中线倍长法

合集下载

(完整版)倍长中线法(经典例题)

(完整版)倍长中线法(经典例题)

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠BABFDEC例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.E D ABF EAB C3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.第 14 题图DF CBEADABCMTE。

倍长中线法总结

倍长中线法总结

倍长中线法总结1. 引言倍长中线法(The Doubling Midline Method)是一种用来解决数学问题的方法,它主要应用于图形和数列的问题。

该方法通过找出中线并将其倍增来寻找问题的解。

本文将详细介绍倍长中线法的思想和应用,并通过示例展示其实际运用。

2. 思想和原理倍长中线法的思想源于对图形和数列的观察和分析。

当遇到需要找到图形或数列的某个特定点或者结果时,我们可以通过找出中线并将其倍增来逐步逼近目标。

该方法的原理是基于中线的特性,即中线两侧长度相等。

通过不断倍增中线的长度,我们可以逐步逼近目标点或结果。

3. 应用步骤倍长中线法的应用可以分为以下几个步骤:步骤一:观察问题首先,我们需要观察和分析问题,确定需要找到的目标点或结果。

这可以帮助我们确定使用倍长中线法的运算方式和步骤。

步骤二:确定初始中线然后,我们需要确定初始中线。

中线的选择要尽可能接近目标点或结果,以提高计算的准确性和效率。

步骤三:倍增中线长度接下来,我们将中线的长度倍增。

具体的倍增倍数可以根据实际情况而定。

每次倍增后,我们检查新的中线是否更接近目标点或结果。

如果是,我们继续倍增中线的长度,直到达到预定的精度要求。

步骤四:确定最终结果最后,我们确定最终结果。

根据具体的问题,我们可以根据中线的位置和长度计算出目标点的坐标或者得出数列的结果。

4. 实际应用示例为了更好地理解倍长中线法的应用,以下是一个实际示例:问题描述在平面直角坐标系中,有一条直线L通过点A(2, 3)和点B(5, 9)。

现在需要确定直线L和Y轴的交点C的坐标。

解决步骤1.观察问题,确定需要找到交点C的坐标。

2.初始中线的选择可以是线段AB的中点M,即M(3.5, 6)。

3.根据倍长中线法,将线段AM的长度倍增,得到线段CM。

4.假设线段CM的长度为d,当d接近垂直距离MC时,我们可以认为目标点C的坐标已经确定。

5.通过不断倍增线段AM的长度,我们最终确定了线段CM的长度为2.5,即MC的长度为2.5。

倍长中线法

倍长中线法

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于E 使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,ABC 中,C=90,CM AB 于M ,AT 平分BAC 交CM 于D ,交BC 于T ,过D 作DEDABCMTE。

专题05 倍长中线问题(解析版)

专题05 倍长中线问题(解析版)

专题05 倍长中线问题【要点提炼】一、【倍长中线法】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)+倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

二、【倍长中线法拓展;两次全等】通常,在倍长中线后的第一组全等只是一个基础,往往还需证明第二组全等,但是难点就在于如何去倍长中线,倍长中线后去连接什么线,这是问题的关键。

