中国古代数学史ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


造,其中最突出的成就是“割

圆术”和求积理论。

割圆术的要旨是用圆内接正多 边形去逐步逼近圆。刘徽从圆

内接正六边形出发将边数逐次
成 就
加倍,计算每次得到的正多边 形周长和面积。他指出:“割 之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而
无所失矣。”
割圆术的基本原理
设圆面积为S0、半径为 r、 圆内接正n边形边长为 ln 、
第九章“勾股”在《周髀算经》中 勾股定理的基础上,形成了应用问 题的“勾股术”,从此它成了中算 中重要的传统内容之一。
勾 今有池方一丈,葭生其中央,出水

一尺。引葭赴岸,适与岸齐,问水 深、葭长各几何?答曰:水深一丈
术 二尺;葭长一丈三尺。
术曰:半池方自乘,以出水一尺自 乘,减之。余,倍出水除之,即得 水深。加出水数,得葭长。
[二]又有田广十二步,从十四步, 问为田几何?答曰:一百六十八步。
方田术曰:广从步数相乘得积步, 以亩法二百四十步除之,即亩数, 百亩为一倾。
[五]今有十八分之十二,问约之 得几何?答曰:三分之二。
[六]又有九十一分之四十九,问 约之得几何?答曰:十三分之七。
约分术曰:可半者半之,不可半 者,副置分母子之数,以少减多, 更相减损,求其等也,以等数约 之。
第六章“均输”讲述纳税和运输 方面的计算问题,实际上是比较 复杂的比例计算问题。
第七章“盈不足”讲述算术中盈 亏问题的解法。盈不足术实际上 是一种线性插值法。该方法通过 丝绸之路传入阿拉伯国家,受到 特别重视,被称为“契丹算法”。 后来传入欧洲,13世纪意大利数 学家斐波那契的《算经》一书中 专门有一章讲“契丹算法”。
•《九章算术》标志着中 国传统数学的知识体系 已初步形成。代表了中 国传统数学体系和思想 方法的特点:注重实际 问题的数值计算方法, 缺少抽象的理论和逻辑 系统性,使用算筹,形 成世界上独有的计算工 具和程序化计算方法
刘徽,公元3世纪魏晋时人,

于公元263年撰《九章算注》。 该书包含了刘徽本人的许多创
第二章“粟米”讲述有关粮食交换 中的比例问题。书中的“今有术” 给出比例式中已知三数求第四数的 方法,欧洲迟至15世纪才出现。
第三章“衰分”讲述配分比例和等 差、等比等问题。
第四章“少广”讲述由田亩面积求 边长,由球体积求经长的算法,这 是世界上最早的多位数开平方、开 立方法则的记载。
今有积五万五千二百二十五步, 问为方几何?答曰:二百三十 五步。

算术注》,在数学的发展历史

中具有崇高的地位,足可与希

腊的《几何原本》东西辉映,

各具特色。 《九章算术》全书共分9章,
246道题,体例采用问题集形
式。
第一章“方田”讲述有关平面图形 (土地田亩)面积的计算方法,包 括分数算法,38个问题。
[一]今有田广十五步,从十六步, 问为田几何?答曰:一亩。
第八章“方程”讲述线性方程组 的解法,还论及正负数概念及运 算方法。
中算的方程,本意是指多元一次

方程组(线性方程组来自百度文库。刘徽在

《九章算术注》中指出:“程, 课程也。群物总杂,各列有数,

总言其实。令每行为率,二物者
再程,三物者三程,皆如物数程
之,并列为行,故谓之方程。”
今有上禾三秉,中禾二秉,下 禾一秉,实三十九斗;上禾二
秉,中禾三秉,下禾一秉,实

三十四斗;上禾一秉,中禾二 秉,下禾三秉,实二十六斗;

问上、中、下禾实一秉各几何?

正负数的加减运算法则:“同
名相除,异名相益,正无入负
之,负无入正之。其异名相除,
同名相益,正无入正之,负无

入负之。”

“同名、异名”指“同号、异 号”,“相除、相益”指“绝

对值相减、相加”。前4句是
减法规则,后4句是加法规则。
李文林在《数学史教程》中指出: “对负数的认识是人类数系扩充 的重大步骤。如果说古希腊无理 量是演绎思维的发现,那么中算 负数则是算法思维的产物。中算 家们心安理得地接受并使用了这 一概念,并没有引起震撼和迷 惑。”
国外首先承认负数的是7世纪印度 数学家婆罗门及多,欧洲16世纪 时韦达等数学家的著作还回避使 用负数。
周长为 Ln、面积为 Sn 。将边
数加倍后,得到圆内接正2n边
形,其边长、周长、面积分别
记为 l2n , L2n , S 2n 。 刘徽首先指出,由 ln 及勾股 定理可求出 l2n
其次知道了圆内接正n 边形的
开方术曰:置积为实,借一算

步之,超一等。议所得,以一

乘所借一算为法,而以除,除 已,倍法为定法。其复除,折

法而下。复置借算步之如初,
以复议一乘之。所得副之,以
加定法,以除,以所得副从定
法。复除折下如前。
第五章“商功”讲述各种土木工 程中的体积计算。我国自远古以 来,对筑城、挖沟、修渠等土建 工程积累了丰富的经验,创造了 许多有关土方体积计算和估算的 方法,本章即为经验和方法的理 论总结,诸如长方体、台体、圆 柱体、锥体等体积的计算公式都 与现在一致,只是圆周率取3,误 差较大。
的骨架加上汉代的皮肉。”
《周髀算经》主要是以文字形式叙述 了勾股算法。中国古代最先完成勾股 定理证明的数学家是三国时期的赵爽 (公元3世纪)。赵爽为《周髀算经》 作注时,所作的“勾股圆方图注”中 给出了“弦图”,相当于运用面积的 出入相补证明了勾股定理。
《九章算术》成书于公元前后,
是我国最重要、影响最深远的
中国古代数学的主要成就
《周髀算经》是我国最早的天
文著作,系统地记载了周秦以
来适应天文需要而逐步积累的

科技成果。该书的主要内容是

周代传下来的有关测天量地的 理论和方法。
算 经
《周髀算经》也是中国最古的 算书,成书确切年代没有定论,
一般认为在公元前2、3纪。李
约瑟认为:“最妥善的办法是
把《周髀算经》看作具有周代
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人

均对《九章算术》作过注。特

别是刘徽的注,加进了不少自
算 术
己的精辟见解,阐述了重要的 数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
相关文档
最新文档