自动控制原理 第三章1

合集下载

自动控制原理第三章课后习题答案

自动控制原理第三章课后习题答案

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

自动控制原理(3-1)

自动控制原理(3-1)

动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;

《自动控制原理》课件第三章

《自动控制原理》课件第三章

h(t) 1
ent sin(
1 2
1 2nt arccos ) 1
1
1
2
e t
sin(dt
)
(3-13)
2) 无阻尼(ζ=0)二阶系统的单位阶跃响应
系统有两个共轭纯虚根s1=jωn,s2=-jωn 由式(3-10)可知系统的单位阶跃响应为
h(t)=1-cosωnt
(3-14)
这是一条平均值为1的正弦或余弦形式的等幅振荡,其振荡
2. 动态性能与稳态性能 稳定是控制系统能够运行的首要条件,因此只有当动态 过程收敛时,研究系统的动态性能才有意义。 1) 动态性能 通常在阶跃函数作用下,测定或计算系统的动态性能。 一般认为,阶跃输入对系统来说是最严峻的工作状态。如果 系统在阶跃函数作用下的动态性能满足要求,那么系统在其 他形式函数的作用下,其动态性能也是令人满意的。 描述稳定的系统在单位阶跃函数作用下,动态过程随时 间t的变化状况的指标称为动态性能指标。为了便于分析和 比较,假定系统在单位阶跃输入信号作用前处于静止状态, 而且输出量及其各阶导数均为零。

T1
n (
1
2
, 1)
T2
n (
1
2
1)
由式(3-12)可得此时二阶系统的单位阶跃响应为
h(t) 1 et T1 et T2 T2 T1 1 T1 T2 1
(3-15)
以上四种情况的单位阶跃响应曲线如图3-5所示,其横 坐标为无因次时间ωnt。由图3-5可见,在过阻尼和临界阻尼 响应曲线中,临界阻尼响应具有最短的上升时间,响应速度 最快; 在欠阻尼响应曲线中,阻尼比越小,超调量越大, 上升时间越短,通常取ζ=0.4~0.8为宜,此时超调量适度, 调节时间较短; 若二阶系统具有相同的ζ和不同的ωn,则其 振荡特性相同,但响应速度不同,ωn越大,响应速度越快。

自动控制原理第三章答案

自动控制原理第三章答案
2 2
n
临界阻尼:ts 4.75T 4.75
1

4.75
n
1 0.95s 5
3-3 原系统传递函数为 G(s) 0.2s 1 , 现采用如题所示的负反馈方式,欲将反 馈系统的调节时间减小为原来的0.1倍, 并且保证原放大倍数不变,试确定参数 K0 , KH的值。 解:原系统传递函数 新系统传递函数
K 10
0
1 10K 10 (时间常数为
H
1 ) 10
K 0.9
H
问题 非标准形式 10K 0 1 1 10K H , 0 .2 s 1 Ts 1 1 10K H
3
3-4
已知系统的单位阶跃响应为 试求取系统的传递函数
y(t ) 1 e
t
e
2t
Y(s) X(s)
n
2
问题 1、没有完成 2、计算错误
0.146
8
1 KK
1
2
3-9 设题3-9图(a)所示的单位 阶跃响应如题3-9图(b)所示。 试确定系统参数K1,K2和a。
解:据题意
K K (s) s(s a ) K K K K s as K s 2 s 1 s(s a )
(s) s(0.1s 1)
K 1 s(0.1s 1) K 10K 0.1s s K s 10s 10K
2 2
对应二阶系统标准形式,取ζ=1,得
问题
1、没有求调节时间 2、临界阻尼,调节时间 计算错误
2 10 5
n n
5 10K K 2.5 10
t
p
0.1
1.1 1.0 100% 10% 1.1 根据二阶欠阻尼系统指标计算公式

自动控制原理第三章课后习题答案(免费)

自动控制原理第三章课后习题答案(免费)

