灰色预测灰色关联分析报告
灰色预测法GM(1,1)总结
灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
灰色关联分析详解+结果解读
灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
灰色关联分析
灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。
该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。
下面将详细介绍灰色关联分析的原理、应用以及优势。
灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。
灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。
通过对关联度进行排序,即可得出影响因素之间的关联程度大小。
灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。
在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。
在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。
在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。
灰色关联分析相对于其他分析方法有一些独特的优势。
首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。
其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。
此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。
然而,灰色关联分析也存在一些限制和不足之处。
首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。
其次,灰色关联分析无法处理存在时间滞后效应的数据。
此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。
综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。
它的原理基于灰色系统理论,可以在各个领域中广泛应用。
灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。
在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。
灰色关联分析
灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
灰色预测模型※※分析
灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
灰色关联分析
灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
灰色关联分析在经济预测中的应用
灰色关联分析在经济预测中的应用随着社会和科技的发展,数据分析越来越受到经济学领域的重视。
而在各种经济预测方法中,灰色关联分析(Grey Relational Analysis, GRA)成为了一种非常有效的方法。
这种方法以其独特的方式,将经济预测更加科学化和精确化。
下面,就让我们来探讨一下灰色关联分析在经济预测中的应用。
一、灰色关联分析的基本概念灰色关联分析首先在上世纪80年代被提出。
它是一种新型的数据分析方法,主要基于信息度量,利用相关性分析,通过跟踪和关联数据来了解不同参数之间的互相关系。
该方法的突出特点是,它可以高效地处理缺少充分数据的情况下,对事物间的联系和趋向性进行综合分析、预测和决策。
其中,灰色是指一些信息不完全或部分未知的不确定性事项。
这类事项不同于黑色和白色,即确定性事物和完全信息事项。
而关联则体现了不同参数之间的实际联系。
因此,灰色关联分析可以被理解为,一种基于反映不确定性联系的相关分析方法。
二、灰色关联分析在经济预测中的应用非常广泛。
它经常被用于分析复杂的经济变量和模式,提高预测的准确性和实用性。
下面,我们来看看灰色关联分析在经济预测中的具体应用。
1. 金融市场的预测在金融市场的预测中,灰色关联分析可以帮助分析各种经济指标之间的关系,比如利率、货币供应量、股票价格等等。
这些指标间可能存在着复杂的联系,在这种情况下,传统的统计预测方法难以有效预测。
而灰色关联分析能够通过信息的度量,综合考虑这些指标之间的影响和因素,从而给出更加准确的市场趋势预测和决策。
2. 经济增长的预测经济增长是各个国家关注的焦点。
灰色关联分析可以帮助分析GDP、生产率、投资等指标之间的联系,从而预测经济增长的发展趋势和突破点。
在这个过程中,灰色关联分析利用信息度量的概念,根据不同指标的大小和趋势,计算它们之间的关联度,并综合考虑出最终的经济增长情况。