这时一般需要去试错,尤其是当有两个中点时,一般是倍长中线后大概率会有另一组的全等。

三、【倍长中线的常见类型】1.基本型如图1,在中,为边上的中线.延长至点E,使得.若连结,则;若连结,则;若连结则四边形是平行四边形.2.中点型如图2, C为AB的中点.若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.总结:在线段AB 外,与中点C 连结的点有E 和D .事实上,EC 和DC 分别是ABE ∆和ABD ∆的中线,只不过是三角形不完整罢了,本质就是隐蔽的“基本型”3.中点+平行线型如图3, //AB CD ,点E 为线段AD 的中点.延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.小结 若按“中点型”来倍长,则需证明点F 在AB 上,为了避免证明三点共线,点F 就直接通过延长相交得到.因为有平行线,内错角相等,故根据“AAS ”或“ASA ”证明全等.这里“中点+平行线型”可以看做是“中点型”的改良版.【专题训练】一、解答题(共14小题)1.小明遇到这样一个问题,如图1,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.【答案】【第1空】SAS【第2空】1<AD<6【解答】解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.故答案分别为SAS,1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.【知识点】四边形综合题2.自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD 和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【解答】证明:延长AD到G,使DF=DG,连接CG,∵AD是中线,∴BD=DC,在△BDF和△CDG中∴△BDF≌△CDG,∴BF=CG,∠BFD=∠G,∵∠AFE=∠BFD,∴∠AFE=∠G,∵BF=CG,BF=AC,∴CG=AC,∴∠G=∠CAF,∴∠AFE=∠CAF,∴AE=EF.【知识点】全等三角形的判定与性质3.阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.证明:延长AD至E使得DE=AD,连接EC,则AE=2AD ∵AD为△ABC的中线∴BD=CD在△ABD和△CED中,∴△ABD≌△CED∴AB=EC在△ACE中,根据三角形的三边关系有AC+EC AE而AB=EC,AE=2AD∴AB+AC>2AD这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=;(2)把(1)中的结论用简洁的语言描述出来.【答案】>【解答】解:(1)证明:延长CD至E使DE=CD,连接EB,AE.∵CD为Rt△ABC的中线,∴AD=CD,∵CD=DE,∠ADC=∠EDB,∴△ADC≌△EDB,∴∠ACD=∠DEB,AC=BE,∴AC∥BE,∴四边形ACBE是平行四边形,又∵∠ACB=90°,∴平行四边形ACBE是矩形,∴AB=CE,CD=DE=AD=BD,∴CD=AB;(2)直角三角形斜边上的中线等于斜边的一半.【知识点】直角三角形斜边上的中线、全等三角形的判定与性质4.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接P A、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴P A=PD,PB=PC,在Rt△CDF中,∵CD=2,CF=6,∴tan∠CDF=,∴∠CDF=60°∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°=∠CDF易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△P AB的“旋补三角形”,∵AB=2.∴△P AB的“旋补中线”长=AB=.【知识点】四边形综合题5.我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC 与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE 就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△P AD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.【解答】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△P AD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC==,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△P AB的“夹补中线”==.【知识点】四边形综合题6.如图1,在△ABC中,点D是BC的中点,延长AD到点G,使DG=AD,连接CG,可以得到△ABD≌△GCD,这种作辅助线的方法我们通常叫做“倍长中线法”.如图2,在△ABC中,点D是BC的中点,点E是AB上一点,连接ED,小明由图1中作辅助线的方法想到:延长ED到点G,使DG=ED,连接CG.(1)请直接写出线段BE和CG的关系:;(2)如图3,若∠A=90°,过点D作DF⊥DE交AC于点F,连接EF,已知BE=3,CF=2,其它条件不变,求EF的长.【答案】BE=CG【解答】解:(1)∵点D是BC的中点,∴BD=CD,在△EBD和△GCD中,∵,∴△EBD≌△GCD(SAS),∴BE=CG,故答案为:BE=CG;(2)如图,连接GF,由(1)知△EBD≌△GCD,∴∠B=∠GCD,BE=CG=3,又∵∠A=90°,∴∠B+∠BCA=90°,∴∠GCD+∠BCA=90°,即∠GCF=90°,∵CG=3,CF=2,∴FG==,∵DF⊥DE,且DE=DG,∴EF=FG=.【知识点】全等三角形的判定与性质7.[方法呈现](1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.解决此问题可以用如下方法:延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE<AC+CE,从而可得中线AD长的取值范围是.[探究应用](2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.【答案】2<AD<8【解答】解:(1)由题意知AC﹣CE<AE<AC+CE,即5﹣4<AD<5+3,∴2<AD<8,故答案为:2<AD<8;(2)如图②,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠F AD,∴∠F AD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE,DF交于点G,同(2)可得:AF=FG,△ABE≌△GEC,∴AB=CG,∴AF+CF=AB.【知识点】四边形综合题8.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是BC的中点,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB证明:∵延长AD到点E,使DE=AD在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)∴△ADC≌△EDB()(2)探究得出AD的取值范围是;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE =90°,求AE的长.