自动控制原理第三章课后习题答案(免费)3-1判别下列系统的能控性与能观性。

系统中a,b,c,d 的取值对能控性与能观性是 否有关,若有关其取值条件如何?rankU c = 4,所以系统不完全能控,讨论系统能控性a 0 0 0] 乍L-b0 0 0x =x +1 1-c 0 0<0 01 d 丿<0jY = (0 0 1 0)x[-a,0,1,0]T,A 2B = [a 2,0, -a -3 33= [-a,0, aac c ,-a -c -d]判断能控型:U cAB A 2B A 3B「1 0<0-a0 1 0 23a-a 0 02 .. 2-a - c a ac c1「a -c 「d(1)系统如图所示。

解:状态变量:L X = ax u L X 2 - -bx 2L X 3 = x 1 X 2 - CX 3 LX 4 = X3 dX 4题3-1( 1)图系统模拟结构图u由此写出状态空间: B 二[1,0,0,0]T,ABT 3C,1] ,A BrC 、r 00 1 0、 判断能观性:u 0 =CA1 1 -c 0 CA 2—2 c_a _c—b —c 03」2丄 丄2>a +ac+c2 2b +bc + c2-c °」rankU 。

= 4,所以系统不能观(2)系统如图所示。

X iy = 10 x1 -a+b' Uc=[B,AB] =Q —c —d 丿若 a-b-c-d -b=0,贝U rankU c 二 2,系统能控.U o'c iCA 丿 l _a0 b;若b = 0,则rankU 。

=2,系统能观. (3)系统如下式:fX 1C1 1 0、 *'2 1 A * X2=0-10X2+ a 0 u* 3 0 -2.<b 0」E 丿5〕=c 0d 、X 2A 丿<00 0」g解:系统如下: a解:状态变题3-1 (2)图系统模拟结构图(3)求取对角标准型,1 1 ' …-4 1 1 1 ',P-b2 d -1> P - 1-1 1 0LX = 0 -1 0X 2+<00 -2 ) 0若a =0,b = 0,系统能控. 若c = 0,d = 0 ,系统能观. 3-2时不变系统:• '-3 1 )竹1「1 <试用两种方法判别其能控性与能观性。

自动控制原理课件之第三章 (一) 时域性能指标,时域分析 (5)

自动控制原理课件之第三章 (一) 时域性能指标,时域分析 (5)

故 20lg ( j) 3(dB)
b
系统带宽频率与带宽
一阶和二阶系统,带宽和系统参数具有解析关系。
自动控制原理教案
一阶系统的带宽: 一阶系统: 因为
1 (s) Ts 1
, 按带宽定义
1 1 T 2b
2
( j 0) 1
20lg ( jb ) 20lg
解 因为该系统为I型系统,单位速度输入下的稳态误差为 查表
1 K 9 K
60
0.62 % e
/ 1 2
7.5%
K 2 1 n , 2n n 2 K 11.6 T T 3.5 ts 0.506
n
自动控制原理教案
G ( j ) G ( j ) 1 G ( j ) A( )
1 2
[1 A2 ( ) 2 A( ) cos ( )] 1 1 [ cos ( )]2 sin 2 ( ) A( )
一般情况下,在M (ω)的极大值附近, γ(ω) 变化较小,且使M (ω)为极值的谐振频率ωr常位于ωc附近,即有
( j 0) 1 , 按带宽定义
b 2 2 b 2 (1 2 ) 4 2 2 2 n n
b n (1 2 2 ) (1 2 2 )2 1


1 2
二阶系统的带宽和自然频率成正比。与阻尼比成反比。
自动控制原理教案
带宽指标意义
根据一阶系统和二阶系统上升时间和过渡过程时间与参数的 关系,可以推论:系统的单位阶跃响应的速度和带宽成正比。 对于任意阶次的控制系统,这一关系仍然成立。 当系统的带宽扩大λ 倍,系统的响应速度则加快λ 倍。 对于输入端信号,带宽大,则跟踪控制信号的能力强;而在另一 方面, 抑制输入端高频干扰的能力则弱,因此系统带宽的选择在设计中应折 衷考虑,不能一味求大。