3. 成本预测在某些行业中,成本预测是非常重要的一项任务。
灰色关联分析方法
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。
灰色预测总结
灰色系统建模灰色系统理论在建模中的应用:灰色系统理论在建模中被广泛用来处理数据。
与插值拟合相比,利用灰色模型处理数据不仅对数据没有很强的限制,而且精度更高,计算更简便。
常用的灰色系统生成方式有: 累加生成,累减生成,均值生成,级比生成等,下面对这几种生成做简单介绍. 累加生成:(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0)[(1),(2),,()],,[(1),(2),,()],:x x x x x n x x x x x n x x ==令为原始序列,记生成数为如果与之间满足如下关系(1)(0)1()();1,2,,(21)ki x k x i k n===-∑,1AGO -一次累加生成则称为记为累加生成在灰色系统理论中有着非常重要的地位,它能使任意非负数列,摆动的或非摆动的,转化为非减的的,递增的数列.累减生成:累减生成,即对数列求相邻两数据的差,累减生成是累加生成的逆运算,常简记为IAGO(Inver se Accumulated Generating Operation), 累减生成可将累加生成还原为非生成数列,在建模过程中用来获得增量信息,其运算符号为∆.()()(),,:r r i x r x i ∆令为次生成数列对作次累减生成记为其基本关系式为(0)()()(1)()(0)()(0)()(2)()(1)()(1)()()()(1)()(1)()[()]()[()][()][(1)][()][()][(1)](25)[()][()][(1)]r r r r r r r r i r i r i r x k x k x k x k x k x k x k x k x k x k x k --∆=∆=∆-∆-∆=∆-∆--∆=∆-∆-(0)(1)(),(0)0,;(0)1(0)11.i k k i k k i ∆∆-∆--式中为次累减即无累减为1次累减,即与时刻两个零次累减量求差,为次累减,即与时刻两个次累减量求差(25):-从式还可得到以下关系(1)()(0)()(0)()()()1(1)(1)11(1)[()][()][(1)]()(1)(26)()()()r r r r r kk r r i i r x k x k x k x k x k x i x i xk ---==-∆=∆-∆-=---=-=∑∑(2)()(1)()(1)()(1)(1)1(2)(2)11(2)[()][()][(1)]()(1)(27)()()()r r r r r kk r r i i r x k x k x k x k x k x i x i x k -----==-∆=∆-∆-=---=-=∑∑:同理可得()()()[()]()(28)i r r i x k xk -∆=-()()(0)[()]()(29)r r x k x k ∆=-(29),,.,,.:1,r r r -=从式可以看出对次生成数列作次累减即还原为非生成数列事实上累加中包含着累减累减中包含着累加比如时有1(1)(0)(0)(0)11(1)(0)()()()()(1)()(210)k k i i x k x i x i x k x k x k -====+=---∑∑(0)(1)(1)()()(1)x k x k x k =--进一步有(1)()()()()(1)(211)r r r x k x k x k -=---.均值生成分为邻均值生成与非邻均值生成两种 σρ级比生成是一种常用的填补序列端点空穴的方法.对数列端点值的生成,我们无法采用均值生成填补空缺,只能采用级比生级比生成.成是级比级比生(k 成在建模中可以获得较好的灰)与光滑比(k)生成指数律.的总称.(0)(0)(0)(0)[(1),(2),,()],(),(),X x x x n K k σρ=设序列为原始序列称为级比为光滑比其表达式为(0)(0)(0)(1)()()/(1)()()/(1)(212)k x k x k k x k x k σρ=-=--(0)(0)(0)(0)(0)(0)(0)[(1),(2),,(1),()],(1)(1),()(),(1)()X x x n n x n x n x x n ϕϕϕϕ=-设为端点是空穴的序列若用右邻的级比生成用的左邻级比生成则称和为级比生成GM(1.1)模型建模机理 GM(1.1)原理步骤 原始数列:{}(0)(0)(0)(0)(1),(2),,()X x x x n =对(0)X 进行一次累加,得到新数列:{}(1)(1)(1)(1)(1),(2),,()X x x x n =(1),()()ki xk x i ==∑其中于是(0)()x k 的GM (1.1)白化形式的微分方程为: (1)(1)(216)dx ax u dt+=- 其中,a,u 为待定系数,将(2-16)式离散化,即得:(1)(1)(1)((1))((1))(217)x k az x k u∆+++=-其中,(1)(1)((1))x k ∆+为(1)x 在(k+1)时刻的背景值 因为:(1)(1)(1)(1)(0)((1))(1)()(1)(218)x k x k x k x k ∆+=+-=+-(1)(1)(1)1(1)((1)())(219)2z k x k x k +=++-将(2-18),(2-19)式代入(2-17)式,得(0)(1)(1)1(1)[(()(1))](220)2x k a x k x k u+=-+++-将(2-20)(1)(1)(0)(1)(1)(0)(0)(1)(1)1((1)(2))12(2)1((2)(3))1(3)(221)2()1((1)())12x x x x x x x n x n x n ⎡⎤-+⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥--+⎢⎥⎣⎦(1)(1)(0)(1)(1)(0)(0)(1)(1)1((1)(2))12(2)1((2)(3))1(3),2()1((1)())12x x x x x x Y B x n x n x n ⎡⎤-+⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥--+⎢⎥⎣⎦令[]T a u Φ=为待辨识参数向量,则(2-21)可写成:(222)Y B =Φ-参数向量Φ可用最小二乘法求取,即1ˆˆˆ[,]()T T T a u B B B Y -Φ== 把求取的参数代入(2-16)式,并求出其离散解ˆ(1)(1)ˆˆˆ(1)[(1)](224)ˆˆak uu x k x e a a -+=-+-(0)(1)(1)ˆˆ(1)ˆˆˆ(1)(1)()ˆ(1)[(1)](225)ˆa akxk x k x k u e x e a-+=+-=---还原到原始数据得(224),(225)(1.1),(1.1).GM GM --式称为模型的时间相应函数模型它是模型灰色预测的具体计算公式(GM1.1)模型的精度检验模型选定之后,一定要经过检验才能判定其是否合理,只有通过检验的模型才能用来作预测,灰色模型的精度检验一般有三种方法:相对误差大小检验法,关联度检验法和后验差检验法.下面对这三种方法做个简单介绍.1 级比检验:为了保证建模方法的可行性,需要对已知数据列做必要的检验处理。
灰色预测+灰色关联分析
灰色关联分析法根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,来衡量因素间关联程度。
灰色关联分析法的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。
根据评价目的确定评价指标体系,为了评价×××我们选取下列评价指标:收集评价数据(此步骤一般为题目中原数据,便省略)将m 个指标的n 组数据序列排成m*n 阶矩阵:'''12''''''1212'''12(1)(1)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x m x m x m ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭对指标数据进行无量纲化为了消除量纲的影响,增强不同量纲的因素之间的可比性,在进行关联度计算之前,我们首先对各要素的原始数据作...变换。
无量纲化后的数据序列形成如下矩阵:01010101(1)(2)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x n x n x n ⎛⎫⎪ ⎪= ⎪⎪⎝⎭确定参考数据列为了比较...【评价目的】,我们选取...作为参考数据列,记作''''0000((1),(2),,())TX x x x n =计算0()()i x k x k -,得到绝对差值矩阵求两级最小差和两级最大差011min min ()()min(*,*,*,*,*,*)*nmi i k x k x k ==-==011max max ()()max(*,*,*,*,*,*)*n mi i k x k x k ==-==求关联系数由关联系数计算公式0000min min ()()max max ()()()()()max max ()()i i ikiki i i ikx k x k x k x k k x k x k x k x k ρζρ-+⋅-=-+⋅-,取0.5ρ=,分别计算每个比较序列与参考序列对应元素的关联系数,得关联系数如下:计算关联度分别计算每个评价对象各指标关联系数的均值,以反映各评价对象与参考序列的关联关系,并称其为关联度,记为:011()mi i k r k m ζ==∑。
灰色关联分析模型
模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础
灰色关联度分析法
灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。
它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。
在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。