【答案】【第1空】对顶角相等【第2空】SAS【第3空】1<AD<7【解答】解:(1)证明:延长AD到点E,使DE=AD,在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(对顶角相等),CD=BD(中点定义),∴△ADC≌△EDB(SAS),故答案为:对顶角相等,SAS;(2)∵△ADC≌△EDB,∴BE=AC=6,8﹣6<AE<8+6,∴1<AD<7,故答案为:1<AD<7;(3)延长AD交EC的延长线于F,∵AB⊥BC,EF⊥BC,∴∠ABD=∠FCD,在△ABD和△FCD中,,∴△ABD≌△FCD,∴CF=AB=2,AD=DF,∵∠ADE=90°,∴AE=EF,∵EF=CE+CF=CE+AB=4+2=6,∴AE=6.【知识点】三角形综合题9.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;(2)如图2,若∠BAC=90°,求证:AD=BC;(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC=4,(2)证明:如图2中,∵AB绕点A旋转得到AB',AC绕点A旋转得到AC',∴AB′=AB,AC'=AC,∵∠BAC=90°,α+β=180°,∠B′AC′=360°﹣(α+β)﹣∠BAC,∴∠B′AC′=360°﹣180°﹣90°=90°,∴∠BAC=∠B′AC′,∴△BAC≌△B′AC′(SAS)∴BC=B′C′,∵AD是△AB'C'边B'C'上的中线,∠B′AC′=90°.∴AD=B′C′.∴AD=BC.(3)结论AD=BC成立.理由:如图3中,延长AD到A′,使得AD=DA′,连接B′A′,C′A′.∴AD=AA′,∵B′D=DC′,AD=DA′,∴四边形AB′A′C′是平行四边形,∴AC′=B′A′=AC,∵∠BAC+∠B′AC′=360°﹣180°=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠AB′A′,∵AB=AB′,∴△BAC≌△AB′A′(SAS)∴BC=AA′,∴AD=BC.【知识点】几何变换综合题10.阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A (﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=2AE2+(x+y)2+(x﹣y)=2AE2+2x2+2y2、=2AE2+2BD2+2DE2=2AD2+2BD2.(2)①∵AB2+AC2=2AD2+2BD2,∴62+42=2AD2+2×42,∴AD=②如图3中,∵AF是△ABC的中线,EF是△AEO的中线,OF是△BOC的中线,∵2EF2+2AE2=AF2+OF2,2AF2+2BF2=AB2+AC2,OF2=OB2﹣BF2,∴4EF2=2OB2﹣4AE2=2OB2﹣OA2,∴EF2=OB2﹣OA2=16,∴EF=4(负根以及舍弃),故答案为.4.(3)如图4中,连接OA,取OA的中点E,连接DE.由(2)的②可知:DE═OB2﹣OA2=,在△ADE中,AE=,DE=,∵AD≤AE+DE,∴AD长的最大值为+=10.【知识点】圆的综合题11.[问题提出]如图①,在△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.[问题解决]解决此问题可以用如下方法,延长AD到点E使DE=AD,再连结BE(或将△ACD绕着点D逆时针装转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是[应用]如图②,如图,在△ABC中,D为边BC的中点,已知AB=5,AC=3,AD=2.求BC的长[拓展]如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作DF⊥DE交边AC于点F,连结EF,已知BE=4,CF=5,则EF的长为【解答】解:(1)在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=4,∵AB﹣BE<AE<AB+BE,AB=6,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)延长AD到E,使得AD=DE,连接BE,如图②,在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=3,∵AE=2AD=4,AB=5,∴BE2+AE2=AB2,∴∠AEB=90°,∴BD=,∴BC=2BD=2;(3)延长FD到G,使得DG=FD,连接BG,EG,如图③,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=5,DG=DF,∠DBG=∠DCF,∵DE⊥DF,∴EG=EF,∵∠A=90°,∴∠ABC+∠ACB=90°,∴∠ABC+∠DBG=90°,∴EG=,∴EF=,故答案为:.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、垂线段最短、三角形三边关系、解直角三角形12.我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.【知识点】几何变换综合题13.如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.【解答】解:(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图,过点C作CN⊥BQ于点N,∵CP=CQ,∴PQ=2PN,∵△ABC是等边三角形,AM是中线,∴CM⊥AD,CM=BC=×8=4,∴CN=CM=4(全等三角形对应边上的高相等),∵CP=CQ=5,∴PN===3,∴PQ=2PN=2×3=6;(3)PQ的长为定值6.∵点D在线段AM的延长线(或反向延长线)上时,△ACD和△BCE全等,∴对应边AD、BE上的高线对应相等,∴CN=CM=4是定值,∴PQ的长是定值.【知识点】全等三角形的判定与性质、等边三角形的性质14.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A 叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=2AB′=2AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为:.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC∽△B′AC′,∴BC=2B′C′,∵B′D=DC′,∴AD=B′C′=BC==1,故答案为:1;(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC∽△AB′M,∴BC=2AM,∴AD=BC.(3)如图4,∵AD=BC,BC=4,∴AD=1,∴D在以A为圆心,以1为半径的圆上,∴当D运动到直线OA与半圆相交时OD最大,∵A(4,3),∴OA=5,∵AD=1,∴OD的最大值是6.过A作AE⊥x轴于E,过D作DF⊥x轴于F,∴AE∥DF,∴△AOE∽△DOF,∴==,∵OE=4,AE=3,∴OF=,DF=,∴D(,).【知识点】几何变换综合题。

