高二数学选修2-1第三章空间向量与立体几-知识点+习题+答案
新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计
第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图31①,AB ,CD 是二面角αl β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图31(ⅱ)如图31②③,n 1,n 2分别是二面角αl β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图32,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图32①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图33,已知ABCD A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图33【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图34,长方体ABCDA1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图34(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图35,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O = 3.(1) (2)图35(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CD B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′CD B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′CD B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图36,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图36[跟踪训练]4.在如图37所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图37(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F BC A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F BC A 的余弦值为77.。
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
第三章 空间向量与立体几何 3.3 异面直线的距离(补充)
一、学习任务 介绍异面直线距离的概念,会计算简单的异面直线距离的问题,加深对空间位置关系的理解. 二、知识清单
异面直线的距离
三、知识讲解
1.异面直线的距离 描述: 设直线 a ,b 是异面直线,则存在直线 l 与直线 a ,b 均相交且垂直,此时直线 l 称为异面直 线 a ,b 的公垂线,直线 l 夹在直线a ,b 之间的部分称为异面直线a ,b 的公垂线段.异面直线 a, b 的公垂线段的长度称为异面直线 a ,b 的距离. 例题: 如图,长方体 ABCD − A 1 B 1 C1 D 1 中, AB = BC = 1,AA 1 = 2 ,求直线 A 1 C1 与 B 1 B 之间的距离.
B 1 D 所在的直线上.
3. 正方体 ABCD − A 1 B 1 C1 D 1 的棱长为 a ,那么 (1)直线 BA 1 与 CC1 所成角的大小为 (2)直线 BA 1 与 B 1 C 所成角的大小为 (3)异面直线 BC 与 AA 1 的距离为 (4)异面直线 BA 1 与 CC1 的距离为
答案:
. . . .
45∘ ;60∘ ;a ;a
.
4. 已知正方体 ABCD − A 1 B 1 C1 D 1 的棱长是 1 ,则直线 DA 1 与 AC 间的距离为
答案:
√3 3
解析:
3
以 A 为原点, AB 为 x 轴正方向建立空间直角坐标系, M , N 分别是 A 1 D , AC 上的 点,且 MN 是 DA 1 与 AC 间的垂线段. 可设 M (0, m, 1 − m) , N (t, t, 0) ,利用 MN ⊥ A 1 D 且 MN ⊥ AC 可求得 M , N 坐标, 从而求出 DA 1 与 AC 间的距离.
数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.1
§3.1 空间向量及其运算 3.1.1 空间向量及其线性运算学习目标 1.了解空间向量的概念,掌握空间向量的几何表示与字母表示.2.掌握空间向量的线性运算(加法、减法和数乘)及其运算律.知识点一 空间向量的概念思考 类比平面向量的概念,给出空间向量的概念. 答案 在空间,把具有大小和方向的量叫做空间向量.梳理 (1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. (2)几类特殊的空间向量知识点二 空间向量及其线性运算 1.空间向量的线性运算已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,AB →=c ,与平面向量的运算一样,空间向量的加法、减法与数乘运算的意义为:OB →=OA →+AB →=a +c ; BA →=OA →-OB →=a -b =-c .若P 在直线OA 上,则OP →=λa (λ∈R ).2.空间向量的加法和数乘运算满足如下运算律: (1)a +b =b +a ;(2)(a +b )+c =a +(b +c ); (3)λ(a +b )=λa +λb (λ∈R ). 知识点三 共线向量(或平行向量)1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.若向量a 与b 平行,记作a ∥b ,规定零向量与任意向量共线. 2.共线向量定理:对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .1.在空间中,单位向量唯一.(×)2.在空间中,任意一个向量都可以进行平移.(√) 3.在空间中,互为相反向量的两个向量必共线.(√)4.空间两非零向量相加时,一定可用平行四边形法则运算.(×)类型一 空间向量的概念及应用例1 如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中:(1)试写出与AB →相等的所有向量; (2)试写出AA 1—→的相反向量;(3)若AB =AD =2,AA 1=1,求向量AC 1—→的模.解 (1)与向量AB →相等的所有向量(除它自身之外)有A 1B 1—→,DC →及D 1C 1—→,共3个. (2)向量AA 1—→的相反向量有A 1A —→,B 1B —→,C 1C —→,D 1D —→,共4个. (3)|AC 1—→|=|AB →|2+|AD →|2+|AA 1—→|2=22+22+12=9=3. 引申探究如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:(1)单位向量共有多少个? (2)试写出模为5的所有向量.解 (1)由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C ——→,DD ′—→,D ′D ——→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.(2)由于长方体的左右两侧面的对角线的长均为5,故模为5的向量有AD ′—→,D ′A ——→,A ′D ——→,DA ′—→,BC ′—→,C ′B ——→,B ′C ——→,CB ′—→.反思与感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反. 跟踪训练1 给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②若空间向量a ,b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中不正确的命题的序号为________. 答案 ①②解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;若空间向量a ,b 满足|a |=|b |,则不一定能判断出a =b ,故②不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1—→成立,故③正确;④显然正确.类型二 空间向量的线性运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算,得AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思与感悟 1.化简向量表达式时,要结合空间图形,分析各向量在图形中的表示,然后利用运算法则,把空间向量转化为平面向量解决,并化简到最简为止.2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量;若首尾相接的若干个向量构成一个封闭图形,则这些向量的和为0.跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′—→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →,∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→=AC →+CC ′—→=AC ′—→. ∴AC →+AB ′—→+AD ′—→=2AC ′—→. 类型三 向量共线定理的理解与应用例3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC —→.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1—→)=25(AB →+AD →-AA 1—→)=25a +25b -25c . 所以EF →=A 1F —→-A 1E —→=25a +25b -25c -23b =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,又因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.反思与感悟 1.判定共线:判定两向量a ,b (b ≠0)是否共线,即判断是否存在实数λ,使a =λb .2.求解参数:已知两非零向量共线,可求其中参数的值,即利用若a ∥b ,则a =λb (λ∈R ). 3.判定或证明三点(如P ,A ,B )是否共线 (1)是否存在实数λ,使P A →=λPB →.(2)对空间任意一点O ,是否有OP →=OA →+tAB →.(3)对空间任意一点O ,是否有OP →=xOA →+yOB →(x +y =1).跟踪训练3 如图,在四面体ABCD 中,点E ,F 分别是棱AD ,BC 的中点,用AB →,CD →表示向量EF →.解 EF →=AF →-AE → =12(AB →+AC →)-12AD → =12AB →-12(AD →-AC →)=12AB →-12CD →.1.下列说法中正确的是________.(填序号)①若|a |=|b |,则a ,b 的长度相等,方向相同或相反; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③空间向量的减法满足结合律;④在四边形ABCD 中,一定是AB →+AD →=AC →. 答案 ②解析 若|a |=|b |,则a ,b 的长度相等,方向不确定,故①不正确;相反向量是指长度相同,方向相反的向量,故②正确;空间向量的减法不满足结合律,故③不正确;在▱ABCD 中,才有AB →+AD →=AC →,故④不正确.2.在平行六面体ABCD -A ′B ′C ′D ′的各条棱所在的向量中,与向量A ′B ′→相等的向量有________个. 答案 33.在正方体ABCDA 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→;③(AB →+BB 1—→)+B 1C 1—→;④(AA 1—→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1—→的有________个. 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1—→=AC →+CC 1—→=AC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→=AD 1—→+D 1C 1—→=AC 1—→; ③(AB →+BB 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→; ④(AA 1—→+A 1B 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→. 所以4个式子的运算结果都是AC 1—→.4.化简2AB →+2BC →+3CD →+3DA →+AC →=________. 答案 0解析 2AB →+2BC →+3CD →+3DA →+AC →=2AB →+2BC →+2CD →+2DA →+CD →+DA →+AC →=0. 5.若非零空间向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k =________. 考点 空间向量的数乘运算 题点 空间共线向量定理及应用 答案 ±1解析 由k e 1+e 2与e 1+k e 2共线, 得k e 1+e 2=λ(e 1+k e 2),即⎩⎪⎨⎪⎧k =λ,1=λk ,故k =±1.空间向量加法、减法运算的两个技巧:(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、填空题1.下列命题中,假命题是________.(填序号) ①任意两个向量都是共面向量;②空间向量的加法运算满足交换律及结合律; ③只有零向量的模等于0; ④共线的单位向量都相等. 答案 ④解析 容易判断④是假命题,共线的单位向量是相等向量或相反向量.2.已知空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →=________.(用a ,b ,c 表示) 答案 c -a -b 解析 如图,∵AB →+BC →+CD →+DA →=0, 即a +b +CD →-c =0, ∴CD →=c -a -b .3.