一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。
灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。
具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。
2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。
3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。
关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。
4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。
二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。
下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。
2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。
通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。
3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。
通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。
4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。
灰色关联度分析法
灰色关联度分析法
灰色关联度分析法(Grey Relational Analysis,GRA)是一种多属性
决策分析的统计方法,是一个在变量未知情况下实现系统模型和控制
不确定性的有用工具。
灰色关联度分析法主要用于研究和分析影响多
维度多属性数据测量结果的各种因素之间的相关关系。
它对模糊数据
进行综合处理,可以把多维评价分解成基本的准则来实现。
灰色关联度分析法的原理是利用灰色关联度的基本定义来衡量某种系
统的相关程度,灰色关联度通过确定系统的相似度和差异度来计算相
关程度,以此作为最终判断结果。
首先,将所有系统样本的信息表示
成一维度序列,并计算各时间点的灰色关联度。
其次,将灰色关联度
转化成定量指标,以此确定每一种系统的相关程度。
最后,根据定量
指标的值,把每一种系统分成几个类,以便于进一步分析和研究。
灰色关联度分析法可以应用于多种领域,例如工程设计、产品设计、
资源调配等。
例如,当进行工程设计时,可以利用灰色关联度分析法,通过灰色关联度来考虑多种参数和因素,以便最大限度地满足工程项
目的要求。
总之,灰色关联度分析法是一种有效的多属性决策分析方法,在许多
领域得到了广泛的应用,对于多维度和多属性问题具有显著优势。
有
效地利用灰色关联度分析法,能够更好地实现系统模型和控制不确定性,有助于优化效率和提高决策水平。
灰色关联度分析
就可求得两级最大差Δ(max)和两级最小差Δ(min) 计算关联系数
计算第i 个被评价对象与最优参考序列间的关联 系数。
计算关联度
对各评价对象分别计算其p个指标与参考序列对应元素的关联系数的
均值,以反映各评价对象与参考序列的关联关系,称其为关联度,
记为 0i
1
P
(k)
P 0i k1
i1,2,..n.,
第六步 排关联序 由关联度数值可看出,r03>r01>r02。这表明,三种工资对工资总 额的关联程度的排列顺序为:承包工资、计时工资、档案工资。即该 公路施工企业的工资发展方向是以承包工资为主导,计时工资和档案 工资对工资总额的影响属于同一水平。
综合评价
基本思路是: 从样本中确定一个理想化的最优样本,以此为参考数列,通过计 算各样本序列与该参考序列的关联度,对被评价对象做出综合比 较和排序。
灰色关联度分析的运用
➢因 素 分 析 ➢综 合 评 价
因素分析
第一步 对数据做均值化处理
第二步 计算各比较数列同参考数列在同一时期的绝对差 再分别计算出其余4年的各绝对差
第三步 找出两极最大差与最小差
第四步 计算关联系数,取分辨系数
,则计算公式为:
第五步 计算关联度。
利用表4,分别求各个数列每个时期的关联系数的平均值即得关联度:
一般地,三种方法不宜混合、重叠作用,在进行系统因素分析时, 可根据实际情况选用其中一个。
若系统 因素 X i 与系统主行为 X
可以将其逆化或倒数化后进行计算。
0
呈负相关关系,我们
逆化
倒数化
关联系数的计算
设经过数据处理后的参考数列为:
比较数列为:
从几何角度看,关联程度实质上是参考数列与比较数列曲线形状的相似程度。凡 比较数列与参考数列的曲线形状接近,则两者间的关联度较大;反之,如果曲线 形状相差较大,则两者间的关联度较小。因此,可用曲线间的差值大小作为关联 度的衡量标准。 则:
灰色关联度分析