倍长中线法

倍长中线法
倍长中线法的变形可以根据具体问题的需要对倍长中线法进行变形以便更好地解决问题。
拓展学生的解题思路
倍长中线法在数学教育中的价值
培养学生的数学思维和创新能力
添加标题
添加标题
添加标题
添加标题
提高学生分析问题和解决问题的能 力
促进数学教育的改革和发展
感谢您的耐心观看
汇报人:
证明倍长中线法的推论
推论:倍长中线法可以证明三角形 中线定理
应用范围:适用于所有三角形包括 等腰三角形、直角三角形等
添加标题
添加标题
添加标题
添加标题
证明过程:通过倍长中线法将三角 形分为两个小三角形然后利用相似 三角形的性质进行证明
注意事项:在应用倍长中线法时需 要保证中线的长度足够长以便进行 倍长操作
倍长中线法的几何意义
倍长中线法是利用中线的性质来证明线段相等的方法 倍长中线法的几何意义在于将线段延长一倍从而证明线段相等 倍长中线法在几何证明题中应用广泛是解决线段相等问题的重要方法之一 倍长中线法可以通过构造辅助线来证明线段相等使证明过程更加简洁明了
倍长中线法的应用场景
定义:倍长中线法是一种几何证明方法通过延长线段来证明线段相等或三角形全等 应用场景:证明线段相等、三角形全等、平行四边形性质等 适用范围:适用于各种几何图形如三角形、四边形、圆等 注意事项:在应用倍长中线法时需要仔细分析图形确定是否适用该方法
添加副标题
倍长中线法
汇报人:
目录
CONTENTS
01 添加目录标题
02 倍长中线法的定义
03 倍长中线法的证明
04 倍长中线法的应用
05 倍长中线法的拓展
添加章节标题
倍长中线法的定义
倍长中线法的概念

倍长中线法(初二)

倍长中线法(初二)

全等三角形的构造方法---常用辅助线搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考.(一)倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。

例1.如图(1)AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF .求证:AC=BF证明:延长AD 至H 使DH=AD ,连BH ,∵BD=CD , ∠BDH=∠ADC ,DH=DA ,∴△BDH ≌△CDA ,∴BH=CA ,∠H=∠DAC ,又∵AE=EF , ∴∠DAC=∠AFE ,∵∠AFE=∠BFD ,∴∠AFE=图(1)∠BFD=∠DAC=∠H ,∴BF=BH ,∴AC=BF .小结:涉及三角形中线问题时,常采用延长中线一倍的办法,即倍长中线法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

中线一倍辅助线作法△ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD ,连接BE方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例2、△ABC 中,AB=5,AC=3,求中线例3、已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例4、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC AE 于点F ,DF=AC. 求证:AE 平分BAC ∠课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

倍长中线法

倍长中线法

倍长中线法
知识网络详解:
中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.
所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)
倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线
经典例题讲解:
例1:△ABC中,AB=5,AC=3,求中线AD的取值范围
例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE
例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC 于F,求证:AF=EF
例4:已知:如图,在ABC 中,ACAB ,D、E在BC上,且DE=EC,过D作BADF//交AE 于点F,DF=AC.
求证:AE平分∠BAC
例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE
、如图,△ABC中,BD=DC=AC,E是DC的中点,求证,AD平分∠BAE
在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论
.。

倍长中线法

倍长中线法

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE过D 作DG ABC ∆AC AB ≠BA DF //求证:AE 平分BAC ∠例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.F EDAB CF ECABDA BFDEC E DAB2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,ABC 中,C=90,CM AB 于M ,AT 平分BAC 交CM 于D ,交BC 于T ,过D 作DEF EAB C 第 14 题图DF CBEADABCMTE。

倍长中线法(经典例题)

倍长中线法(经典例题)

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E, AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE过D 作DG//AC例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于F,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠BABFDEC例5:已知CD=AB ,∠BDA=∠BAD,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论。

E DABF EAB C3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F 。

倍长中线法

倍长中线法

倍长中线法
定义
延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(一般都是原题已经有中线时用,不太会有自己画中线的时候)。

例1:如图,在△ABC中,AB=2AC,AD平分BC,AD⊥AC,求∠BAC的度数。

解:延长AD,使AD=DE,连接BE。

∵AD⊥AC
∴∠EAC=90°
∵∠ADC和∠BDE是对顶角
∴∠ADC=∠BDE
又∵AD平分BC
∴DB=DC
在△ADC和△BDE中:
DA=DE ∠ADC=∠BDE DB=DC
∴△ADC≌△BDE(SAS)
∴AC=BE
∴∠E=∠EAC=90°,BE=AC
∵AB=2AC
∴AB=2BE
即1/2AB=BE
∴∠BAE=30(在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半)
∴∠BAC=∠BAE+∠EAC =30°+90° =120°
练习:如图,在△ABC中,AB=5a,AC=3a(a>0),求中线AD的取值范围。