在长方体ABCD -A 1B 1C 1D 1中,AB →-CD →+BC →-DA →=________. 答案 2AC →解析 AB →-CD →+BC →-DA →=(AB →+BC →)-(CD →+DA →) =AC →-CA →=2AC →.4.对于空间中的非零向量AB →,BC →,AC →,有下列各式:①AB +BC →=AC →;②AB →-AC →=BC →;③|A B →|+|B C →|=|A C →|;④|A B →|-|A C →|=|B C →|.其中一定不成立的是____________.(填序号) 答案 ②解析 根据空间向量的加减法运算,对于①:A B →+B C →=A C →恒成立;对于③:当A B →,B C →,A C →方向相同时,有|A B →|+|B C →|=|A C →|;对于④:当B C →,A B →,A C →在一条直线上且B C →与A B →,A C →方向相反时,有|A B →|-|A C →|=|B C →|. 只有②一定不成立.5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=DF →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=AF →-AF →=0.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB →+AD →+AA 1→=________,DD 1→-AB →+BC →=________.答案 AC 1—→ BD 1—→解析 AB →+AD →+AA 1—→=AB →+BC →+CC 1—→=AC 1—→, DD 1—→-AB →+BC →=DD 1—→-(AB →-AD →) =DD 1—→-DB →=BD 1—→.7.在直三棱柱ABCA 1B 1C 1中,若C A →=a ,C B →=b ,C C →1=c ,则A 1B —→=________.答案 -a +b -c 解析 如图,A 1B —→=A 1A —→+AB →=C 1C —→+(CB →-CA →) =-CC 1—→+CB →-CA →=-c +b -a .8.在正方体ABCD -A 1B 1C 1D 1中,A 1E —→=14A 1C 1—→,AE →=x AA 1—→+y (AB →+AD →),则x =________,y =________. 答案 1 14解析 ∵AE →=AA 1—→+A 1E —→=AA 1—→+14A 1C 1—→=AA 1—→+14AC →=AA 1—→+14(AB →+AD →),∴x =1,y =14.9.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-n AA 1—→,则m ,n 的值分别是________. 答案 12,-12解析 由于AF →=AD →+DF →=AD →+12(DC →+DD 1—→)=AD →+12AB →+12AA 1—→,所以m =12,n =-12.10.在空间四边形ABCD 中,若E ,F ,G ,H 分别为AB ,BC ,CD ,DA 边上的中点,则下列各式中成立的是________.(填序号) ①EB →+BF →+EH →+GH →=0; ②EB →+FC →+EH →+GE →=0; ③EF →+FG →+EH →+GH →=0; ④EF →-FB →+CG →+GH →=0. 答案 ②解析 易知四边形EFGH 为平行四边形, 所以EB →+FC →+EH →+GE →=EB →+BF →+GE →+EH → =EF →+GH →=0.11.如图,已知在空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF →=________.(用向量a ,b ,c 表示)答案 3a +3b -5c解析 设G 为BC 的中点,连结EG ,FG ,则EF →=EG →+GF →=12AB →+12CD → =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c二、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→;(4)AC ′—→+D ′B —→-DC →.解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→=AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DA →+AB →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解 ∵AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC → =-OA →+12OC →=-OA →+12(OD →+DC →) =-OA →+12(OD →+AB →) =-OA →+12OD →+12(OB →-OA →) =-32OA →+12OD →+12OB →, ∴x =12,y =-32. 三、探究与拓展14.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.答案 -8解析 ∵BD →=BC →+CD →=(-e 1-3e 2)+(2e 1-e 2)=e 1-4e 2,又∵A ,B ,D 三点共线,∴AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2),∴⎩⎪⎨⎪⎧2=λ,k =-4λ,∴k =-8.15.如图,设点A 是△BCD 所在平面外的一点,点G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).证明 连结BG ,延长后交CD 于点E ,由点G 为△BCD 的重心,知BG →=23BE →. ∵E 为CD 的中点,∴BE →=12BC →+12BD →. ∴AG →=AB →+BG →=AB →+23BE → =AB →+13(BC →+BD →) =AB →+13[(AC →-AB →)+(AD →-AB →)] =13(AB →+AC →+AD →).。
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。
选修2-1第三章 空间向量与立体几何练习题及答案
第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB yAD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,_ _ D_ A_ P_ N _ B_ M0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.C 1 B 1 A 1B A3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42B .32C .33D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ _ A_S_ F_ B参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,EN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x +-=,则2320x x --=,解得1x =,或23x =-(舍去), 111,.A C C BD ∴=⊥1CD 时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示_ C_ D_ A_P_ N _ B_ M _ EA1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0) A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有13(,0,0)2MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=∴<1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t =设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅7可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)3,0),3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,3BC n AC n BC ⋅=⋅==-又(,,),303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DS a =,平面DAC 的一个法向量600a OS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且2626),(0,)DS CS ==(. 设,CE tCS = 则226(,(1),)222BE BC CE BC tCS a a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.作 者 于华东 责任编辑 庞保军_ C_ A_S_ F_ BO。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案
→
→
∣→∣ ∣ ∣ →
∣→∣ ∣ ∣
→
→
④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )
→
→ →
→
→
中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2
高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。
数学人教B选修2-1讲义:第三章 空间向量与立体几何 3.1.3 Word版含答案
3.1.3 两个向量的数量积学习目标 1.掌握空间向量夹角概念及表示方法.2.掌握两个向量的数量积的概念、性质、计算方法及运算规律.3.掌握两个向量的数量积的主要用途,能运用数量积求向量夹角和判断向量的共线与垂直.知识点一 两个向量的夹角1.定义:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.2.范围:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉=π2时,a ⊥b .知识点二 两个向量的数量积1.定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a ·b . 规定:零向量与任何向量的数量积都是0. 2.数量积的运算律注意:空间向量的数量积不满足结合律。
知识点三 两个向量的数量积的性质1.向量AB →与CD →的夹角等于向量AB →与DC →的夹角.( × ) 2.对于非零向量b ,由a ·b =b ·c ,可得a =c .( × )3.对于向量a ,b ,c ,有(a ·b )·c =a ·(b ·c ).( × )4.若非零向量a ,b 为共线且同向的向量,则a ·b =|a ||b |.( √ ) 5.对任意向量a ,b ,满足|a ·b |≤|a ||b |.( √ )题型一 数量积的计算例1 如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF →·BA →; (2)EF →·BD →; (3)EF →·DC →; (4)AB →·CD →.考点 空间向量数量积的概念与性质 题点 用定义求数量积 解 (1)EF →·BA →=12BD →·BA →=12|BD →||BA →|·cos 〈BD →,BA →〉 =12cos 60°=14. (2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)EF →·DC →=12BD →·DC →=12|BD →|·|DC →|cos 〈BD →,DC →〉 =12cos 120°=-14. (4)AB →·CD →=AB →·(AD →-AC →) =AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0.反思感悟 (1)已知a ,b 的模及a 与b 的夹角,直接代入数量积公式计算.(2)如果要求的是关于a 与b 的多项式形式的数量积,可以先利用数量积的运算律将多项式展开,再利用a ·a =|a |2及数量积公式进行计算.跟踪训练1 已知长方体ABCD-A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点.试计算: (1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 考点 空间向量数量积的概念与性质 题点 用定义求数量积 解 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4, a ·b =b ·c =c ·a =0. (1)BC →·ED 1→=b ·⎣⎡⎦⎤12(c -a )+b =|b |2=42=16. (2)BF →·AB 1→=⎝⎛⎭⎫c -a +12b ·(a +c )=|c |2-|a |2 =22-22=0.(3)EF →·FC 1→=⎣⎡⎦⎤12(c -a )+12b ·⎝⎛⎭⎫12b +a =12(-a +b +c )·⎝⎛⎭⎫12b +a =-12|a |2+14|b |2=2. 题型二 利用数量积证明垂直问题例2 如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .求证:P A ⊥BD .考点 空间向量数量积的应用 题点 数量积的综合应用证明 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,知DA ⊥BD ,则BD →·DA →=0. 由PD ⊥底面ABCD ,知PD ⊥BD ,则BD →·PD →=0. 又P A →=PD →+DA →,所以P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .反思感悟 (1)由数量积的性质a ⊥b ⇔a ·b =0可知,要证两直线垂直,可构造与两直线分别平行的向量(a ,b 是非零向量),只要证明这两个向量的数量积为0即可.(2)用向量法证明线面(面面)垂直,离不开线面(面面)垂直的判定定理,需将线面(面面)垂直转化为线线垂直,然后利用向量法证明线线垂直即可.跟踪训练2 如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .考点 空间向量数量积的应用 题点 数量积的综合应用证明 设A 1B 1—→=a ,A 1D 1—→=b ,A 1A →=c , 则a ·b =0,b ·c =0,a ·c =0,|a |=|b |=|c |. ∵A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12a +12b ,BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12a +12b -12c , ∴A 1O →·BD →=⎝⎛⎭⎫c +12a +12b ·(b -a )=c ·b -c ·a +12a ·b -12a 2+12b 2-12b ·a=12(b 2-a 2) =12(|b |2-|a |2)=0. 于是A 1O →⊥BD →,即A 1O ⊥BD . 同理可证A 1O →⊥OG →,即A 1O ⊥OG .又∵OG ∩BD =O ,OG ⊂平面GBD ,BD ⊂平面GBD , ∴A 1O ⊥平面GBD .题型三 数量积求解空间角与距离命题角度1 求解角度问题例3 在空间四边形OABC 中,连接AC ,OB ,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求向量OA →与BC →所成角的余弦值. 考点 空间向量数量积的应用 题点 利用数量积求角 解 ∵BC →=AC →-AB →, ∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|·cos 〈OA →,AC →〉-|OA →||AB →|·cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120°=24-162, ∴cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.反思感悟 求两个空间向量a ,b 夹角的方法类同平面内两向量夹角的求法,利用公式cos 〈a ,b 〉=a ·b|a ||b |,在具体的几何体中求两向量的夹角时,可把其中一个向量的起点平移至与另一个向量的起点重合,转化为求平面中的角度大小问题.跟踪训练3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.考点 空间向量数量积的应用 题点 利用数量积求角 解 不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1, a ·b =b ·c =c ·a =0, A 1B →=a -c ,AC →=a +b . ∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1, 而|A 1B →|=|AC →|=2, ∴cos 〈A 1B →,AC →〉=12×2=12, ∵〈A 1B →,AC →〉∈(0°,180°), ∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 命题角度2 求解距离或长度例4 平行四边形ABCD 中,AB =2AC =2且∠ACD =90°,将它沿对角线AC 折起,使AB 与CD 成60°角,求B ,D 间的距离.考点 空间向量数量积的应用 题点 利用数量积求线段长解 由已知得AC ⊥CD ,AC ⊥AB ,折叠后AB 与CD 所成角为60°,于是,AC →·CD →=0,BA →·AC →=0,且〈BA →,CD →〉=60°或120°.|BD →|2=(BA →+AC →+CD →)2=BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD →=22+12+22+2×2×2cos 〈BA →,CD →〉,故|BD →|2=13或5, 解得|BD →|=13或5, 即B ,D 间的距离为13或 5.反思感悟 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a·a 求解即可.跟踪训练4 在平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长. 考点 空间向量数量积的应用 题点 利用数量积求线段长 解 因为AC 1→=AB →+AD →+AA 1→, 所以AC →21=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA →21+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→). 因为∠BAD =90°,∠BAA 1=∠DAA 1=60°,所以AC →21=1+4+9+2×(1×3×cos 60°+2×3×cos 60°)=23. 因为AC →21=|AC 1→|2,所以|AC 1→|2=23, 则|AC 1→|=23,即AC 1=23.利用数量积探究垂直问题典例 如图所示,在矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 的上方),则边BC 上是否存在点Q ,使PQ →⊥QD →?考点 空间向量数量积的应用 题点 数量积的综合应用解 假设存在点Q (点Q 在边BC 上),使PQ →⊥QD →, 即PQ ⊥QD .连接AQ ,因为P A ⊥平面ABCD ,所以P A ⊥QD . 又PQ →=P A →+AQ →,所以PQ →·QD →=P A →·QD →+AQ →·QD →=0.又P A →·QD →=0,所以AQ →·QD →=0,所以AQ →⊥QD →. 即点Q 在以边AD 为直径的圆上,圆的半径为a 2.又AB =1,所以当a2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意;当a2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ,使PQ →⊥QD →; 当0<a <2时,不存在点Q ,使PQ →⊥QD →.[素养评析] 本例由条件PQ →⊥QD →,利用向量的数量积推知Q 点轨迹,从而转化为平面几何问题,解答此题,应具有较强的逻辑推理能力.1.对于向量a ,b ,c 和实数λ,下列命题中的真命题是( ) A .若a ·b =0,则a =0或b =0 B .若λa =0,则λ=0或a =0 C .若a 2=b 2,则a =b 或a =-b D .若a ·b =a ·c ,则b =c 答案 B解析 对于A ,可举反例:当a ⊥b 时,a ·b =0;对于C , a 2=b 2,只能推出|a |=|b |,而不能推出a =±b ; 对于D ,当a =0时,不能推出b =c .2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |等于( ) A .14 B.14 C .4 D .2 答案 B解析 |a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14. 3.在正方体ABCD -A 1B 1C 1D 1中,有下列命题: ①(AA 1→+AD →+AB →)2=3AB →2; ②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°. 其中真命题的个数为( ) A .1 B .2 C .3 D .0 答案 B解析 易知①②正确;AD 1→与A 1B →的夹角为120°, ∴③不正确.故选B.4.已知a ,b 为两个非零空间向量,若|a |=22,|b |=22,a ·b =-2,则〈a ,b 〉=________. 答案3π4解析 cos 〈a ,b 〉=a ·b |a ||b |=-22,∴〈a ,b 〉=3π4. 5.已知正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2×(1×2×cos 120°+0+2×1×cos 120°)=2, ∴|EF →|=2,∴EF 的长为 2.1.空间向量数量积性质的应用(a ,b 为非零向量) (1)a ⊥b ⇔a ·b =0,此结论用于证明空间中的垂直关系. (2)|a |2=a 2,此结论用于求空间中线段的长度.(3)cos 〈a ,b 〉=a·b |a ||b |,此结论用于求有关空间角的问题.(4)|b |cos 〈a ,b 〉=a·b|a |,此结论用于求空间中的距离问题.2.空间向量的数量积的三点注意 (1)数量积的符号由夹角的余弦值决定. (2)当a ≠0,由a ·b =0可得a ⊥b 或b =0.(3)空间向量没有除法运算:即若a ·b =k ,没有a =k b.一、选择题1.已知非零向量a ,b 不平行,并且其模相等,则a +b 与a -b 之间的关系是( ) A .垂直 B .共线 C .不垂直D .以上都可能考点 空间向量数量积的概念与性质 题点 数量积的性质 答案 A解析 由题意知|a |=|b |, ∵(a +b )·(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).2.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为( ) A .60° B .30° C .135° D .45° 答案 D解析 ∵a -b 与a 垂直,∴(a -b )·a =0, ∴a ·a -a ·b =|a |2-|a ||b |cos 〈a ,b 〉 =1-1·2·cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22. ∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=45°.3.已知空间向量a ,b ,c 两两夹角为60°,其模都为1,则|a -b +2c |等于( ) A. 5 B .5 C .6 D. 6 答案 A解析 ∵|a -b +2c |2=|a |2+|b |2+4|c |2-2a ·b +4a ·c -4b ·c=12+12+4×12-2·1·1·cos 60°+4·1·1·cos 60°-4·1·1·cos 60°=5, ∴|a -b +2c |= 5.4.如图,已知空间四边形每条边和对角线长都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )A .2BA →·AC →B .2AD →·DB →C .2FG →·AC →D .2EF →·CB →答案 C解析 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2,故D 错,只有C 正确.5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是( )A .30°B .45°C .60°D .90° 答案 C解析 ∵AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+CD →2+DB →·CD →=0+12+0=1, 又|AB →|=2,|CD →|=1.∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=12×1=12.∵异面直线所成的角是锐角或直角, ∴a 与b 所成的角是60°.6.已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a 等于( ) A .12 B .8+13 C .4 D .13 答案 D解析 (2a -b )·a =2a 2-b ·a =2|a |2-|a ||b |cos 120°=2×4-2×5×⎝⎛⎭⎫-12=13. 7.已知在平行六面体ABCD -A 1B 1C 1D 1中,同一顶点为端点的三条棱长都等于1,且彼此的夹角都是60°,则此平行六面体的对角线AC 1的长为( ) A. 3 B .2 C. 5 D. 6 答案 D解析 ∵AC 1→=AB →+AD →+AA 1→,∴AC 1→2=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2AB →·AD →+2AB →·AA 1→+2AD →·AA 1→=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|AC 1→|= 6.8.如图,在直三棱柱ABC -A 1B 1C 1中,若∠BAC =π2,AB =AC =AA 1,则异面直线A 1B 与C 1A所成的角等于( )A.π6B.π4 C.π3 D.π2答案 C解析 设AB →=a ,AC →=b ,AA 1→=c , 则A 1B →=a -c ,C 1A →=-b -c ,∴A 1B →·C 1A →=(a -c )·(-b -c )=-a ·b +b ·c -a ·c +c 2=|c |2,∴cos 〈A 1B →,C 1A →〉=A 1B →·C 1A →|A 1B →||C 1A →|=|c |22|c |2=12.∴A 1B 与C 1A 所成的角为π3.二、填空题9.已知空间向量a ,b ,c 满足a +b +c =0,|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a 的值为________. 答案 -13解析 ∵a +b +c =0, ∴(a +b +c )2=0,∴a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=0, ∴a ·b +b ·c +c ·a =-32+12+422=-13.10.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=________. 考点 空间向量数量积的应用 题点 利用数量积求角 答案 60°解析 由条件知(a +3b )·(7a -5b )=7|a |2-15|b |2+16a ·b =0,(a -4b )·(7a -2b )=7|a |2+8|b |2-30a ·b =0,两式相减得46a ·b =23|b |2,所以a ·b =12|b |2,代入上面两个式子中的任意一个,得|a |=|b |,所以cos 〈a ,b 〉=a ·b |a ||b |=12|b |2|b |2=12,所以〈a ,b 〉=60°.11.(2018·大连高二检测)如图,平行六面体ABCD -A ′B ′C ′D ′中,AB =AD =1,AA ′=2,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.考点 空间向量数量积的应用 题点 利用数量积求线段长答案11解析 |AC ′—→|2=|AB →+BC →+CC ′—→|2=AB →2+BC →2+CC ′—→2+2AB →·BC →+2BC →·CC ′—→+2AB →·CC ′—→=12+12+22+2×1×1×cos 60°+2×1×2×cos 60°+2×1×2×cos 60°=11, 则|AC ′—→|=11. 