灰色关联度分析灰色关联度分析是一种常用的多指标决策方法,它可以用于相关性较强但不易被直接比较的指标之间的关联度分析。
该方法最早由中国工程师陶行知在20世纪50年代提出,并在实践中得到广泛应用。
灰色关联度分析的基本思想是将研究对象的各个指标进行数值标准化处理,以消除量纲和单位的差异。
然后,根据数据序列中的变化趋势,寻找出存在的关联规律。
通过计算不同指标之间的关联度,可以确定其相关性的强弱程度。
具体而言,灰色关联度分析的步骤如下:首先,将各个指标的原始数据进行正态化处理,将其限制在0-1之间。
然后,根据数据的发展趋势,构建关联数列,并计算相邻数据之间的差值。
接下来,通过计算累加生成序列的绝对值来确定各个指标的权重。
最后,根据权重值计算出不同指标之间的关联度。
灰色关联度分析的优点是能够充分考虑不同指标之间的相关程度,避免了单指标评价所带来的不足之处。
它对于数据规模较小、数据质量较差的情况下仍能有效分析,并且可以通过调整权重值来考虑不同指标的重要性。
此外,灰色关联度分析方法简单易行,不需要大量数据和复杂的运算,适用范围广泛。
然而,灰色关联度分析也存在一些限制和不足之处。
首先,该方法对于数据的处理比较敏感,一旦数据质量较差或者变化趋势不明显,分析结果可能受到较大影响。
其次,该方法不能直接评估指标的具体表现,只能提供关联度的大小,对于指标的具体意义和解释需要结合实际情况进行判断。
此外,灰色关联度分析所得到的关联度结果不能作为因果关系的证据,只能作为参考依据。
综上所述,灰色关联度分析是一种常用的多指标决策方法,通过对指标间关联度的计算,帮助决策者进行综合评价。
虽然该方法存在一些局限性,但在实际应用中却有着广泛的应用前景。
随着大数据时代的到来,灰色关联度分析方法也得到了进一步的发展和完善,为决策提供更准确、科学的依据。
灰色关联度分析讲解
第五章灰色关联度分析目录壹、何谓灰色关联度分析-------------------- 5-2贰、灰色联度分析实例详说与练习--------------- 5-8第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis) 是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/%由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。
三.量化分析量化分析四步曲:1.标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2.应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、Z (Zeta)为分辨系数,0VZV1,可设Z = 0.5(采取数字最终务必使关联系数计算:E i (k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例)3.关联系数E i (k)计算:应用公式i(k)mi n maxAoi(k)+』max 计算比较数列X上各点k与参考数列X参照点的关联系数,最后求各系数的平均值即是X与X o的关联度r i。
灰色预测方法实验报告
灰色预测方法实验报告实验报告:灰色预测方法一、实验目的通过使用灰色预测方法,对某个问题进行预测,并分析预测结果的准确性。
二、实验原理灰色预测方法是一种基于数据的预测方法,用于在缺乏足够数据的情况下对未来趋势进行预测。
该方法主要基于灰色系统理论,通过对数据序列进行灰色分析,找出其内在规律,并建立预测模型。
三、实验步骤1. 收集相关数据:首先,需要收集与要预测的问题相关的数据,包括历史数据和现有数据。
2. 数据预处理:对收集到的数据进行清洗和处理,确保数据的准确性和可靠性。
3. 灰色分析:使用灰色分析方法对数据进行处理,包括建立灰色模型、计算关联度等步骤。
4. 模型建立:基于灰色分析的结果,建立预测模型。
5. 验证模型:使用部分历史数据进行模型验证,评估模型的准确性和可靠性。
6. 进行预测:根据建立的模型,对未来一段时间内的数据进行预测。
7. 分析结果:对预测结果进行分析,并评估预测的准确性和可行性。
四、实验结果通过实验,我们成功应用了灰色预测方法对某个问题进行了预测,并得到了如下结果:1. 在灰色分析过程中,我们找到了数据序列的内在规律,并建立了预测模型。
2. 模型验证结果显示,该模型在部分历史数据上具有较高的准确性和可靠性。
3. 根据建立的模型,我们对未来一段时间内的数据进行了预测,并取得了一定的准确性。
五、实验结论通过实验,我们验证了灰色预测方法的有效性和可行性,该方法可以在缺乏足够数据的情况下进行预测,并取得一定的准确性。
在实际应用中,我们可以根据实际问题的特点,选择适当的灰色预测方法,并进行合理的预测。
六、实验总结通过本次实验,我们对灰色预测方法有了更深入的了解,并且验证了其在预测问题上的有效性。
实验过程中,我们还需要注意数据的质量和预处理的准确性,以及模型的验证过程,确保预测结果的准确性和可靠性。
灰色预测方法在实际应用中有很大的潜力,可以帮助我们做出合理的预测和决策。
2016数模选修——灰色预测与灰色关联度分析
解之得,即80%转化为7.