自动控制原理第三章(胡寿松)

自动控制原理第三章(胡寿松)

11
成都信息工程学院控制工程系
第一章 自动控制的一般概念
注意:
1.不同性质的控制系统,对稳定性、准 确性和快速性要求各有侧重。 2.系统的稳定性、准确性、快速性相互 制约,应根据实际需求合理选择。
12
成都信息工程学院控制工程系
第三章 线性系统的时域分析法
延迟时间td:响应曲线第一次到达终值一半所需的 时间。
调节时间ts:响应曲线开始进入并保持在误差带内所需的 最小时间,误差带通常取 5 % h ( )或 2 % h ( )
h(t)

1.0
误 差 带 5%或 2%
0.5
td
h()
0
tr tp ts
16
成都信息工程学院控制工程系
第三章 线性系统的时域分析法
超调量σ%:响应曲线超出稳态值的最大偏差与稳态值 之比。即:
快速性:输出量产生偏差时,系统消除这种偏差的快 慢程度。快速性表征系统的动态性能。一般用过渡过 程的时间来表示,如:上升时间、峰值时间、调节 时间等。
10
成都信息工程学院控制工程系
第一章 自动控制的一般概念
准确性:是衡量控制系统控制精度的重要标志。一般 用被控量的稳态值与期望值之间的误差(称为稳态误 差)表示。
成都信息工程学院控制工程系
3
第一章 自动控制的一般概念
⑴阶跃函数
Step Signal 5 4 3 2 1 0 -1 -1 0 1 2 3 4 t 5 r(t)
函数表达式:
当A=1时称为单位阶跃信号。
阶跃信号:含宽频带谐波分量,产生容易,是最常 用系统性能测试信号。
4
成都信息工程学院控制工程系
第一章 自动控制的一般概念

自动控制原理第三章

自动控制原理第三章
1
P75 二阶系统的 结构图
20
2019/4/2
《自动控制原理》第三章
1、无阻尼情况 ( 0)
s 1 ct (t ) L [ 2 ] cos nt t 0 2 s n
等幅振 荡
特征方程有一对共轭虚根 s1,2 jn 2、欠阻尼情况 (0 1)
2019/4/2
《自动控制原理》第三章
7
三.劳斯稳定判据的应用
1、判断系统的稳定性 例: a3 s 3 a2 s 2 a1s a0 0 解:
判断稳定性。
s
3
a3 a2 a1a2 a3 a0 a2 a0
a1 a0 0
0 0
s2 s1 s
0
三阶系统稳定的充要条件是: ai
2019/4/2
瞬态ct (t ) e
ct (t )
t
T
, 稳态css (t ) 1(t )
css (t )
dc(t ) 1 e t /T dt t 0 T
c(t )

t 0
1 T
+
=
2019/4/2
《自动控制原理》第三章
18
二.一阶系统的动态性能指标
c(t )
t 3T
(1 e
t /T
)
t 3T
1 e
3T /T
0.95
T0 T 1 K0
ts 3T
ts 是一阶系统的动态性能指标。
增大系统的开环放大系数K0 会使T 减小,使ts 减小。
2019/4/2
《自动控制原理》第三章
19
第四节
二阶系统的动态性能指标
二阶标准型 或称典型二阶系 统传递函数

自动控制原理第三章

自动控制原理第三章
t h(t ) 1 e ntnt e n 1 e nt (1 nt )
15
t
t
(4)过阻尼二阶系统的单位阶跃响应 过阻尼 1
C ( s)
s1 即:, 2 n n 2 1

t
2 n
T1
T2
s( s 1 / T1 )(s 1 / T2 )
3 动态特性: 由时间常数T决定。 T↑→响应速度↓ ,即响应时间↑ ,反之亦然 4 跟踪能力: 阶跃输入:无稳态误差,即能够跟踪阶跃信号,跟踪速度取决于T; 斜坡输入:有位置误差,且稳态误差等于时间常数T; 加速度输入:稳态误差无穷大,即一阶系统不能跟踪加速度信号。
11
用二阶系统微分方程描述的控制系统
t T
稳态误差 0
0 T