三、解答题12.如图所示,已知空间四边形ABCD ,连接AC ,BD ,若AB =CD ,AC =BD ,E ,F 分别是AD ,BC 的中点,试用向量方法证明EF ⊥AD 且EF ⊥BC .证明 连接AF ,∵点F 是BC 的中点,∴A F →=12(AB →+AC →),∴EF →=AF →-AE → =12(AB →+AC →)-12AD → =12(AB →+AC →-AD →), 又|AC →|=|BD →|=|AD →-AB →|, ∴AC 2=AD 2-2AD →·AB →+AB 2,①同理AB 2=CD 2=AD 2-2AC →·AD →+AC 2,② 将①代入②可得AB 2=AD 2-2AC →·AD →+AD 2 -2AB →·AD →+AB 2,∴2AD 2-2AD →·(AC →+AB →)=0, ∴AD →·(AC →+AB →-AD →)=0, ∴AD →·12(AB →+AC →-AD →)=0,∴AD →·EF →=0,∴EF →⊥AD →. 同理可得EF →⊥BC →. ∴EF ⊥AD 且EF ⊥BC .13.如图所示,在四棱锥P —ABCD 中,P A ⊥平面ABCD ,AB ⊥BC ,AB ⊥AD ,且P A =AB =BC =12AD =1,求PB 与CD 所成的角.解 由题意知|PB →|=2,|CD →|=2, PB →=P A →+AB →,DC →=DA →+AB →+BC →, ∵P A ⊥平面ABCD , ∴P A →·DA →=P A →·AB →=P A →·BC →=0. ∵AB ⊥AD , ∴AB →·DA →=0, ∵AB ⊥BC , ∴AB →·BC →=0,∴PB →·DC →=(P A →+AB →)·(DA →+AB →+BC →) =AB →2=|AB →|2=1, 又∵|PB →|=2,|CD →|=2,∴cos 〈PB →,DC →〉=PB →·DC →|PB →||DC →|=12×2=12,∵〈PB →,DC →〉∈[0,π], ∴〈PB →,DC →〉=π3,∵异面直线所成的角为锐角或直角, ∴PB 与CD 所成的角为π3.14.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为________. 答案 -4解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4.15.如图,在正三棱柱ABC -A 1B 1C 1中,底面边长为 2.(1)设侧棱长为1,求证:AB 1⊥BC 1; (2)设AB 1与BC 1的夹角为π3,求侧棱的长.(1)证明 AB 1→=AB →+BB 1→, BC 1→=BB 1→+BC →. ∵BB 1⊥平面ABC , ∴BB 1→·AB →=0,BB 1→·BC →=0. 又△ABC 为正三角形,∴〈AB →,BC →〉=π-〈BA →,BC →〉=π-π3=2π3.∵AB 1→·BC 1→=(AB →+BB 1→)·(BB 1→+BC →) =AB →·BB 1→+AB →·BC →+BB 1→2+BB 1→·BC →=|AB →|·|BC →|·cos 〈AB →,BC →〉+BB 1→2=-1+1=0, ∴AB 1⊥BC 1.(2)解 结合(1)知AB 1→·BC 1→=|AB →|·|BC →|·cos 〈AB →,BC →〉+BB 1→2=BB 1→2-1. 又|AB 1→|=(AB →+BB 1→)2=2+BB 1→2=|BC 1→|,∴cos 〈AB 1→,BC 1→〉=BB 1→2-12+BB 1→2=12,∴|BB 1→|=2,即侧棱长为2.。
数学人教B选修2-1讲义:第三章 空间向量与立体几何 3.1.1 Word版含答案
§3.1 空间向量及其运算 3.1.1 空间向量的线性运算学习目标 1.了解空间向量、向量的模、零向量、相反向量、相等向量、共线向量等的概念.2.会用平行四边形法则、三角形法则作出向量的和与差,了解向量加法的交换律和结合律.3.掌握数乘向量运算的意义及运算律.知识点一 空间向量的概念1.在空间中,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. 2.几类特殊的空间向量知识点二 空间向量的加减运算及运算律1.类似于平面向量,可以定义空间向量的加法和减法运算.OB →=OA →+AB →=a +b , CA →=OA →-OC →=a -b . 2.空间向量加法交换律 a +b =b +a , 空间向量加法结合律 (a +b )+c =a +(b +c ). 知识点三 数乘向量运算 1.实数与向量的积与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a |.(2)当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0. 2.空间向量数乘运算满足以下运算律 (1)λ(μa )=(λμ)a ; (2)λ(a +b )=λa +λb .1.若表示两个相等空间向量的有向线段的起点相同,则终点也相同.( √ ) 2.零向量没有方向.( × )3.两个有公共终点的向量,一定是共线向量.( × )4.空间向量的数乘中λ只决定向量的大小,不决定向量的方向.( × )题型一 空间向量的概念理解例1 (1)下列关于空间向量的说法中正确的是( ) A .空间向量不满足加法结合律B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同考点 空间向量的相关概念及其表示方法题点 相等、相反向量 答案 D解析 A 中,空间向量满足加法结合律;B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定;C 中,向量作为矢量不能比较大小,故选D. (2)给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→;③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中不正确的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→成立,故②正确;③显然正确.故选B.反思感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.跟踪训练1 (1)在平行六面体ABCD -A 1B 1C 1D 1中,下列四对向量:①AB →与C 1D 1——→;②AC 1→与BD 1→;③AD 1→与C 1B →;④A 1D →与B 1C →.其中互为相反向量的有n 对,则n 等于( )A .1B .2C .3D .4答案 B解析 对于①AB →与C 1D 1→,③AD 1→与C 1B →长度相等,方向相反,互为相反向量;对于②AC 1→与BD 1→长度相等,方向不相反;对于④A 1D →与B 1C →长度相等,方向相同.故互为相反向量的有2对. (2)如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:①单位向量共有多少个? ②试写出模为5的所有向量. ③试写出与向量AB →相等的所有向量. ④试写出向量AA ′→的所有相反向量.解 ①由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C —→,DD ′—→,D ′D —→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.②由于长方体的左右两侧面的对角线长均为5,故模为5的向量有AD ′—→,D ′A —→,A ′D —→,DA ′—→,BC ′—→,C ′B —→,B ′C —→,CB ′—→.③与向量AB →相等的所有向量(除它自身之外)有A ′B ′—→,DC →及D ′C ′——→. ④向量AA ′—→的相反向量有A ′A —→,B ′B —→,C ′C —→,D ′D —→. 题型二 空间向量的加减运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果. 跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →, ∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→=AC →+CC ′—→=AC ′—→. ∴AC →+AB ′—→+AD ′—→=2AC ′—→. 题型三 数乘向量运算例3 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 解 (1)AP →=AD 1→+D 1P →=(AA 1→+AD →)+12AB →=a +c +12b .(2)A 1N →=A 1A →+AN → =-AA 1→+AB →+12AD →=-a +b +12c .(3)MP →+NC 1→=(MA 1→+A 1D 1→+D 1P →)+(NC →+CC 1→) =12AA 1→+AD →+12AB →+12AD →+AA 1→ =32AA 1→+32AD →+12AB → =32a +12b +32c . 引申探究若把本例中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,如何表示AP →?解 AP →=AD 1→+D 1P →=AA 1→+AD →+23AB →=a +c +23b .反思感悟 利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.跟踪训练3 如图,在空间四边形OABC 中,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MG =2GN ,如图所示,记OA →=a ,OB →=b ,OC →=c ,试用向量a ,b ,c 表示向量OG →.解 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →)=12a +23[-12a +c +12(b -c )]=16a +13b +13c .对空间向量的有关概念理解不清致误典例 下列说法中,错误的个数为( )①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同; ②若向量AB →,CD →满足|AB →|=|CD →|,AB →与CD →同向,则AB →>CD →;③若两个非零向量AB →,CD →满足AB →+CD →=0,则AB →,CD →互为相反向量; ④AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1 B .2 C .3 D .4考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 C解析 ①错误,两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误,向量的模可以比较大小,但向量不能比较大小.③正确,由AB →+CD →=0,得AB →=-CD →,所以AB →,CD →互为相反向量.④错误,AB →=CD →的充要条件是|AB →|=|CD →|,且AB →,CD →同向.但A 与C ,B 与D 不一定重合. 故一共有3个错误命题,正确答案为C.[素养评析] (1)掌握空间向量的相关概念是正确解答本题的关键. (2)准确把握推理的形式和规则,有利于培养学生的合乎逻辑的思维品质.1.下列命题中,假命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .空间中任意两个单位向量必相等 答案 D2.在平行六面体ABCD -A 1B 1C 1D 1中,与向量AD →相等的向量共有( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 与AD →相等的向量有A 1D 1→,BC →,B 1C 1→,共3个.3.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3答案 D解析 向量a ,b 互为相反向量,则a ,b 模相等、方向相反.故D 正确.4.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB → B .3MG → C .3GM → D .2MG → 答案 B解析 MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+2MG →=3MG →. 5.在正方体ABCD -A 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1—→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1;④(AA 1→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1→的有________个.答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;②(AA 1→+A 1D 1—→)+D 1C 1→=AD 1→+D 1C 1—→=AC 1→; ③(AB →+BB 1→)+B 1C 1—→=AB 1→+B 1C 1—→=AC 1→; ④(AA 1→+A 1B 1—→)+B 1C 1—→=AB 1→+B 1C 1—→=AC 1→. 所以4个式子的运算结果都是AC 1→.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. 2.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、选择题1.下列命题中为真命题的是( ) A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 A解析 对于选项B ,其终点构成一个球面;对于选项C ,零向量不能用有向线段表示;对于选项D ,向量a 与向量b 不相等,未必它们的模不相等,故选A. 2.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( ) A.AD → B.BD → C.AC →D .0 答案 A解析 AB →+BC →+CD →=AC →+CD →=AD →.3.如图所示,点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-c B.12(c +a )-b C.12(b +c )-a D .a +12(b +c )答案 C解析 AD →=AO →+OD →=-OA →+12(OB →+OC →)=-a +12(b +c ).4.