:22221111=++=++C y B x A l C y B x A l平行 ⇔ 21k k =,且21b b ≠ A 1B 2-A 2B 1=0(验证)重合 ⇔ 21k k =,且21b b =D=Dx=Dy=0 相交 ⇔ 21k k ≠A 1B 2-A 2B 1≠0垂直⇔121-=⋅k k 02121=+B B A A设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++0222111C y B x A C y B x A 直线间的夹角:①若θ为1l 到2l 的夹角,②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ(斜率都存在且121-≠k k );③当0121=+k k 或02121=+b b a a 时,o90=θ;例1.过点)2,2(-P 且与0143=++y x 平行的直线方程是 。
平面解析几何高考复习知识点
平面解析几何高考复习知识点平面解析几何是数学中的一个分支,主要研究平面上的点、直线、圆、曲线等几何图形的性质和运算。
在高考中,平面解析几何通常是在数学试卷中占有一定的比重。
本文将介绍平面解析几何的高考复习知识点,包括坐标系、点的坐标、线的方程、圆的方程等内容。
一、坐标系1.笛卡尔坐标系:平面上的点可以用两个有序实数来表示,称为点的坐标。
一个点的坐标用有序对(x,y)表示,其中x为横坐标,y为纵坐标。
横纵坐标轴相互垂直,且原点的坐标为(0,0)。
2.极坐标系:平面上的点可以用极径和极角来表示。
极径为点到原点的距离,极角为点到横轴的角度。
极坐标系转换为直角坐标系的公式为:x = rcosθy = rsinθ3.参数方程:平面上的点可以用一个参数来表示。
参数方程为:x=x(t)y=y(t)4.直角坐标系与极坐标系的转换:r²=x²+y²tanθ = y/x二、点的坐标1.两点间的距离:设两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离d 为:d=√[(x₂-x₁)²+(y₂-y₁)²]2.中点:设两点A(x₁,y₁)和B(x₂,y₂),则两点连线的中点M的坐标为:x=(x₁+x₂)/2y=(y₁+y₂)/2三、线的方程1.一般式方程:形如Ax+By+C=0的线的方程。
其中A、B、C为实数,且A和B不同时为0。
2.点斜式方程:已知线上一点A(x₁,y₁)和该线的斜率k,线的方程可以表示为:y-y₁=k(x-x₁)3.斜截式方程:已知直线与y轴的交点为(0,b),直线的斜率为k,则直线的方程可以表示为:y = kx + b4.两点式方程:已知直线上两点A(x₁,y₁)和B(x₂,y₂),直线的方程可以表示为:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁)5.截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为:x/a+y/b=1四、圆的方程1.标准方程:圆心为(h,k)、半径为r的圆的方程可以表示为:(x-h)²+(y-k)²=r²2.参数方程:圆心为(h,k)、半径为r的圆的参数方程为:x = h + rcosθy = k + rsinθ3.一般方程:圆心为(h,k)、半径为r的圆的一般方程可以表示为:x²+y²+Dx+Ey+F=0五、其他知识点1.直线与圆的位置关系:直线与圆相交、相切或相离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何知识点归纳平面解析几何知识点归纳◆知识点归纳 直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π2.斜率:)2(tan πα≠=a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x≠的直线的斜率公式为121221x x y y kP P --=3.直线方程的几种形式能力提升斜率应用例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则cc f b b f a a f )(,)(,)(的大小关系例2.已知实数y x ,满足)11(222≤≤-+-=x x x y ,试求23++x y 的最大值和最小值的夹角α:)2(πθθα≤=或)2(πθθπα>-=;距离问题1.平面上两点间的距离公式),(),,(222111y x P y x P 则)()(121221y y x x P P -+-=2.点到直线距离公式点),(0y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=3.两平行线间的距离公式已知两条平行线直线1l 和2l 的一般式方程为1l :01=++CBy Ax ,2l :02=++CBy Ax ,则1l 与2l 的距离为2221BA C C d +-=4.直线系方程:若两条直线1l :0111=++Cy B x A ,2l :0222=++Cy B x A 有交点,则过1l 与2l 交点的直线系方程为)(111C y B x A +++)(222=++C y B x A λ或)(222C y B x A +++0)(111=++C y B x A λ (λ为常数)对称问题1.中点坐标公式:已知点),(),,(2211y x B y x A ,则B A ,中点),(y x H 的坐标公式为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x点),(0y x P 关于),(b a A 的对称点为)2,2(0y b x a Q --,直线关于点对称问题可以化为点关于点对称问题。
2.轴对称: 点),(b a P 关于直线)0(0≠=++B c By Ax 的对称点为),('n m P ,则有⎪⎪⎩⎪⎪⎨⎧=++⋅++⋅-=-⨯0221)(a -m b -n C n b B m a A B A ,直线关于直线对称问题可转化 为点关于直线对称问题。
(1)中心对称:①点关于点的对称:该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点)2,2(b d a c -- ②直线关于点的对称:Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21//l l由点斜式得出直线方程;Ⅲ、利用点到直线的距离相等。
求出直线方程。
如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。
①点关于直线对称:Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。
Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。
如:求点)5,3(-A 关于直线0443:=+-y x l 对称的坐标。
②直线关于直线对称:(设b a ,关于l 对称) Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离相等。
Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。
Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a 的方程。
如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。
能力提升例1.点)1,2(P 到直线)(03R m y mx ∈=--的最大距离为例2.已知点)1,3(A ,在直线x y =和0=y 上各找一点M 和N ,使AMN∆的周长最短,并求出周长。
线性规划问题:(1)设点),(0y x P 和直线0:=++C By Ax l ,①若点P 在直线l 上,则00=++C By Ax ;②若点P 在直线l的上方,则0)(00>++C By AxB ;③若点P 在直线l 的下方,则0)(00<++C By AxB ;(2)二元一次不等式表示平面区域:对于任意的二元一次不等式)0(0<>++C By Ax , ①当0>B 时,则0>++C By Ax 表示直线上方的区域;<++C By Ax 表示直线0:=++C By Ax l 下方的区域;②当0<B 时,则0>++C By Ax 表示直线0:=++C By Ax l 下方的区域;<++C By Ax 表示直线0:=++C By Ax l 上方的区域;注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。
(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。
生产实际中有许多问题都可以归结为线性规划问题。
注意:①当0>B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大;直线0=+By Ax 向下平移,则By Ax z +=的值越来越小; ②当0<B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越小;直线0=+By Ax 向下平移,则By Ax z +=的值越来越大; 如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ay x z +=取得最小值的最优解有无数个,则a 为 ;(1)设点),(0y xP 和直线0:=++C By Ax l ,①若点P 在直线l 上,则000=++C By Ax;②若点P 在直线l的上方,则0)(00>++C By AxB ;③若点P 在直线l 的下方,则0)(00<++C By AxB ;(2)二元一次不等式表示平面区域:对于任意的二元一次不等式)0(0<>++C By Ax , ①当0>B 时,则0>++C By Ax 表示直线上方的区域;<++C By Ax 表示直线0:=++C By Ax l 下方的区域;②当0<B 时,则0>++C By Ax 表示直线下方的区域;<++C By Ax 表示直线0:=++C By Ax l 上方的区域;注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。
(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。
生产实际中有许多问题都可以归结为线性规划问题。
注意:①当0>B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大;直线0=+By Ax 向下平移,则By Ax z +=的值越来越小; ②当0<B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越小;直线0=+By Ax 向下平移,则By Ax z +=的值越来越大; 如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ay x z +=取得最小值的最优解有无数个,则a 为 ;圆与方程2.1圆的标准方程:222)()(r b y a x =-+-圆心),(b a C ,半径r 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2.2点与圆的位置关系:1. 设点到圆心的距离为d ,圆半径为r :(1)点在圆上 d=r ;(2)点在圆外 d >r ;(3)点在圆内 d <r .2.给定点),(0y x M 及圆222)()(:r b y a x C =-+-.①M在圆C 内22020)()(r b y a x <-+-⇔ ②M在圆C上2220)()r b y a x =-+-⇔(③M 在圆C 外222)()(r b y a x >-+-⇔2.3 圆的一般方程:022=++++F Ey Dx y x .当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径xy O A(1B(5C(42422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax表示圆的充要条件是:0=B 且0≠=C A 且0422>-+AF E D .圆的直径系方程:已知AB 是圆的直径))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A2.4 直线与圆的位置关系: 直线=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种,d 是圆心到直线的距离,(22BA C Bb Aa d +++=(1)r d >⇔相离⇔0<∆;(2)r d =⇔相切⇔0=∆; (3)r d <⇔相交⇔0>∆ 2.5 两圆的位置关系设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,dOO =21。
(1)条公切线外离421⇔⇔+>rr d ;(2)条公切线外切321⇔⇔+=rr d ; (3)条公切线相交22121⇔⇔+<<-r r d rr ;(4)条公切线内切121⇔⇔-=rr d ;(5)无公切线内含⇔⇔-<<210rr d ;外离 外切 相交 内切 内含圆的切线方程:1.直线与圆相切:(1)圆心到直线距离等于半径r ;(2)圆心与切点的连线与直线垂直(斜率互为负倒数)2.圆222r y x =+的斜率为k 的切线方程是rk kx y 21+±=过圆22=++++F Ey Dx y x 上一点),(00y x P 的切线方程为:02200=++++++F y y E x x Dy y x x . 一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2.特别地,过圆222r y x =+上一点),(00y x P 的切线方程为20r y y x x =+.若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k 切线方程.3.圆的弦长问题:1.半弦2L 、半径r 、弦心距d 构成直角三角形,满足勾股定理:2222d R L -=⎪⎭⎫ ⎝⎛2、弦长公式(设而不求):]4)[(1)(212212221221x x x x k y y x x AB -++=-+-=)()(。