19
4.逐个计算每个被评价对象指标序列(比较 序列)与参考序列对应元素的绝对差值 即 x0 (k ) xi (k ) ( k 1,, m i 1,, n )n 为被评 价对象的个数). 5.确定 min min x0 (k ) xi (k )
i 1 k 1 n m
i k i k
i (k )
x0 ( k ) xi ( k ) maxmax x0 ( k ) xi ( k )
i k
( 12 5)
k 1,, m
式中为分辨系数,在(0,1)内取值,若 越小, 关联系数间差异越大,区分能力越强。通常 取0.5
21
如果{ x0 ( k )}为最优值数据列, i( k )越大,越好; 如果{ x0 ( k )}为最劣值数据列, i( k )越大,越不好。
x0 (1) , x0 2 , , x0 m X0
T
16
3.对指标数据进行无量纲化
无量纲化后的数据序列形成如下矩阵:
x0 1 x0 2 X 0 , X1 , , X n x0 m x1 2 x1 m x1 1 xn 1 xn 2 xn m
28
存在的问题及解决方法
29
《灰色预测与决策模型研究》 党耀国 刘思峰等著 科学出版社 本书中提及了一些其它的灰色关联度,如绝对 关联度,相对关联度等 等,并且针对各自的适 用范围进行了讨论。
所以如果是在数学建模的过程中,我们可以根 据实际的需要,确定我们的关联度的计算公式。
30
生成数
31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模步骤 设原有数据序列 x(0) (1), x(0) (2)......x(0) (n),它们满足x(0) (k) 0, k 1, 2...n 。 [注意剔除异常数据;如原始数据不是非负时作平移变换,令
]。
1.求级比,并作建模可行性分析
根据级比公式
(k)
x(0) (k1) x(0) (k)
,
z(1) (2) 1
Y
令
x(0) (3)
,
B
z(1) (3)
x(0) (n)
z(1) (n)
1 1
,则
Y=B
a b
。
用 MATLAB 最小二乘法求解参数 , P=(BTB)-1BTY=(a,b)T 。
接下来求解上面得到的基本模型
。
4.建立白化形式的近似微分方程:
dx(1) +ax(1) =b ,其中 a 为发展系数,b 为灰色作用量 dt
求两级最小差和两级最大差
nm
min minHale Waihona Puke i1 k 1x0 (k)
xi (k)
min(*,*,*,*,*,*)
*
nm
max max i1 k 1
x0 (k) xi (k)
max(*,*,*,*,*,*)
*
求关联系数
由关联系数计算公式 i (k)
min min
i
k
x 0 (k) xi (k)
1 m
m
i (k)
k 1
。经过计算得到关联度:
R r01 r02 r03 ...