在正方体ABCD -A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( ) A.BD 1→ B.D 1B → C.B 1D → D.DB 1→ 答案 A解析 如图所示,∵DD 1→=AA 1→,DD 1→-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD 1→,∴DD 1→-AB →+BC →=BD 1→.5.在空间平移△ABC 到△A ′B ′C ′,连接对应顶点,设AA ′→=a ,AB →=b ,AC →=c ,M 是BC ′的中点,N 是B ′C ′的中点,如图所示,用向量a ,b ,c 表示向量MN →等于( )A.a +12b +12cB.12a +12b +12c C .a +12bD.12a 答案 D解析 MN →=12BB ′—→=12AA ′—→=12a .6.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →答案 D解析 ∵AB →=DC →,∴|AB →|=|DC →|,AB ∥DC ,即四边形ABCD 为平行四边形,由平行四边形的性质知,DO →=OB →.7.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1—→=a ,A 1D 1—→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c答案 A解析 B 1M →=B 1B →+BM →=A 1A →+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c .8.P 为正六边形ABCDEF 所在平面外一点,O 为正六边形ABCDEF 的中心,则P A →+PB →+PC →+PD →+PE →+PF →等于( )A .2PO →B .4PO →C .6PO →D .12PO → 答案 C解析 由O 是正六边形ABCDEF 的中心,得OA →+OD →=0,OB →+OE →=0,OC →+OF →=0,∴P A →+PB →+PC →+PD →+PE →+PF →=PO →+OA →+PO →+OB →+PO →+OC →+PO →+OD →+PO →+OE →+PO →+OF →=6PO →. 二、填空题9.已知向量a ,b ,c 互相平行,其中a ,c 同向,a ,b 反向,|a |=3,|b |=2,|c |=1,则|a +b +c |=________.考点 空间向量的加减运算 题点 空间向量的加减运算的应用 答案 210.在直三棱柱ABC -A 1B 1C 1中,若C A →=a ,C B →=b ,CC 1→=c ,则A 1B →=________.答案 -a +b -c 解析 如图,A 1B →=A 1A →+AB → =C 1C →+(CB →-CA →) =-CC 1→+CB →-CA → =-c +b -a .11.给出下列几个命题:①方向相反的两个向量是相反向量; ②若|a |=|b |,则a =b 或a =-b ;③对于任意向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________. 考点 空间向量的相关概念及其表示方法 题点 空间向量的定义与模 答案 ③解析 对于①,长度相等且方向相反的两个向量是相反向量,故①错误;对于②,若|a |=|b |,则a 与b 的长度相等,但方向没有任何联系,故不正确;只有③正确. 三、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →; (2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→; (4)AC ′—→+D ′B —→-DC →. 解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→ =AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图所示,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点.化简下列各式,并在图中标出化简得到的向量:(1)CB →+BA 1→; (2)AC →+CB →+12AA 1→;(3)AA 1→-AC →-CB →. 解 (1)CB →+BA 1→=CA 1→. (2)因为M 是BB 1的中点, 所以BM →=12BB 1→.又AA 1→=BB 1→,所以AC →+CB →+12AA 1→=AB →+BM →=AM →.(3)AA 1→-AC →-CB →=CA 1→-CB →=BA 1→.向量CA 1→,AM →,BA 1→如图所示.14.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的共有( ) ①OA →+OD →与OB ′—→+OC ′—→是一对相反向量; ②OB →-OC →与OA ′—→-OD ′—→是一对相反向量;③OA →+OB →+OC →+OD →与OA ′—→+OB ′—→+OC ′—→+OD ′—→是一对相反向量; ④OA ′—→-OA →与OC →-OC ′—→是一对相反相量. A .1个 B .2个 C .3个 D .4个 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 C解析 如图所示,①OA →=-OC ′—→,OD →=-OB ′—→,所以OA →+OD →=-(OB ′—→+OC ′—→),是一对相反向量;②OB →-OC →=CB →,OA ′—→-OD ′—→=D ′A ′——→,而CB →=D ′A ′——→,故不是相反向量; ③同①,也是正确的;④OA ′—→-OA →=AA ′—→,OC →-OC ′—→=C ′C —→=-AA ′—→,是一对相反向量. 15.如图所示,在正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中.(1)化简A 1F 1—→-EF →-BA →+FF 1→+CD →+F 1A 1—→,并在图中标出表示化简结果的向量; (2)化简DE →+E 1F 1→+FD →+BB 1→+A 1E 1→,并在图中标出表示化简结果的向量. 考点 空间向量的加减运算 题点 空间向量的加减运算解 (1)A 1F 1—→-EF →-BA →+FF 1→+CD →+F 1A 1—→=AF →+FE →+AB →+BB 1→+CD →+DC →=AE →+AB 1→+0=AE →+ED 1→=AD 1→.AD 1→在图中表示如下:(2)DE →+E 1F 1→+FD →+BB 1→+A 1E 1—→=DE →+EF →+FD →+BB 1→+B 1D 1→=DF →+FD →+BD 1→=0+BD 1→=BD 1→.BD 1→在图中表示如下:。
苏教版高中数学选修2-1第3章空间向量与立体几何疑难规律方法含答案
苏教版高中数学选修2-1 同步教案讲义1空间向量加减法运用的三个层次空间向量是办理立体几何问题的有力工具,但要用好向量这一工具解题,一定娴熟运用加减法运算.第 1 层用已知向量表示未知向量例 1 如下图,在平行六面体―→→→ABCD - A1B1C1D 1中,设 AA1= a,AB= b,AD=c,M,N,P分别是 AA1, BC, C1D 1的中点,试用a,b,c表示以下各向量:→―→→―→(1) AP; (2) A1N ; (3)MP+ NC1 .解(1) ∵P 是 C1D 1的中点,→ ―→――→―→→1――→∴AP = AA1+ A1D 1+ D1P=a+ AD +2D 1C11→1b.=a+ c+AB= a+c+22(2)∵ N 是 BC 的中点,―→ ―→→ → 1 →∴ A1N= A1A+ AB+ BN=-a+b+ BC21 →1=- a+ b+AD=-a+b+c.22(3)∵ M 是 AA 1的中点,→→ →1―→ →∴MP= MA+ AP=2 A1A + AP=-1111a+ a+ c+ b = a+ b+ c,2222―→→ ―→=1→―→又 NC= NC+ CCBC+ AA 1121苏教版高中数学选修2-1 同步教案讲义1→―→1=AD + AA1= c+ a,22→―→111∴MP + NC1=a+b+ c + a+ c222313=2a+2b+2c.评论用已知向量来表示未知向量,必定要联合图形,以图形为指导是解题的重点.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由开端向量的始点指向末端向量的终点的向量,我们能够把这个法例称为向量加法的多边形法例.在立体几何中要灵巧应用三角形法例,向量加法的平行四边形法例在空间中仍旧成立.第 2 层化简向量例 2 如图,已知空间四边形 ABCD ,连接 AC,BD .设 M,G 分别是 BC,CD 的中点,化简以下各表达式,并标出化简结果的向量.→ →→(1) AB+ BC+ CD;→ 1→→→ 1 →→(2) AB+(BD + BC); (3)AG- ( AB+AC ).22解→→→→→→(1)AB+BC +CD = AC+ CD = AD .→ 1 → →→ 1→ 1→(2)AB+2(BD + BC)= AB+2BC+2BD→→→→=AB +BM + MG = AG.→ 1 → →(3)AG-2(AB+ AC)→→→=AG- AM = MG .→→→AD ,AG, MG 如下图.评论要求空间若干向量之和,能够经过平移,将它们转变为首尾相接的向量,假如首尾相接的若干向量组成一个关闭图形,则它们的和为 0.两个向量相加的平行四边形法例在空间中仍成立,求始点同样的两个向量之和时,能够考虑运用平行四边形法例.第 3 层证明立体几何问题例 3 如图,已知 M,N 分别为四周体 ABCD 的面 BCD 与面 ACD 的重心,且 G 为 AM 上一点,且 GM ∶ GA= 1∶3.求证: B, G, N 三点共线.→→→证明设 AB=a,AC= b,AD= c,→→ →→ 3 →则BG= BA+ AG= BA+ AM41311c,=- a+(a+b+c)=-a+b+4444→→→→ 1 →→BN= BA+AN =BA +( AC+ AD )311 4 →=- a+b+ c=BG.333→→→→∴BN ∥BG,又∵ BN 与BG有公共点B,∴B, G, N 三点共线.2空间向量易错点扫描易错点 1对向量夹角与数目积的关系理解不清例 1 “a·b<0 ”是“〈a,b〉为钝角”的 ________条件. (填“充足不用要”“必需不充分”“充要”“既不充足也不用要”)错解a·b<0? cos〈 a,b〉=a·b<0 ?〈 a,b〉为钝角,所以“a·b<0”是“〈 a,b〉为钝角” |a||b|的充要条件.错因解析错解中忽视了两个向量共线且反向的状况.解析当〈 a, b〉=π时, a·b<0,但此时夹角不为钝角,所以“ a·b<0”是“〈a, b〉为钝角”的必需不充足条件.正解必需不充足易错点 2忽视两向量的夹角的定义例2 如下图,在 120°的二面角α—AB —β中, AC? α, BD? β,且 AC⊥ AB, BD⊥AB ,垂足分别为 A, B.已知 AC= AB=BD = 6,试求线段 CD 的长.错解∵ AC⊥ AB,BD ⊥AB,→ →→ →∴CA ·AB= 0, BD·AB= 0,→→∵二面角α— AB—β的平面角为 120°,∴〈 CA, BD〉=120°.2→ 2=→→→2∴CD= CD(CA+AB+BD )→ 2→ 2→2→ →→ →→ →622×cos 120°= 72,∴ CD == CA+ AB + BD+ 2CA·AB+ 2CA·BD + 2BD·AB= 3×+ 2× 6 6 2.错因解析错解中混杂了二面角的平面角与向量夹角的看法.向量→→CA, BD 的夹角与二面角α— AB—β的平面角互补,而不是相等.正解∵ AC⊥ AB,BD ⊥AB,→ →→ →∴CA ·AB= 0, BD·AB= 0,∵二面角α— AB—β的平面角为 120°,→→∴〈 CA, BD 〉= 180°-120°= 60°.2→ 2=→→→2∴CD= CD(CA+AB+BD )→ 2→ 2→2→ →→ →→ →22=CA +AB + BD+ 2CA·AB+ 2CA·BD+ 2BD ·AB= 3× 6+ 2×6 ×cos 60 °= 144,∴ CD=12.易错点3判断能否共面犯错例 3已知 O,A,B,C 为空间不共面的四点,→→→→ → →a=OA+OB+OC,b=OA+OB-OC,则与a, b 不可以组成空间的一个基底的是________. (将正确答案的序号填上)→→→→→①OA;② OB;③ OC;④ OA或 OB.错解→→→→→ →a=OA+OB+OC, b=OA+OB-OC,→→1(a+b),相加得 OA+ OB=2→→④ .所以 OA, OB都与a,b共面,不可以组成空间的一个基底,故填解析→→1→→→→OA+ OB=(a+b),说明 OA+ OB与a,b共面,但不可以以为OA,OB都与a、b共面.2→→→→→→因为 a=OA+OB+OC, b=OA+OB-OC,→→→代入整理得 (x+y- 1)OA+ (x+ y)OB+ (x- y)OC= 0,因为 O, A, B, C 四点不共面,→→→所以 OA, OB, OC不共面,所以 x+ y- 1= 0, x+ y=0, x- y= 0,→此时, x, y 不存在,所以a, b 与OA不共面,→故 a, b 与OA可组成空间的一个基底.→同理 a, b 与OB也可组成空间的一个基底.→ →→→ →→→ 1→因为 a=OA+OB+OC,b= OA+ OB- OC,相减有 OC= ( a-b),所以 OC与a,b共面,故2不可以组成空间的一个基底.正解③易错点 4混杂向量运算和实数运算例 4阅读以下各式,此中正确的选项是________. (将正确答案的序号填上)①a·b= b·c(b≠0)? a= c②a·b=0? a=0或 b=0③( a·b) ·c=a·(b·c)→ →→ →④OA·BO= |OA||BO|cos(180 -°∠ AOB )错解①(或②或③ )解析想自然地将向量的数目积运算和实数运算等价,致使犯错.向量的数目积运算不知足消去律、联合律,故①③ 错误;若→ →a·b=0? a=0或 b=0或 a⊥ b,故②错误;OA·BO的夹角是 180°-∠ AOB.正解④易错点 5忽视建系的前提例5 四边形 ABCD 是边长为 2 的菱形,∠ ABC= 60°, AE⊥平面 ABCD , AE= 2,F 为 CE的中点,试合理成立坐标系,求→→AF ,BC所成角的余弦值.错解→→→x, y,z 轴的正方向,成立空间直角以 A 为坐标原点,以 AB, AD,AE 的方向分别为坐标系 A- xyz.→→→ →3此时 AF= (1,1,1) , BC= (0,2,0) ,所以 cos〈 AF , BC〉=3.解析空间直角坐标系的成立的前提是三条直线两两垂直,而此题中直线AB 与 AD 不垂直.