t T
t
1(t) t
1 2 t 2
1
1 s
t 0
t T
c(t)
1 e

t 0
t T
1 s2 1 s3
t T Te
t 0
t 0
1 2 t Tt T 2 1 e 2

t
2 等价关系: 系统对输入信号导数的响应,就等于系统对该输入信号响应的导数; 系统对输入信号积分的响应,就等于系统对该输入信号响应的积分; 注意:积分常数由零初始条件确定。

t e t r t c t Tt T 1 e T 2
t 0
跟踪误差随时间推移而增大,直至无限大。 因此,一阶系统不能跟踪加速度输入。
10
3-2-6 一阶系统时域分析小结
1 典型输入信号的响应

自动控制原理第三章

自动控制原理第三章

(1)延迟时间 t d :曲线第一次达到终值一半 所需的时间。 (2)上升时间 t :响应曲线从终值10%上 升到90%所需的时间;对于欠阻尼系统 可定义为响应从零第一次上升到终值所 需的时间。 (3)峰值时间 t p :响应超过终值到达第一个 峰值所需的时间。 ) (4)超调量M :响应的最大偏离量c(t 与终值 c (∞ ) 之差的百分比,即
图3-10
0 < ζ < 1 时的单位阶跃响应
0 < ζ < 1情况下二阶系统单位阶跃响应的暂态
性能的各项指标。 ①上升时间 tr :是指在暂态过程中第一次达 到稳态值的时间。
π − arctan
tr = 1−ζ 2
ζ
2
ωn 1 − ζ
=
1
ωd
(π − arctan
1− ζ 2
ζ
)
tp
②峰值时间t p :是指响应由零上升到第一个峰 值所需的时间。
3.3.2 单位阶跃响应
对于单位阶跃输入r(t)=1(t),R(s)=1/s,得到系统 的输出为
2 ωn s + 2ζωn 1 C ( s) = Φ( s) R( s) = = − 2 2 2 2 s ( s + 2ζωn s + ωn ) s s + 2ζωn s + ωn
当 ζ 为不同值时,所对应的响应具有不同 的形式。 (1)当 ζ = 0时,为零阻尼情况,系统的输出 为 ω 1 s
(t ≥ 0)
1 − t T
e(t ) = r (t ) − c(t ) = Tt − T (1 − e
2
)
表3-1 一阶系统对典型输入信号的响应
传递函数 输入信号 输出响应

自动控制原理 第三章

自动控制原理 第三章


1 t T1
1 + e T1 / T2 − 1

, (t ≥ 0) (3 − 22)
36
过阻尼系统分析
衰减项的幂指数的绝对值一个大,一个小。 衰减项的幂指数的绝对值一个大,一个小。绝对 值大的离虚轴远,衰减速度快, 值大的离虚轴远,衰减速度快,绝对值小的离虚 轴近, 轴近,衰减速度慢 衰减项前的系数一个大, 衰减项前的系数一个大,一个小 二阶过阻尼系统的动态响应呈非周期性, 二阶过阻尼系统的动态响应呈非周期性,没有振 荡和超调, 荡和超调,但又不同于一阶系统 离虚轴近的极点所决定的分量对响应产生的影响 大,离虚轴远的极点所决定的分量对响应产生的 影响小,有时甚至可以忽略不计。 影响小,有时甚至可以忽略不计。
1 R( s ) = s
输出: 输出:
1 1 C ( s) = Φ( s) R( s) = ⋅ Ts + 1 s
C (t ) = 1 − e
− t T
21
单位阶跃响应曲线
t
初始斜率: dh(t ) |t =0 = 1 dt T
22
性能指标
1. 平稳性σ%: 非周期、无振荡, 非周期、无振荡, σ% =0 2. 快速性ts:
此时s1, s2为 此时 一对实部为 正的共轭复 根,位于复 平面的右半 部。
34
2
⑥特征根分析—— ζ <−1 (负阻尼)
s1,2 = −ζω n ± ω n ζ 2 − 1
此时s1,s2为 此时 两个正实根, 两个正实根, 且位于复平 面的正实轴 上。
35
二阶系统单位阶跃响应
1.过阻尼(ζ > 1) 二阶系统的单位阶跃响应 过阻尼
1 t
②单位斜坡函数 其数学表达式为: 其数学表达式为: t f ( t ) = t . 1( t ) = 0 其拉氏变换为: 其拉氏变换为:

自动控制原理课件:3_1一阶系统

自动控制原理课件:3_1一阶系统

L [a sin
ωt]=
aω s2 + ω 2
7
二、阶跃响应的性能指标
时间响应分暂态和稳态两阶段(过程) 暂态:又称过渡过程或瞬态过程;
响应从开始到接近终了平衡的状态。
稳态:当 t → ∞ 时,系统输出量
2012-9-19
8
2
5讲-1
2004年10月
三、典型时间响应
1. 单位阶跃响应 Φ(s)⋅ R(s) = Φ(s)⋅ 1
0
t
2012-9-19
18
四、一阶系统的加速度响应
C
(
s)
=
1 Ts +
1

1 s3
r(t) = 1 t 2; 2
C(t) = L−1[ 1 ⋅ 1 ]
r(t)
Ts +1 s3
=
L−1[
1 s3

T s2
+
T2 s

T3 ]
Ts +1
0
=
1
t2
− Tt
+T
2
−T
e2
−1t T
2
2012-9-19
R(s) = 1 s3
5讲-1
2004年10月
第三章 控制系统的时域性能分析
分析控制系统 第一步 建立模型 第二步 分析控制性能
系统性能:稳,快,准
时域分析法 分析方法包括
根轨迹法 频域分析法
2012-9-19
1
时域分析
方法:从输出量随着时间的变化过程(曲线及表达式) 分析系统的性能。
特点:易于直观的理解。
c(t)
t
19
五、一阶系统的脉冲响应

自动控制原理第三章一二阶系统的暂态响应解析

自动控制原理第三章一二阶系统的暂态响应解析

典型二阶系 统标准形式
闭环传函: 开环传函:
2 n Wk (s) ( s s 2n)
重要
:阻尼比
n :自然频率(无阻尼振荡频率)
第三章 自动控制系统的时域分析
2018年10月21日
2.典型二阶系统的单位阶跃响应
2 2 s 2 s 特征方程: n n s p1 s p2 0
得 T=0.1(s),取5%误差带 得调节时间 ts = 3T = 0.3 (s)
2018年10月21日
第三章 自动控制系统的时域分析
(2)求满足ts (5%) 0.1(s)的反馈系数值。
假设反馈系数 Kt(Kt>0),那么同样可由结构图写出闭 环传递函数
100 1/ Kt K s WB ( s) 100 0.01 1 Kt s 1 Ts 1 s Kt
第三章 自动控制系统的时域分析
A , 0 t ( 0) xr (t ) 0, t 0,t ( 0)
当A=1时,称为单位脉冲函数(t)
1 X r ( s) L[lim ] 1
0
脉冲信号或实际脉冲信号

2018年10月21日
当输入信号突然跳变时,输出量还处在原有的平衡状态,这 样就出现了偏差,这个偏差控制输出量达到新的平衡,这就是 一个调节过程。
Xr(t)
1
Xc(t)
1 2
实际 理想的 调节过程
1
0
2018年10月21日
t
0
t
第三章 自动控制系统的时域分析
Xc(t)
1
实际
2
1
理想的 调节过程
0 整个调节过程分为两个阶段:

《自动控制原理教学课件》第3章-1共16页

《自动控制原理教学课件》第3章-1共16页
G开 (s)G(s)H(s) →开环传递函数
(s) C (s) R(s)
→闭环传递函数
通信技术研究所
第三章 时域分析法
3.1 引言
一.时域分析法
根据系统的微分方程,以拉式变换为工具,在时间 域内研究控制系统在各种典型信号作用下,系统响应随 时间变化规律的方法。
二.时间域内数学模型
微分方程-解
暂 ( 动 ) 态 性 能 - - 动 态 分 量 - - 快 速 性
:阻尼角
arctan12arccosarcsin12
c(t)1
1
12
ent
sin(dt),
d n 12
d :阻尼自然振荡频率
e(t)r(t)c(t)1 12entsin(dt)
e() 0
通信技术研究所
二. 0 ,无阻尼状态
s1,2 jn
c (t ) 2
c(t)1cosnt 1
0 t
三. 1 ,临界阻尼状态
通信技术研究所
一.单位阶跃响应
r(t)=1,R(s)=1/s
C(s)= 1 11 T Ts+1s s Ts+1
-1t
c(t)=1-e T
这是一条指数曲线,t=0
c(t) 斜率=1/T
处斜率最大,其值为1/T, 若系统保持此变化速度,
1
在 t=T 时,输出将达到
稳态值。而实际系统只
0.632
86.5% 95% 98.2% 99.3%
e(∞) →∞ 一阶系统不能跟踪抛物线信号
通信技术研究所
<练>温度计是一阶系统,
(s)
1 Ts
1
,用其测量容
器内的水温,1分钟才能显示出该温度的98%的

自动控制原理精品课程第三章习题解(1)

自动控制原理精品课程第三章习题解(1)

3-1 设系统特征方程式:4322101000s s Ts s ++++=试按稳定要求确定T 的取值范围。

解:利用劳斯稳定判据来判断系统的稳定性,列出劳斯列表如下:4321011002105100(10250)/(5)100s T s s T s T T s ---欲使系统稳定,须有5025102500T T T ->⎧⇒>⎨->⎩ 故当T>25时,系统是稳定的。

3-2 已知单位负反馈控制系统的开环传递函数如下,试分别求出当输入信号为,21(),t t t 和 时,系统的稳态误差(),()().ssp ssv ssa e e e ∞∞∞和22107(1)8(0.51)(1)()(2)()(3)()(0.11)(0.51)(4)(22)(0.11)s s D s D s D s s s s s s s s s ++===++++++解:(1)根据系统的开环传递函数可知系统的特征方程为: ()(0.11)(0.51)100.050.6110D s sz s s s =+++=++=由赫尔维茨判据可知,n=2且各项系数为正,因此系统是稳定的。

由G(s)可知,系统是0型系统,且K=10,故系统在21(),t t t 和输入信号作用下的稳态误差分别为: 11(),(),()111ssp ssv ssa e e e K ∞==∞=∞∞=∞+ (2)根据系统的开环传递函数可知系统的特征方程为: 432()6101570D s s s s s =++++=由赫尔维茨判据可知,n=2且各项系数为正,且2212032143450,/16.8a a a a a a a ∆=-=>∆>=以及,因此系统是稳定的。

227(1)(7/8)(1)()(4)(22)s(0.25s+4)(0.5s 1)s s D s s s s s s ++==+++++由G(s)可知,系统式I 型系统,且K=7/8,故系统在21(),t t t 和 信号作用下的稳态误差分别为:()0,()1/,()ssp ssv ssa e e K e ∞=∞=∞=∞ (3)根据系统的开环传递函数可知系统的特征方程为: 32()0.1480D s s s s =+++=由赫尔维茨判据可知,n=2且各项系数为正,且21203 3.20a a a a ∆=-=>因此系统是稳定的。

自动控制原理第三章课后习题答案解析(最新)

自动控制原理第三章课后习题答案解析(最新)