[注] 如果各指标在综合评价中所起的作用不同,可对关联系数求加权平均值
即 r0i
1 m
m
Wk
k 1
i (k)
(k=1, , m)式中Wk 为各指标权重。
根据关联度矩阵得出综合评价结果 如果不考虑各指标权重(认为各指标同等重要),*个被评价对象由好到劣依
求得
2
2
当对所有的 k 有 (k) (en1 , en+1 ) 时,
可用作
建模。
[否则对数据再做一定的平移变换使生成数列的级比满足条件。]
2. 数据处理
对 x(0) (k) 序列做一次累加生成 x(1) (k) 序列,以弱化原始序列的随机性和波
动性。
k
x(1) (k) x(0) (m), k 1, 2...n
a 的可容区间为 (2, 2)
当 a 0.3时,
可以用作中长期预测;
当 0.3 a 0.5 时,
可用作短期预测中长期慎用;
当 0.5 a 0.8 时,
作短期预测慎用;
当 0.8 a 1时,用残差修正
模型;
当 a 1时,不宜采用
模型。
(0)k 的可容区间为 (e2, e2 ) = (0.1353, 7.3891)
1
i m
'(k)
x m i k 1
' (k )
x (k) xi
i
' (k )
xi
x x
s
(1.1) (1.2) (1.3)
灰色系统预测模型 GM(1,1)
使用条件
1.数据量不少于 4 个(大数据、小数据都可精准预测)
2.灰色预测适用于原始数据非负的,具有较强指数规律的序列。
3. 对于 GM (1,1) 发展系数a与级比 (0)k 有:
根据其时间响应函数
x(1) (t) (x(1) (1) b ) eat b
a
a
解得时间响应序列为:
xˆ(1) (k1) (x(0) (1) bˆ ) eaˆk bˆ 。
aˆ
aˆ
由累减生成 xˆ(0) (k1) xˆ(1) (k1)-xˆ(1) (k) ,得原始数据序列
型还原值)为
。
的预测值(模
次为: 。
如果存在多个参考数据列,则为优度分析问题,类似的得到关联度矩阵如下:
r11 r12 r13
R
r21
r22
r23
r31 r32 r33
从上述关联度矩阵,可以得到如下几点结论:
由
max i
1i
=
表明,在...中,【i代表的指标】占有最大的优势,它对...【参
考指标】的贡献最大,其次是,,,。
5.残差检验:
序号 1 2
时间(年/月/...)
原始值
预测值
残差
相对误差
n
残差 、相对误差 、平均相对误差
max max
i
k
x0 (k)
xi (k)
x0 (k)
xi (k)
max max
i
k
x0 (k)
xi (k )
,取
=0.5 ,分别计算每个比较序列与参考序列对应元素的关联系数,得关联系数如
下:
计算关联度
分别计算每个评价对象各指标关联系数的均值,以反映各评价对象与参考序
列的关联关系,并称其为关联度,记为:r0i
即
m1
,那么有 x(0) (k)=x(1) (k 1)-x(1) (k) 。
对 x(0) (k) 序列做紧邻均值生成 z(1) (k) 序列
即 z(1) (k ) 0.5x(1) (k) 0.5x(1) (k 1), k 2, 3...n 。
3.建立
灰微分方程模型
,并确定其参数。
x(0) (2)
由
max i
ij
=
表明,在*、*、*中,与...【i
代表的指标】联系最为紧密的是...
【j 代表的指标】。
[注] 常用的无量纲化方法有均值化法(见公式(1.1))、初值化法(见公式 (1.2))和标准化变换(见公式(1.3))等.或采用内插法使各指标数据取值范围(或 数量级)相同.
'(k)
x (k) x i
灰色关联分析法
根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,来衡量因 素间关联程度。灰色关联分析法的基本思想是根据序列曲线几何形状的相似程度 来判断其联系是否紧密。
根据评价目的确定评价指标体系, 为了评价×××我们选取下列评价指标:
收集评价数据(此步骤一般为题目中原数据,便省略)
将 m 个指标的 n 组数据序列排成 m*n 阶矩阵:
(
X1'
,
X
' 2
,
,
X
' n
)
x1' (1) x1' (2)
x1' (m)
x2' (1) x2' (2)
x2' (m)
xn' (1) xn' (2)
xn' (m)
对指标数据进行无量纲化
为了消除量纲的影响,增强不同量纲的因素之间的可比性,在进行关联度计
算之前,我们首先对各要素的原始数据作...变换。无量纲化后的数据序列形成如
下矩阵:
(X0, X1,
x0 (1)
,
X
n
)
x0
(2)
x0 (n)
x1(2) x1 (2)
x1 (n)
xn (1)
xn
(2)
xn (n)
确定参考数据列
为了比较...【评价目的】,我们选取...作为参考数据列,记作
X
' 0
(x0' (1), x0' (2),
, x0' (n))T
计算 x0(k) xi (k) ,得到绝对差值矩阵