正解设 AC ,BD 交于点 O,则 AC⊥ BD .因为 F 为 CE 中点,所以 OF ∥ AE,因为 AE⊥平面 ABCD ,所以 OF⊥平面 ABCD , OF ⊥ AC, OF⊥ BD ,→→→以 O 为坐标原点,以OC, OD, OF的方向分别为x, y, z 轴的正方向,成立空间直角坐标系O- xyz.→→3, 0),此时 AF= (1,0,1) , BC= (1,→ →2所以 cos〈 AF, BC〉=4.易错点 6 求空间角时,因对所求角与向量夹角的关系不理解致误例 6 在正方体 ABCD - A1B1C1D 1中,求二面角A-BD 1-C 的大小.错解以 D 为坐标原点, DA ,DC , DD 1所在直线分别为x 轴, y 轴, z 轴,成立如下图的空间直角坐标系,设正方体的棱长为1,则D (0,0,0) ,A1(1,0,1) , C1(0,1,1) .―→―→= (1,0,1)―→―→由题意知 DA1是平面 ABD1的一个法向量, DA1,DC 1是平面 BCD1的一个法向量, DC 1=(0,1,1) ,―→―→―→ ―→1 DC 1·DA1.所以 cos〈 DA1, DC1〉=―→ ―→=2|DC 1||DA1 |―→ ―→所以〈 DA 1, DC1〉= 60°.所以二面角 A- BD 1- C 的大小为 60°.解析利用向量法求所成角问题,需注意所求的角确实切地点.正解以 D 为坐标原点, DA ,DC , DD 1所在直线分别为x 轴, y 轴, z 轴,成立如下图的空间直角坐标系,设正方体的棱长为1,则D (0,0,0) ,A1(1,0,1) , C1(0,1,1) .―→= (1,0,1)是平面 ABD 1―→是平面 BCD 1的一个法向量.由题意知 DA1的一个法向量, DC 1= (0,1,1)―→ ―→―→―→DC 1·DA11所以cos〈DA,DC〉==,11―→ ―→2|DC 1||DA1 |―→―→联合图形知二面角A- BD1- C 的大小为120°.3空间直角坐标系建立三策略利用空间向量的方法解决立体几何问题,重点是依靠图形成立空间直角坐标系,将其余向量用坐标表示,经过向量运算,判断或证明空间元素的地点关系,以及空间角、空间距离问题的探究.所以怎样成立空间直角坐标系显得特别重要,下边简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共极点的相互垂直的三条棱例 1 已知直四棱柱中, AA1= 2,底面 ABCD 是直角梯形,∠ DAB 为直角, AB∥ CD,AB=4,AD = 2, DC= 1,试求异面直线 BC1与 DC 所成角的余弦值.解如图,以 D 为坐标原点,分别以DA , DC , DD1所在的直线为x 轴, y 轴, z 轴,成立空间直角坐标系,则D (0,0,0) ,C1(0,1,2) , B(2,4,0) ,C(0,1,0) ,―→→所以 BC1= (- 2,- 3,2),CD = (0,- 1,0).→→―→ ―→BC1·CD = 3 17.所以 cos〈 BC1, CD〉=―→ ―→17|BC1 ||CD |故异面直线 BC1与 DC 所成角的余弦值为3 17.17评论本例以直四棱柱为背景,求异面直线所成角.求解重点是从直四棱柱图形中的共点的三条棱相互垂直关系处着眼,成立空间直角坐标系,写出有关点的坐标和有关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例 2 如图,在三棱柱ABC- A1B1C1中, AB⊥平面 BB1C1C, E 为棱 C1C 的中点,已知 ABπ=2, BB1= 2, BC= 1,∠ BCC1=3.试成立适合的空间直角坐标系,求出图中全部点的坐标.解过 B 点作 BP ⊥ BB 1 交 C 1C 于点 P ,因为 AB ⊥ 平面 BB 1C 1C , 所以 BP ⊥ 平面 ABB 1A 1 ,以 B 为原点,分别以 BP , BB 1,BA 所在的直线为 x , y , z 轴,成立空间直角坐标系.π因为 AB =2, BB 1= 2, BC = 1,∠ BCC 1= ,31 3 3所以 CP = 2 , C 1 P = 2, BP = 2 ,则各点坐标分别为B(0, 0,0), A(0,0, 2) , B 1(0,2,0) ,C 3,- 1, 0 , C3,3, 0 , E3, 1, 0 ,A 1(0,2, 2).2212 22 2评论 空间直角坐标系的成立, 要尽量地使尽可能多的点落在座标轴上, 这样建成的坐标系,既能快速写出各点的坐标,又因为坐标轴上的点的坐标含有0,也为后续的运算带来了方便.此题已知条件中的垂直关系“ AB ⊥ 平面 BB 1C 1C ” ,可作为建系的打破口.3. 利用面面垂直关系例 3 如图 1,等腰梯形 ABCD 中,AD ∥ BC ,AB = AD = 2,∠ ABC = 60°,E 是 BC 的中点. 将 △ABE 沿 AE 折起,使平面 BAE ⊥平面 AEC(如图 2),连接 BC ,BD.求平面 ABE 与平面 BCD 所成的锐角的大小.解取 AE 中点 M ,连接 BM , DM .因为在等腰梯形 ABCD 中, AD ∥ BC , AB = AD , ∠ABC = 60°, E 是 BC 的中点,所以 △ ABE 与△ ADE 都是等边三角形,所以 BM ⊥ AE ,DM ⊥ AE.又平面 BAE ⊥平面 AEC ,所以 BM ⊥ MD .以 M 为原点,分别以 ME , MD , MB 所在的直线为 x , y , z 轴,成立空间直角坐标系M -xyz ,如图,则M(0,0,0) , B(0,0, 3), C(2, 3, 0), D(0 , 3,0) ,→→3,-3),所以 DC= (2,0,0) , BD= (0 ,设平面 BCD 的法向量为m= (x, y, z),→m·DC=2x=0,取 y= 1,得m=(0,1,1) ,由→3z= 0.m·BD=3y-又因为平面 ABE 的一个法向量→3, 0),MD = (0,→→2 m·MD=,所以 cos〈m, MD 〉=→2|m||MD |所以平面 ABE 与平面 BCD 所成的锐角为 45°.评论此题求解重点是利用面面垂直关系,先证在两平面内共点的三线垂直,再建立空间直角坐标系,而后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不一样求出来的角度就不一样,所以最后还应当依据这个二面角的本质形态确立其大小.4用向量法研究“动向”立体几何问题“动向”立体几何问题是在静态几何问题中浸透了一些“动向”的点、线、面等元素,同时因为“动向”的存在,使得问题的办理趋于灵巧.本文介绍巧解“动向”立体几何问题的法宝——向量法,教你怎样以静制动.1.求解、证明问题例 1在棱长为 a 的正方体OABC— O1A1B1C1中, E,F 分别是 AB, BC 上的动点,且AE=BF ,求证: A1F⊥ C1E.证明以 O 为坐标原点, OA ,OC, OO1所在直线分别为x 轴, y 轴, z 轴,成立如下图的空间直角坐标系,则A1(a,0, a), C1(0,a,a).设 AE=BF =x,∴E(a, x,0), F(a- x, a,0).―→∴ A 1F = (- x , a ,- a),―→C 1E = (a , x -a ,- a).―→ ―→∵ A 1F ·C 1E = (- x , a ,- a) ·(a , x - a ,- a) =- ax + ax -a 2+a 2= 0,―→ ―→∴ A 1F ⊥ C 1E ,即 A 1F ⊥ C 1E. 2. 定位问题例 2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为 1,在 DG 上能否存在点 M ,使得直线 MB 与平面 BEF 的夹角为 45°?若存在,求出点 M 的地点;若不存在,请说明原因.解题提示假定存在点 M ,设平面 BEF 的法向量为 n ,设 BM 与平面 BEF 所成的角为 θ,→ 利用 sin θ=|BM ·n |求出点 M 的坐标,若知足条件则存在.→|BM ||n |解 因为四边形 CDGF , ADGE 均为正方形, 所以 GD ⊥ DA ,GD ⊥ DC .又 DA ∩ DC = D , DA , DC? 平面 ABCD , 所以 GD ⊥ 平面 ABCD .又 DA ⊥ DC ,所以 DA , DG , DC 两两相互垂直,如图,以 D 为坐标原点, DA , DC , DG所在直线分别为 x 轴, y 轴, z 轴,成立空间直角坐标系,则 B(1,1,0) , E(1,0,1) , F(0,1,1) .因为点 M 在 DG 上,假定存在点M(0,0, t)(0≤ t ≤ 1)使得直线 BM 与平面 BEF 的夹角为45°.设平面 BEF 的法向量为 n = (x , y , z).→ →,因为 BE = (0,- 1,1) ,BF =(-1,0,1)→ = 0,- y + z = 0,n ·BE即则→- x + z = 0,n ·BF = 0,令 z = 1,得 x =y = 1,所以 n = (1,1,1) 为平面 BEF 的一个法向量.→→|BM ·n |又 BM = (- 1,- 1, t),直线 BM 与平面 BEF 所成的角为45°,所以 sin 45°=→ =|BM ||n ||- 2+ t| =2,22t + 2× 3解得 t =- 4±3 2.又 0≤ t ≤ 1,所以 t = 3 2- 4.故在 DG 上存在点M(0,0,3 2- 4),且 DM =3 2- 4 时,直线 MB 与平面 BEF 所成的角为45°.评论 因为立体几何题中 “ 动向 ” 性的存在, 使有些问题的结果变得不确立, 这时我们要以不变应万变,抓住问题的本质,引入参量,利用空间垂直关系及数目积将几何问题代数化,达到以静制动的成效.5 向量与立体几何中的数学思想1. 数形联合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示能够把向量问题转变为代数运算,进而交流了几何与代数的联系,表现了数形联合的重要思想. 向量拥有数形兼顾的特色,所以, 它能将几何中的“形”和代数中的“数”有机地联合在一同.例 1 如图,在四棱柱 ABCD -A 1B 1C 1D 1 中, A 1A ⊥底面ABCD ,∠ BAD =90°, AD ∥ BC ,且 A 1A =AB = AD =2BC = 2,点 E 在棱 AB 上,平面 A 1EC 与棱 C 1D 1 订交于点 F.(1) 证明: A 1F ∥平面 B 1CE ;(2) 若 E 是棱 AB 的中点,求二面角A 1 -EC - D 的余弦值;(3) 求三棱锥 B 1- A 1EF 的体积的最大值.(1) 证明 因为 ABCD - A 1B 1C 1D 1 是棱柱,所以平面 ABCD ∥平面 A1B1C1D 1.又因为平面ABCD ∩平面 A1ECF = EC,平面 A1B1C1D1∩平面 A1ECF = A1 F,所以 A1F∥ EC.又因为 A1F?平面 B1CE,EC? 平面 B1CE,所以 A1F ∥平面 B1CE.(2)解因为 AA1⊥底面 ABCD ,∠BAD = 90°,所以 AA1,AB,AD 两两垂直,以 A 为坐标原点,以AB,AD,AA1分别为 x 轴, y 轴和 z 轴,成立如下图的空间直角坐标系.则A1(0,0,2) , E(1,0,0) ,C(2,1,0) ,―→―→= (2,1,- 2).所以 A1E= (1,0,- 2), A1C设平面 A1ECF 的法向量为m=(x,y,z),―→x- 2z= 0,A1E ·m= 0,由得―→·m=0,2x+ y-2z= 0.A1C令z= 1,得m= (2,- 2,1).又因为平面DEC 的法向量为n=(0,0,1),所以 cos〈m,n〉=m·n=1,|m||n|3由图可知,二面角A1- EC- D 的平面角为锐角,1所以二面角A1- EC- D 的余弦值为.(3)解过点 F 作 FM ⊥ A1 B1于点 M,因为平面 A1ABB1⊥平面 A1B1C1D 1,平面 A1ABB1∩平面 A1B1C1D1= A1B1,FM ? 平面 A1B1C1D 1,FM ⊥ A1B1,所以 FM ⊥平面 A1ABB1,1所以VB1-A1EF=VF-B1A1E=3×S A1B1E×FM=1×2×2× FM =2F M . 323因为当 F 与点 D1重合时, FM 取到最大值 2(此时点 E 与点 B 重合 ),所以当 F 与点 D1重合时,三棱锥B1- A1EF 的体积的最大值为4.32.转变与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题供给了工具,因此我们要擅长把这些问题转变为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,而后利用向量的性质进行运算和论证,再将结果转变为几何问题.这类“从几何到向量,再从向量到几何”的思想方法,在本章尤其重要.例 2 如图,在长方体 ABCD - A1B1C1D1中, AA1= AB= 2AD= 2,E 为 AB 的中点, F 为 D1E 上的一点, D 1F =2FE.(1)证明:平面 DFC ⊥平面 D 1EC;(2)求二面角 A-DF - C 的平面角的余弦值.解析求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,而后经过两个平面的法向量的夹角获得二面角的大小,但要注意联合本质图形判断所求角是锐角仍是钝角.(1) 证明以D为原点,分别以DA ,DC,DD 1所在的直线为x 轴, y 轴, z 轴成立如下图的空间直角坐标系,则D (0,0,0) ,A(1,0,0) , B(1,2,0), C(0,2,0) ,D1(0,0,2) .∵E 为 AB 的中点,∴ E(1,1,0) ,∵D 1F=2FE,―→―→2224,- 2)=,,-,∴ D1 F= D1E=(1,133333→―→―→+224∴DF = DD 1+ D1F= (0,0,2)3,,-33222= , ,.设 n = (x 1, y 1, z 1 )是平面 DFC 的法向量,→ 22 2n ·DF = 0,x 1+ y 1+ z 1= 0, 则∴33 3→2y 1= 0.n ·DC = 0,取 x 1 =1,得平面 DFC 的一个法向量 n = (1,0,- 1).设p = (x 2, y 2, z 2 )是平面 D 1EC 的法向量,―→p ·D 1F = 0,则―→p ·D 1C = 0,取 y 2 =1,得平面2 24z 2= 0, x 2+ y 2- ∴ 3 3 3 2y 2- 2z 2= 0,D 1EC 的一个法向量 p = (1,1,1) ,∵ n ·p = (1,0,- 1) ·(1,1,1) = 0, ∴n ⊥p ,∴平面 DFC ⊥ 平面 D 1EC.