中线倍长法

中线倍长法

几何证明-常用辅助线 (一)中线倍长法:1: 中线一倍辅助线作法△ABC 中方式1:延长AD 到E ,AD 是BC 边中线使DE=AD ,连接BE 方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD1 、求证:三角形一边上的中线小于其他两边和的一半。

2:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC3:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CECADCE4:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //6、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论(二)截长补短法1.已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ ABC . 求证:∠BAD +∠BCD =180°.2.如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB.求证:CD=AD+BC.第 1 题图 A B F D E CABCD图1-13.已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°.4已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .(三)综合练习1. 已知∠1=∠2,∠3=∠4,求证:AB=CD2.BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

倍长中线法

倍长中线法

几何模型02——倍长中线法当线段出现一个中点时,特别是三角形中,常常采用“倍长中线法”添加辅助线.倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法:△ABC 中AD 是BC 边中线方式1: 延长AD 到E , 使DE=AD ,连接BE例1.已知:如图,AD 是△ABC 的中线,求证:AB +AC >2AD .证明:延长AD 到M ,使DM =AD ,连接BM ,CM ,∵AD 是△ABC 的中线,∴BD =DC ,∵AD =DM ,∴四边形ABMC 是平行四边形,∴BM =AC ,在△ABM 中,AB +BM >AM ,即AB +AC >2AD .例2.已知,如图△ABC 中,AB =5,AC =3,则中线AD 的取值范围是 . 解:延长AD 到点E ,使AD =ED ,连接CE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中∴△ABD ≌△ECD (SAS ),∴AB =EC ,在△AEC 中,AC +EC >AE , 且EC ﹣AC <AE ,即AB +AC >2AD ,AB ﹣AC <2AD ,∴2<2AD <8,∴1<AD <4,故答案为:1<AD <4.E D A B C练习1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是.例3.如图,△ABC中,∠A=90°,D为斜边BC的中点,E、F分别为AB、AC上的点,且DE⊥DF.若BE=3,CF=4,试求EF的长.解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=4,∠C=∠DBG,∵∠C+∠ABC=90°,∴∠DBG+∠ABC=90°,即∠ABG=90°,∵DE⊥FG,DF=DG,∴EF=EG==5.练习2.如图,已知AD为△ABC的中线,DE平分∠ADB交AB于点E,DF平分∠ADC交AC于点F.求证:BE+CF>EF.练习3.如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,求GF的长.练习4.如图,在梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD 的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6.求CE的长.例4.如图,在△ABC中,AB=AC,E是AB中点,延长AB到D,使BD=BA,延长CE至F,使得EF=CE.求证:CD=2CE.证明:方法一:如右图1,取AC的中点H,连接BH,∵BD=BA,∴BH是△ACD的中位线,∴CD=2BH,又∵E是AB的中点,AB=AC,∴AE=AH=AB,在△ABH和△ACE中,,∴△ABH≌△ACE(SAS),∴CE=BH,∴CD=2CE.方法二:∵点E为AB的中点,∴BE=AE,在△BEF和△AEC中,,∴△BEF≌△AEC(SAS),∴BF=AC,∠EBF=∠A,∵AB=AC=BD,∴∠ACB=∠ABC,BF=BD,∵∠CBD=∠A+∠ACB,∠CBF=∠ABC+∠EBF,∴∠CBD=∠CBF,在△CBD和△CBF中,,∴△CBD≌△CBF(SAS),∴CD=CF,∵CF=CE+EF,CE=EF,∴CF=2CE,∴CD=2CE.练习5.已知:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点.求证:CD=2CE练习6.已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.练习7.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:AD是∠EAC的平分线.例5.如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E作EF∥AD 交AB于点G,交CA的延长线于点F.求证:BG=CF.证明:作CM∥AB交FE的延长线于M.∵BG∥CM,∴∠B=∠MCE,∵E是BC中点,∴BE=EC,在△BEG和△CEM中,,∴△BEG≌△CEM,∴BG=CM,∵AD∥EF,∴∠1=∠FGA,∠2=∠F,∵∠1=∠2,∴∠F=∠FGA,∵AB∥CM,∴∠FGA=∠M,∴∠F=∠M,∴CF=CM,∴BG=CF.练习8.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D 作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.例6.已知在△ABC中,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图,求证:EF=2AD.证明:延长AD至点G,使得AD=DG,连接BG,CG,∵AD=DG,BD=CD,∴四边形ABGC是平行四边形,∴AC=AF=BG,AB=AE=CG,∠BAC+∠ABG=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABG,在△EAF和△BAG中,,∴△EAF≌△BAG(SAS),∴EF=AG,∵AG=2AD,∴EF=2AD.练习9.如图,两个正方形ABDE和ACGF,点P为BC中点,连接P A交EF于点Q,试探究AP与EF的数量和位置关系,并证明你的结论.方式2:间接倍长作CF ⊥AD 于F , 延长MD 到N ,作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CN例7.如图,△ABC 中,AB =AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF =EF ,求证:BD =CE .证明:如图,过点D 作DG ∥AE ,交BC 于点G ;则△DGF ≌△ECF ,∴DG =CE ;∵AB =AC ,∴∠B =∠ACB ;∵DG ∥AE ,∴∠DGB =∠ACB ,∴∠DBG =∠DGB ,∴DG =BD ,∴BD =CE .练习9.如图,△ABC 中,点D 在AB 上,E 是AC 延长线上一点,BD =CE ,DE 交BC 于点F ,DF =EF ,DP ∥AE 交BC 于点P ,求证:AB =AC .F E D C B A N D C B A M课后练习1、如图1已知:AD为△ABC的中线,易证AB+AC>2AD.(1)如图2,在△ABC中,AC=5,AB=13,D为BC的中点,DA⊥AC.求△ABC的面积.(2)问题2:如图3,在△ABC中,AD是三角形的中线.点F在中线AD上,且BF=AC,连接并延长BF交AC于点E.求证AE=EF.2.已知:如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并说明理由.3.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,求证:(1)AE平分∠DAB;(2)AB+CD=AD.4.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),证明:EG=CG且EG⊥CG.(2)如图(3)将△BEF绕点B逆时针旋转180°,证明:EG=CG且EG⊥CG.5.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作FM∥AD交AC于F,求FC的长.6.如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.7.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.。