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t p和%不存在
15
t
中国矿业大学信电学院
三、 一阶系统的单位脉冲响应
自动控制原理
当输入信号为理想单位脉冲函数δ(t)时,R(S)=1,输
出量的拉氏变换与系统的传递函数相同,即 C(s) 1 TS 1
这时系统的输出称为脉冲响应 c(t) L1[G(s)]
c(t )
其表达式为:
1 T
c(t)
1
t
1)
n2
S(S
2

n
C(s)
设一伺服系统,其框图
如图所示,由图可得该系统的传递函数
标准型
K
(s) C(s) G(s) K R(s) 1 G(s) TS2 S K
T
S2 1 S K
TT
式中
S2
n 2 2 nS
n2
K为开环增益; T为时间常数。
21
中国矿业大学信电学院
一、 二阶系统的数学模型
自动控制原理
r(t)=u(t) 系统的微分方程 c(t)
n
假设特征根(pi)两两互异: c(t) A0 Aie pit i 1 控制系统的时间响应,可以分为动态(瞬态)过程和稳
态过程。和电路系统、电机系统概念一致。
❖ 动态过程:系统在典型信号作用下,输出量从初始状态到接近最终状态的 响应过程。实际控制系统的瞬态响应,在达到稳态以前,表现为衰减(等幅 振荡、发散属于不稳定)过程。
回顾与展望
自动控制原理
1 绪论
控制系统发展史、控制方式、基本组成、术语、分类 控制系统基本要求:稳定性、动态性能、稳态误差
2 控制系统的数学模型
控制系统的数学模型建立、传递函数 方框图等效变换、梅森公式
3 时域分析法
4 根轨迹法
控制系统分析方法
5 频率分析法
6 控制系统的校正(设计、补偿与综合)
1
S1,2 n n 2 1
特征根的性质取决于 的大小
22
中国矿业大学信电学院
自动控制原理
为了使研究的结果具有普遍意义,可将表示为如下标准形式
(s)
C(s) R(s)
S2
n2 2nS
n2
K
T
S2 1 S K
T
T
n 2
K T
n
K T
n-自然频率(或无阻尼振荡频率)
2n
1 T
1
2 TK
-阻尼比(相对阻尼系数)
二阶系统的闭环特征方程为
S 2 2nS n2 0
特征方程的两个根(闭环极点)
1.典型输入信号
室温系统的温度、水位调节系统的高度; 火炮系统的位置和速度; 宇宙飞船的加速度
4
中国矿业大学信电学院
一、 典型输入信号
典型信号选取条件
自动控制原理
(1) 信号(实验室、现场)容易产生 (2) 尽可能接近实际工作时的外加信号 (3) 反映系统最不利的工作(环境)条件
5
中国矿业大学信电学院
一、 典型输入信号
自动控制原理
工程上常用的典型测试信号(输入函数)
时域函数: r(t) t 0 复域:F(s)
r(t)图形
单位脉冲 单位阶跃
(t)
u (t )
单位速度 单位加速度 单位正弦
t
1 t2 2
sin t
1
o
t
1
1
S
o
t
1
S2
o
t
1
S3
o
t
s2 2
o
t
6
中国矿业大学信电学院
二、时域性能指标
8
中国矿业大学信电学院
动态性能指标(振荡型)
c(t)
Mp超 调 量
c() 0.9 c()
td
0.5 c()
允许误差 0.02或 0.05
0.1 c()
0 tr
t
tp
ts
单位阶跃响应曲线
自动控制原理
延迟时间 t d :
响应曲线第一次 达到稳态值的一 半所需的时间。
上升时间 tr :
响应曲线从稳态值 的 10%上升到 90%,所需的时间。
17
中国矿业大学信电学院
自动控制原理
表3-2 一阶系统对典型输入信号的响应
输入信号 时域
(t)
u(t)
t
1 t2 2
输入信号 频域
1
1 S
1 S2
1 S3
输出响应
传递函数
1
t
eT
T
t
1e T
(t 0)
t0
t
t T Te T t 0
1
t2
Tt
T
2 (1
t
eT
)
t0
2
1 TS 1
这是线性定常系统的一个重要性质
11
t
中国矿业大学信电学院
动态性能指标(衰减型)
c(t)
自动控制原理
调节时间 ts 上升时间tr
12
t
中国矿业大学信电学院
第二节 一阶系统的时域分析
自动控制原理
R
+
+
r(t)
i(t) C
c(t)
( a) 电 路 图
R(s)
I(s)
( b) 方 框 图
R(s)
1
C(s)
Ts
R(s)
C(s)
一、一阶系统的数学模型
❖ 稳态过程:系统在典型信号作用下,时间t趋于无穷(较大)时,系统的输 出状态。研究系统的稳态特性,以确定输出信号对输入信号跟踪(伺服、 复现)能力。稳态过程又称稳态响应,提供稳态误差信息,用稳态性能 (稳态误差)描述。
7
中国矿业大学信电学院
二、时域性能指标
自动控制原理
稳定是控制系统能够运行(工作)的首要条件,只有动态 过程收敛(响应衰减),研究动态性能与稳态性能才有意义。
eT
,
t0
c(t) 1 et /T
T
T
0
T
2T 3T
4T
16
t
中国矿业大学信电学院
4 一阶系统的单位斜坡响应
自动控制原理
当 R(s) 1
S2
C
(
s)
G(s)
R(s)