(2) 解 设 q = (x 3, y 3, z 3)是平面 ADF 的法向量,→= 0,2 x 3+ 2 y3 2q ·DF ∴ 3 3 + z 3= 0,则3→= 0,x 3=0,q ·DA 取 y 3 =1,得平面 ADF 的一个法向量 q = (0,1,- 1),设二面角 A - DF - C 的平面角为 θ,由题中条件可知 π |n ·q |=- θ∈, π,则 cos θ=-2|n ||q ||0+ 0+ 1|=- 1,2× 22∴二面角 A - DF - C 的平面角的余弦值为-1 2.3. 函数思想例 3已知对于 x 的方程 x 2- (t -2)x +t 2+ 3t + 5=0 有两个实根, 且 c = a + t b ,a = (- 1,1,3) ,b = (1,0,- 2).问 |c |可否获得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不可以,请说明原因.解析 写出 |c |对于 t 的函数关系式,再利用函数看法求解.4解由题意知 Δ≥ 0,得- 4≤ t ≤ - ,又 c = (- 1,1,3) + t(1,0,- 2)= ( -1+ t,1,3- 2t),∴|c |= - 1+ t 2 + 3- 2t 2+ 15 7 2 6=t -5 + 5.当 t ∈ - 4,- 4 时, f(t)= 5 t - 7 26 ∴f(t)max = f(- 4),即 |c |的最大值存35+ 是单一递减函数,5在,此时 c=(-5,1,11). b·c=-27,|c|=7 3.而|b|=5,∴cos〈b,c〉=b·c=-2715=-9|b||c|5× 7 335.评论凡波及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类议论思想例 4 如图,矩形ABCD 中, AB= 1, BC= a(a> 0), PA⊥平面 ABCD (点 P 位于平面 ABCD上方 ),问 BC 边上能否存在点→ →Q,使 PQ⊥ QD?解析→ →由 PQ⊥ QD,得 PQ⊥ QD,所以在平面 ABCD 内,点 Q 在以边 AD 为直径的圆上,若此圆与边 BC 相切或订交,则BC 边上存在点 Q,不然不存在.解假定存在点 Q(Q 点在边→ →BC 上 ),使 PQ⊥QD ,即PQ⊥ QD ,连接 AQ.∵ PA⊥平面 ABCD ,∴ PA⊥ QD .→→→ → →→ →又PQ= PA+ AQ且 PQ⊥ QD ,∴ PQ·QD=0,→ →→ →即PA·QD +AQ·QD= 0.→ →→ →→ →又由 PA·QD= 0,∴AQ·QD= 0,∴ AQ⊥QD .即点Q 在以边 AD 为直径的圆上,圆的半径为a2.又∵ AB= 1,由题图知,当a= 1,即 a= 2 时,该圆与边 BC 相切,存在 1 个点 Q 知足题意;2当a>1,即 a>2 时,该圆与边BC 订交,存在 2 个点 Q 知足题意;2当a<1,即 0< a<2 时,该圆与边BC 相离,不存在点Q 知足题意.2综上所述,当 a≥ 2 时,存在点→→Q,使 PQ⊥ QD ;→→当 0<a<2 时,不存在点 Q,使 PQ⊥ QD.15。
高二数学选修21第3章空间向量与立体几何单元测试题(含答案)
高二数学选修2-1第3章空间向量与立体几何单元测试题(含答案)空间向量是解立体几何的一种常用方法,以下是第3章空间向量与立体几何单元测试题,希望对大家有帮助。
一、填空题1.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)①AB=AC+BC②AB=-AC-BC③AC与BC同向;④AC与CB同向.3.在正方体ABCD-A1B1C1D中,向量表达式DD1-AB+BC化简后的结果是________.4.在平行六面体ABCD-A1B1C1D中,用向量AB,AD,AA1来表示向量AC1的表达式为___________________________________________________ _____________________.5.四面体ABCD中,设M是CD的中点,则AB+12(BD+BC)化简的结果是________.6.平行六面体ABCDA1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,下列结论中正确的有________.(写出所有正确的序号)① +GH+PQ② -GH-PQ③ +GH-PQ④ -GH+PQ=0.7.如图所示,a,b是两个空间向量,则AC与AC是________向量,AB与BA是________向量.8.在正方体ABCD-A1B1C1D中,化简向量表达式AB+CD+BC+DA 的结果为________.二、解答题9.如图所示,已知空间四边形ABCD,连结AC,BD,E,F,G 分别是BC,CD,DB的中点,请化简(1)AB+BC+CD,(2)AB+GD+EC,并标出化简结果的向量.10.设A是△BCD所在平面外的一点,G是△BCD的重心.求证:AG=13(AB+AC+AD).能力提升11.在平行四边形ABCD中,AC与BD交于点O,E是线段OD 的中点,AE的延长线与CD交于点F.若AC=a,BD=b,则AF=______________________.12.证明:平行六面体的对角线交于一点,并且在交点处互相平分.解析①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.2.④解析由|AB|=|AC|+|BC|=|AC|+|CB|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC与CB同向.3.BD1解析如图所示,∵DD1=AA1,DD1-AB=AA1-AB=BA1,BA1+BC=BD1,DD1-AB+BC=BD1.4.AC1=AB+AD+AA1解析因为AB+AD=AC,AC+AA1=AC1,所以AC1=AB+AD+AA1.5.AM解析如图所示,因为12(BD+BC)=BM,所以AB+12(BD+BC)=AB+BM=AM.6.①解析观察平行六面体ABCDA1B1C1D1可知,向量EF,GH,PQ 平移后可以首尾相连,于是EF+GH+PQ=0.7.相等相反8.0解析在任何图形中,首尾相接的若干个向量和为零向量.9.解 (1)AB+BC+CD=AC+CD=AD.(2)∵E,F,G分别为BC,CD,DB的中点.BE=EC,EF=GD.AB+GD+EC=AB+BE+EF=AF.故所求向量AD,AF,如图所示.10.证明连结BG,延长后交CD于E,由G为△BCD的重心,知BG=23BE.∵E为CD的中点,BE=12BC+12BD.AG=AB+BG=AB+23BE=AB+13(BC+BD)=AB+13[(AC-AB)+(AD-AB)]=13(AB+AC+AD).11.23a+13b解析 AF=AC+CF=a+23CD=a+13(b-a)=23a+13b.12.证明如图所示,平行六面体ABCDABCD,设点O是AC的中点,则AO=12AC=12(AB+AD+AA).设P、M、N分别是BD、CA、DB的中点.则AP=AB+BP=AB+12BD=AB+12(BA+BC+BB)=AB+12(-AB+AD+AA)=12(AB+AD+AA).同理可证:AM=12(AB+AD+AA)AN=12(AB+AD+AA).由此可知O,P,M,N四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.第3章空间向量与立体几何单元测试题的全部内容就是这些,查字典数学网预祝大家新学期可以取得更好的成绩。
2019-2020学年浙江高二人A数学选修2-1第三章 _空间向量及其加减运算3.1.2 空间向量的数乘运算
第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算1.在空间四边形OABC中,+-等于( C )(A) (B) (C) (D)解析:原式=-=.故选C.2.下列命题中正确的个数是( A )①若a与b共线,b与c共线,则a与c共线;②向量a,b,c共面,即它们所在的直线共面;③若a∥b,则存在唯一的实数λ,使a=λb.(A)0 (B)1 (C)2 (D)3解析:①当b=0时,a与c不一定共线,故①错误;②a,b,c共面时,它们所在的直线平行于同一平面,不一定在同一平面内,故②错误;③当b 为零向量,a不为零向量时,λ不存在,故③错误.故选A.3.如图,在长方体ABCD-A1B1C1D1中,M为AC与BD的交点.若=a,=b,=c,则下列向量中与相等的向量是( B )(A)-a+b+c (B)a+b+c(C)a-b+c (D)-a-b+c解析:因为在长方体ABCD-A1B1C1D1中,M为AC与BD的交点,=a,=b,=c,所以=+=+(+)=(+)+=a+b+c.故选B.4.已知空间向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( A )(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D解析:因为=+=2a+4b=2,所以A,B,D三点共线.故选A.5.若空间中任意四点O,A,B,P满足=m+n,其中m+n=1,则( A )(A)P∈AB (B)P∉AB(C)点P可能在直线AB上(D)以上都不对解析:因为m+n=1,所以m=1-n,所以=(1-n)+n,即-=n(-),即=n,所以与共线.又有公共起点A,所以P,A,B三点在同一直线上,即P∈AB.故选A.6.若a与b不共线,且m=a+b,n=a-b,p=a,则( D )(A)m,n,p共线(B)m与p共线(C)n与p共线(D)m,n,p共面解析:由于(a+b)+(a-b)=2a,即m+n=2p,即p=m+n,又m与n不共线,所以m,n,p共面.7.已知i,j,k是不共面向量,a=2i-j+3k,b=-i+4j-2k,c=7i+5j+λk,若a,b,c三个向量共面,则实数λ等于( D )(A)(B)9 (C)(D)解析:因为a,b,c三向量共面,所以存在实数m,n,使得c=ma+nb,即7i+5j+λk=m(2i-j+3k)+n(-i+4j-2k).所以所以λ=.8.给出下列命题:①若A,B,C,D是空间任意四点,则有+++=0;②|a|-|b|=|a+b|是a,b共线的充要条件;③若,共线,则AB∥CD;④对空间任意一点O与不共线的三点A,B,C,若=x+y+z(其中x,y,z∈R),则P,A,B,C四点共面.其中错误命题的个数是( C )(A)1 (B)2 (C)3 (D)4解析:显然①正确;若a,b共线,则|a+b|=|a|+|b|或|a+b|=||a|-|b||,故②错误;若,共线,则直线AB,CD可能重合,故③错误;只有当x+y+z=1时,P,A,B,C四点才共面,故④错误.故选C.9.下列命题:①空间向量就是空间中的一条有向线段;②不相等的两个空间向量的模必不相等;③两个空间向量相等,则它们的起点相同,终点也相同;④向量与向量的长度相等.其中真命题是(填序号).解析:①假命题,有向线段只是空间向量的一种表示形式,但不能把二者完全等同起来.②假命题,不相等的两个空间向量的模也可以相等,只要它们的方向不相同即可.③假命题,当两个向量的起点相同,终点也相同时,这两个向量必相等,但两个向量相等却不一定有相同的起点和终点.④真命题,与仅是方向相反,它们的长度是相等的.答案:④10.在正方体ABCD-A1B1C1D1中,给出以下向量表达式:①(-)-;②(+)-;③(-)-2;④(+)+.其中能够化简为向量的是.(把你认为正确的序号填上)解析:如图所示.①(-)-=-=;②(+)-=-=;③(-)-2=-2≠;④(+)+=.综上可得,只有①②能够化简为向量.答案:①②11.如图,三棱锥P-ABC中,M是AC的中点,Q是BM的中点,若实数x,y,z 满足=x+y+z,则x-y+z= .解析:因为=+=+=+(-)=+[(+)-]=++,所以x=,y=,z=.所以x-y+z=0.答案:012.有下列命题:①若∥,则A,B,C,D四点共线;②若∥,则A,B,C三点共线;③若e1,e2为不共线的非零向量,a=4e1-e2,b=-e1+e2,则a∥b;④若向量e1,e2,e3是三个不共面的向量,且满足等式k1e1+k2e2+k3e3=0,则k1=k2=k3=0.其中是真命题的序号是(把所有真命题的序号都填上).解析:根据共线向量的定义,若∥,则AB∥CD或A,B,C,D四点共线,故①错;∥且AB,AC有公共点A,所以②正确;由于a=4e1-e2= -4·(-e1+e2)=-4b,所以a∥b,故③正确;易知④也正确.答案:②③④13.如图所示,已知几何体ABCD-A1B1C1D1是平行六面体.(1)化简++,并在图中标出其结果;(2)设M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的分点(靠近C1点),设=α+β+γ,求α,β,γ的值.解:(1)取DD1的中点G,过点G作DC的平行线GH,使GH=DC,连接AH(如图),则++=.(2)因为M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的分点(靠近C1点),所以=+=+=(-)+(+)=++,所以α=,β=,γ=.14.如图,H为四棱锥P-ABCD的棱PC的三等分点,且PH=HC,点G在AH 上,AG=mAH.四边形ABCD为平行四边形,若G,B,P,D四点共面,求实数m的值.解:如图,连接BD,BG.因为=-且=,所以=-.因为=+,所以=+-=-++.因为=,所以==(-++)=-++.又因为=-,所以=-++.因为=m,所以=m=-++.因为=-+=-+,所以=(1-)+(-1)+.又因为B,G,P,D四点共面,所以1-=0, 即m=.15.求证:四面体中连接对棱中点的三条直线交于一点且互相平分.已知:如图所示,在四面体ABCD中,E,F,G,H,P,Q分别是所在棱的中点.求证:EF,GH,PQ相交于一点O,且O为它们的中点.证明:如图,连接EG,GP,QH,HF,EH,GF.因为E,G分别为AB,AC的中点,所以EG BC.同理,HF BC,所以EG HF.从而四边形EGFH为平行四边形,故其对角线EF,GH相交于一点O,且O 为它们的中点.只要能证明向量=-,就可以说明P,O,Q三点共线且O为PQ的中点.事实上,=+,=+.因为O为GH的中点,所以+=0.易知GP CD,QH CD,所以=,=.所以+=+++=0.所以=-.故PQ经过O点,且O为PQ的中点.所以EF,GH,PQ相交于一点O,且O为它们的中点.16.已知正方体ABCD-A1B1C1D1的中心为O,则在下列各结论中正确的结论共有( C )①+与+是一对相反向量;②-与-是一对相反向量;③+++与+++是一对相反向量;④-与-是一对相反向量.(A)1个(B)2个(C)3个(D)4个解析:利用图形及向量的运算可知②中是相等向量,①③④中是相反向量.故选C.17.若P,A,B,C为空间四点,且有=α+β,则α+β=1是A,B,C 三点共线的( C )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:若α+β=1,则-=β(-),即=β,显然A,B,C三点共线;若A,B,C三点共线,则存在实数λ,使=λ,故-=λ(-),整理得=(1+λ)-λ,令α=1+λ,β=-λ,则α+β=1.故选C.18.已知A,B,C三点共线,则对空间任一点O,存在三个不为零的实数λ,m,n,使λ+m+n=0,那么λ+m+n的值为.解析:因为A,B,C三点共线,所以存在唯一实数k,使=k,即-=k(-),所以(k-1)+-k=0,又λ+m+n=0,令λ=k-1,m=1,n=-k,则λ+m+n=0.答案:019.已知空间四边形ABCD中,=b,=c,=d,若=2,且=xb+yc+zd(x,y,z∈R),则y= .解析:如图所示,=+=-+=-+(-)=-++=-b+c+d.因为=xb+yc+zd(x,y,z∈R),所以y=.答案:20.如图所示,已知四边形ABCD是平行四边形,点P是ABCD所在平面外的一点,连接PA,PB,PC,PD.设点E,F,G,H分别为△PAB,△PBC, △PCD,△PDA的重心.(1)试用向量方法证明E,F,G,H四点共面;(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.(1)证明:如图,分别连接PE,PF,PG,PH并延长,交对边于点M,N,Q,R,连接MN,NQ,QR,RM,因为E,F,G,H分别是所在三角形的重心,所以M,N,Q,R是所在边的中点,且=,=,=,=.由题意易知四边形MNQR是平行四边形,所以=+=(-)+(-)=(-)+(-)=(+).又=-=-=,所以=+,由共面向量定理知,E,F,G,H四点共面.(2)解:平行.证明如下:由(1)得=,所以∥,所以EG∥平面ABCD.又=-=-=,所以∥.所以EF∥平面ABCD.又因为EG∩EF=E,所以平面EFGH与平面ABCD平行.。