和三角形中线有关的题型的证法—倍长中线法

和三角形中线有关的题型的证法—倍长中线法

和三角形中线有关的题型的证法——倍长中线法我们知道三角形有角平分线、垂线、中线三条重要的线段,其中之一就是中线.中线作为三角形的重要线段,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长一条直线到某点,使这延长线等于另一条线段,构造两个全等三角形,倍长中线法的几种添加辅助线的情形如下.如图,线段AD是△ABC的边BC上的中线,方式1:如图1,延长AD到E,使DE=AD,连接BE;方式2:如图2,(1)作CF⊥AD于F,作BE⊥AD的延长线于E, 连接BE;方式3:如图3延长MD到N,使DN=MD,连接CD下面举例说明运用倍长中线法添加辅助线的情形过程.1.△ABC中,AB=5,AC=9,求BC边上的中线AD的长的取值范围.分析:延长AD到E使DE=AD,连接CE,证出三角形全等,再根据三角形任意两边之和大于第三边,任意两边之差小于第三边解答.解:延长AD到E,使DE=AD,连接CE,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ABD≌△ECD,∴EC=AB=5,△AEC中,∵9﹣5=4,9+5=14,∴4<2AD<14,∴2<AD<7.2.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF与于点G.若BG =CF,求证:AD为△ABC的角平分线.分析:延长FE,截取EH=EG,连接CH,可证△BEG≌△CEH,即可求得∠F=∠FGA,即可求得∠CAD=∠BAD,即可解题.解:延长FE,截取EH=EG,连接CH,∵E是BC中点,∴BE=CE,∴∠BEG=∠CEH,在△BEG和△CEH中,,∴△BEG≌△CEH(SAS),∴∠BGE=∠H,∴∠BGE=∠FGA=∠H,∴BG=CH,∵CF=BG,∴CH =CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD平分∠BAC.3.如图,D为线段AB的中点,在AB上任取一点C(不与点A,B,D重合),分别以AC,BC为斜边在AB同侧作等腰Rt△ACE与等腰Rt△BCF,∠AEC=∠CFB=900,连接DE,DF,EF.(1)求∠ECF的度数;(2)求证:△DEF为等腰直角三角形.分析:(1)先依据等腰直角三角形的性质求得∠ECA、∠FCB的度数,然后依据∠ECA+∠ECF+∠FCB=180°求解即可;(2)延长ED到点G,使得DG=DE,连接BG,FG,然后依据SAS证明△EDA≌△GDB,接下来依据SAS证明△ECF≌△GBF,最后再证明△EFD≌△GFD,从而可证明△DEF为等腰直角三角形.解:(1)∵△ACE和△CBF均为等腰直角三角形,∴∠ECA=450,∠FCB=450.∵∠ECA+∠ECF+∠FCB=1800,∴∠ECF=900.(2)证明:延长ED到点G,使得DG=DE,连接BG,FG.∵D为线段AB的中点,∴AD=BD.∵在△EDA和△GDB中,,∴△EDA≌△GDB(SAS).∴EA=GB,∠A=∠GBD=450.∵△ACE与△BCF是等腰直角三角形∴CF=FB,AE=EC,∠A=∠ECA=∠FCB=∠FBC=450.∴CF=FB,EC=BG,∠ECF=900.∵在△ECF和△GBF中,,∴△ECF≌△GBF(SAS).∴EF=GF,∠EFC=∠GFB.∵∠CFB=∠CFG+∠GFB=900,∴∠EFG=∠EFC+∠CFG=900.∵在△EFD和△GFD中,,∴△EFD≌△GFD.∴∠EDF=∠GDF=900,∠EFD=∠GFD=450.∴ED=DF,∴△DEF为等腰直角三角形.4.如图,由△ABC的顶点A引一条射线AD,与边BC交于D点,作BE⊥AD于点E,CF⊥AD于点F,为了使BE=CF,射线AD应该具有什么性质?分析:当射线AD是BC的中线时,BE=CF,可通过证明△BED≌△CFD证明.解:当射线AD是BC的中线时,BE=CF.理由如下:∵BE⊥AD,CF⊥AD,垂足分别为E,F,∴∠BED=∠CFD=900,∵D是BC中点,∴BD=CD,∵∠BDE=∠CFD,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.5.如图,在△ABC中,D是BC边上的一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF.(1)求证:AD是△ABC的中线;(2)如果AB=4,AC=6,S△ABC=10,AD长为偶数,求BE的长.分析:(1)欲证明AD 是△ABC 的中线,只要证明BD =CD ,即证明△BED ≌△CFD 即可;(2)S △ABC =10,S △ABD =AD ·BE ÷2=5,求出AD 可取的数,BE 长的结果就求出来了.解:(1)证明:∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠F =90°,在△BED 和△CFD 中,,∴△BED ≌△CFD ,∴BD =CD ,∴AD 是△ABC 的中线;(2)延长AF 至G ,使DG=AD ,连接CG ,易证△CGD ≌△BAD ,∴CG=AB=4,∵AC=6,∴AG 的取值范围是2<AG <10,∴1<AG <5,∵AG 为偶数,∴AG 可取2或4,∵S △ABC =10,BD=CD ,∴S △ABD =AD ·BE ÷2=5,∴BE=5或2.56.如图,△ABC 中,AB =AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF =EF ,求证:BD =CE .分析:如图,作辅助线;证明△DGF ∽△ECF ,得到DG =CE ,此为解决该问题的关键性结论;证明BD =GD ,即可解决问题.证明:如图,过点D 作DG ∥AE ,交BC 于点G ;则△DGF ∽△ECF ,∴DG :CE =DF :EF ,而DF =EF ,∴DG =CE ;∵AB =AC ,∴∠B =∠ACB ;∵DG ∥AE ,∴∠DGB =∠ACB ,∴∠DBG =∠DGB ,∴DG =BD ,∴BD =CE .7.已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .分析:根据点D 是BC 的中点,延长AD 到点G ,得到△ADC ≌△GDB ,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF 中的两个角相等,然后用等角对等边证明AE 等于EF .证明:如图,延长AD 到点G ,使得AD =DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC =DB ,在△ADC 和△GDB 中,⎪⎩⎪⎨⎧=∠=∠=DB DC GDB ADC DGAD ,∴△ADC ≌△GDB (SAS ),∴∠CAD =∠G ,BG =AC ,又∵BE =AC ,∴BE =BG ,∴∠BED =∠G ,∵∠BED =∠AEF ,∴∠AEF =∠CAD ,即:∠AEF =∠FAE ,∴AF =EF .8.如图,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC .求证:CD =2CE分析:过B 作BF ∥AC 交CE 的延长线于F ,由E 为AB 中点,得到AE =EB ,再由BF 与AC 平行,得到两对内错角相等,利用AAS 得到三角形ACE 与三角形BFE 全等,利用全等三角形的对应边相等得到CE =EF ,AC =BF ,即CF =2CE ,再由已知角相等,利用等角对等边得到AC =AB ,根据B 为AD 中点,得到AC =AB =BD =BF ,利用外角性质及等量代换得到夹角相等,利用SAS 得到三角形CBD 与三角形CBF 全等,利用全等三角形对应边相等得到CD =CF ,等量代换即可得证.证明:过B作BF∥AC交CE的延长线于F,∵CE是中线,BF∥AC,∴AE=BE,∠A=∠ABF,∠ACE=∠F,在△ACE 和△BFE中,,∴△ACE≌△BFE(AAS),∴CE=EF,AC=BF,∴CF=2CE,又∵∠ACB=∠ABC,CB 是△ADC的中线,∴AC=AB=BD=BF,∵∠DBC=∠A+∠ACB=∠ABF+∠ABC,∴∠DBC=∠FBC,在△DBC和△FBC 中,,∴△DBC≌△FBC(SAS),∴DC=CF=2CE.9.如图,△ABC中,点D是BC的中点,点E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF>EF.分析:如图,延长ED使得DM=DE,连接FM,CM.由△BDE≌△CDM(SAS),推出BE=CM,由DE=DM,DF⊥EM,推出FE=FM,在△FCM中利用三边关系定理即可解决问题;证明:如图,延长ED使得DM=DE,连接FM,CM.