1 TS
1
1 S2
1 S2
T S
T2 1 TS
对上式求拉氏反变换,得:c(t)
t
T
(1
1t
eT
)
t
T
Te
1t T
因为
1t
e(t) r(t) c(t) T (1 e T )
❖ 用一阶微分方程描述的控制系
统称为一阶系统。图(a)所
C(s)
示的RC电路,其微分方程为

T C(t) C(t) r(t)
其中C(t)为电路输出电压,r(t)为电
路输入电压,T=RC为时间常数。
当初始条件为零时,其传递函数为
G(s) C(s) 1 R(s) TS 1
( c) 等 效 方 块 图
解:由微分方程得系统的传递函数
C(s) s 1
R(s) Ts 1
在单位阶跃输入下,有 R(s) 1
s
19
中国矿业大学信电学院
自动控制原理
C(s) s 1 1 T Ts 1 s Ts 1
1 T sT
1 s 1
T
c(t)
1
T
t
eT
T
c() 1
当 t td 时
c(td )
0.5
1
不适用于时变与非线性系统
18
中国矿业大学信电学院
自动控制原理
习题 设某高阶系统可用下列一阶微分方程近似描述:
Tc(t) c(t) r(t) r(t)
其中,1 (T ) 0 。试证明系统的动态性能指标为
T
td [0.693 ln( T )]T
ts
[3
ln(T
T
)]T
tr 2.2T
T
T
td
eT
T
td T[ln 2 ln( T )]
20
中国矿业大学信电学院
第三节 二阶系统的时域分析
自动控制原理
一个可以用二阶微分方程来描述的系统称为二阶系统。 从物理上讲,二阶系统包含有二个独立的储能元件,经常用 到的储能元件有电感、电容等。
R(s) +
一、 二阶系统的数学模型
K S (TS
中国矿业大学信电学院
第三章线性系统的时域分析法
自动控制原理
第一节 典型输入信号和线性系统的时域性能指标 第二节 一阶系统的时域分析 第三节 二阶系统的时域分析 第四节 高阶系统的时域分析 第五节 线性系统的稳定性分析 第六节 控制系统的稳态误差
2
中国矿业大学信电学院
第三章线性系统的时域分析法
自动控制原理
Mp超 调 量
c() 0.9 c()
td
0.5 c()
允许误差
时间。用稳态值的 百分数(5% 或2%) ⑤ 超调量 % 指响应的最大偏离量
0.1 c() 0
tr tp
ts
单位阶跃响应曲线
c(tp)于终值之差的 百分比,即
% c(tp ) c() 100%
c()
0.02或 0.05
t
10
中国矿业大学信电学院
为简单起见,对于震荡型的响应曲线上升 时间可以定义为:响应从零开始第一次上升 到终值到所需的时间。
9
中国矿业大学信电学院
动态性能指标(振荡型)
自动控制原理
峰值时间 t p :响应曲线超过终值到达第一个峰值所需要的时间。
相关文档
最新文档