空间向量与立体几何知识点和习题(含答案)
空间向量与立体几何【知识要点】1.空间向量及其运算: (1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律: 加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b . (2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉; ②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0; |a |2=a ·a ;|a ·b |≤|a ||b |. ③空间向量的数量积的运算律: (λ a )·b =λ (a ·b ); 交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3); λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3. ③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. ④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b 得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴⋅AD AC AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC . ∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB .()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量. 16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A.-21a +21b+c B.21a +21b +c C.21a -21b+c D .-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 513121++=C.0=+++OC OB OA OM D.0=++MC MB MA3.已知空间四边形AB CD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、A D的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是①正方体 ②圆锥 ③三棱台 ④正四棱锥A .①②B .①③ C.①④ D.②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9πB.10πC.11πD .12π8.如图,ABC D-A 1B 1C1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB1D 1 B.A C1⊥BDC.AC 1⊥平面CB 1D1D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体AB CD-A 1B 1C1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D所成角的正弦值为 A.63 B.552 C.155 D.10510.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41 C .4 D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________.13.在直角坐标系xOy 中,设A (-2,3),B(3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P—A BCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD的距离为 .俯视图 正(主)视图 侧(左)视图 2 32 2三、解答题(共80分)15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面AB CD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:c m).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面E FG..正视图MPD C BA17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD .18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.D 'C 'B'A'PD C BA俯视图正视图ED CBA P19.(本小题满分14分)已知一四棱锥P-AB CD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P-AB CD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.PBECDFA参考答案 一、选择题1.)(21111A B B ++=+==c +21(-a+b)=-21a+21b +c,故选A .2.1),,(=++∈++=⇔z y x R z y x z y x C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在MC MB MA MC y MB x MA y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴ 故选B.4.B 5.B 6.D 7.D 8.D 9.D 10.4,cos ==><=,5==,故选A二、填空题11.9 12.313.作AC ⊥x 轴于C,BD ⊥x 轴于D ,则DB CD AC AB ++=θθcos 6)180,0,0,2530-=-=⋅=⋅=⋅===0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面P AD 的距离1655B A m d m⋅==.三、解答题15.解:(1)∵M 是P C的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴E F是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面AC D,EF ⊄面ACD,∴直线EF ∥面ACD;A BC D E F GA 'B 'C 'D '(2)∵A D⊥BD,EF ∥AD ,∴EF ⊥BD ,∵C B=CD,F 是BD的中点,∴CF ⊥BD 又EF∩CF =F, ∴BD ⊥面EFC,∵BD ⊂面BCD,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m =解得2m =,所以2122DH ⎛⎫= ⎪ ⎪⎝⎭,. (1)因为00112cos DH CC +⨯'<>==,所以45DH CC '<>=,,即DP 与CC '所成的角为45. (2)平面AA DD ''的一个法向量是(010)DC =,,. 因为01101cos 2DH DC ++⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -AB CD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD,且PC =2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC,∵ABC D是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面P AC∵不论点E 在何位置,都有A E⊂平面PA C ∴不论点E在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G,连结BG∵C D=CB,EC=E C,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD =AB ,∴△ED A≌△E BA ,∴BG ⊥EA ∴DGB ∠为二面角D-E A-B 的平面角 ∵BC ⊥D E,AD ∥B C,∴AD ⊥DEzyxEDC BAP在Rt △ADE 中AD DE DG AE ⋅==23=B G在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D-AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x 轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D-AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D-AE-B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大. 此时36tan 2AE EHA AH AH ∠===,因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角, 在Rt AOE △中,3sin 30EO AE ==3cos302AO AE ==, 又F 是PC 的中点,在Rt ASO △中,32sin 454SO AO ==,又SE ===在RtESO △中,cos SO ESO SE ∠===, . 解法二:由(1)知AE AD AP ,,两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E F ,分别为BC PC ,的中点,所以(000)10)0)(020)A B C D -,,,,,,,,,,1(002)0)12P E F ⎫⎪⎪⎝⎭,,,,,,,, 所以31(300)12AE AF ⎛⎫== ⎪ ⎪⎝⎭,,,,,. 设平面AEF 的一法向量为111()x y z =,,m ,则00AE AF ⎧=⎪⎨=⎪⎩,,m m 因此111101022x y z =++=⎪⎩,. 取11z =-,则(021)=-,,m , 因为BD AC ⊥,BD PA ⊥,PA AC A =,所以BD ⊥平面AFC ,故BD 为平面AFC的一法向量.B又(0)BD =-,,所以cos 5BD BD BD<>===,m m m . 因为二面角E AF C --为锐角,所以所求二面角的余弦值为5.空间向量与立体几何2一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A.)4,4,2(),2,2,1(--=-=b aB.)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A.)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D.)4,1,3(--3.若向量)2,1,2(),2,,1(-==b a λ,且a 与b 的夹角余弦为98,则λ等于( )A.2 B .2- C .2-或552 D.2或552-4.若A)1,2,1(-,B)3,2,4(,C)4,1,6(-,则△ABC 的形状是( ) A.不等边锐角三角形 B .直角三角形 C.钝角三角形 D.等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B.78-C .78D .1419 6.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( )A.21 B.22 C .-21D.07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A.βα⊥⊥m ,m ,则α//β B .m //n ,=βαα ,则m//n C.α⊥m ,β//m , 则βα⊥ D.n //m ,α⊥m , 则 α⊥n8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为AD视角正面的三视图中,其左视图的面积是().A.3B.362C.2D.229、如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C. 异面 D.相交成60°10、点P在平面ABC外,若PA=PB=PC,则点P在平面ABC上的射影是△ABC的 ( )A.外心B.重心C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )(A)2(B)12(C)22+(D)112、已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有( )(A)2对 (B)3对 (C)4对(D)5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=ba,则(23)(2)a b a b-+=__________________。