∵BD=DC,∠BDE=∠CDM,DE=DM,∴△BDE≌△CDM(SAS),∴BE=CM,∵DE=DM,DF⊥EM,∴FE=FM,∵CM+CF>FM,∴BE+CF>EF.10.如图,AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM.分析:延长AM至N,使MN=AM,证△AMC≌△NMB,推出AC=BN=AD,求出∠EAD=∠ABN,证△EAD≌△ABN即可.证明:延长AM至N,使MN=AM,连接BN,∵点M为BC的中点,∴CM=BM,在△AMC和△NMB中∴△AMC≌△NMB(SAS),∴AC=BN,∠C=∠NBM,∵AB⊥AE,AD⊥AC,∴∠EAB=∠DAC=900,∴∠EAD+∠BAC=1800,∴∠ABN=∠ABC+∠C=1800﹣∠BAC=∠EAD,在△EAD和△ABN中,∵,∴△ABN≌△EAD (SAS),∴DE=AN=2MN.跟踪练习:1.如图,AD为△ABC中BC边上的中线(AB>AC)(1)求证:AB﹣AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.2.如图,∠ACB=900,D是AB中点,连接CD,求证:CD=AB/23.△ABC中,D为BC的中点,AB=5,AD=6,AC=13,试判断AD与AB的位置关系4.如图,在△ABC中,AD为BC上的中线,E为AC的一点,BE与AD交于点F,若AE=EF,求证:AC=BF5.如图,△ABC中,∠A=900,D为斜边BC的中点,E、F分别为AB、AC上的点,且DE⊥DF.若BE=3,CF=4,试求EF的长6.如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.7.如图,AD是△ABC的中线,(1)求证:AB+AC>2AD;(2)过点D作DE∥AB交AC于E,过点D作DF∥AC交AB于F,求证:DE=AB.8.已知在△ABC中,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图,求证:EF=2AD.9.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.10.如图,在△ABC中,∠B=60°,CE、AF是△ABC的角平分线,交于点O,求证:AC=AE+CF.11.如图,AB⊥AC,AB=AC,AD⊥AE,AE=AD,F为CD的中点,探究BE与AF的关系,并给出你的证明.跟踪练习答案1.(1)证明:如图延长AD至E,使AD=DE,连接BE.在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴AC=BE(全等三角形的对应边相等),在△ABE中,由三角形的三边关系可得AB﹣AC<AE<AB+BE,即AB﹣AC <2AD<AB+AC;(2)解:∵AB=8cm,AC=5cm,∴8﹣5<2AD<8+5,∴<AD<.2.证明:延长CD至P,使D为CP中点,连接AP.∵DP=DC,DA=DB,∠ADP=∠CDB,∴△ADP≌△BDC,∴AP=BC,∠P=∠PCB∵∠PCB+∠ACP=900,∴∠P+∠ACP=900,∴∠CAP=900,∴∠CAP=∠ACB.在△ACP与△ABC中,AP=BC,AC=AC,∠CAP=∠ACB,∴△ACP≌△CAB,∴CP=AB,∵CD=CP/2,∴CD=AB/23.解:延长AD至E,使得AD=DE,连接BE,∵D为BC的中点,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴EB=AC=13,∵AD=6,∴AE=12,∵52+122=132,∴AB2+AE2=EB2,∴∠BAE=90°,∴AD⊥AB.4.分析:延长AD至G,使DG=AD,连接BG,可证明△BDG≌△CDA(SAS),则BG=AC,∠CAD=∠G,根据AE=EF,得∠CAD=∠AFE,可证出∠G=∠BFG,即得出AC=BF.∴△BDG≌△CDA(SAS),证明:延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,∵,∴BG=AC,∠CAD=∠G.又∵AE=EF,∴∠CAD=∠AFE .又∠BFG=∠AFE,∴∠CAD=∠BFG,∴∠G=∠BFG,∴BG=BF,∴AC=BF.5.分析:延长FD至点G,使得DG=DF,连接BG,EG,易证△CDF≌△BDG,可得BG=CF=4,∠C=∠DBG,可证明∠ABG=900,再根据等腰三角形底边三线合一性质可得EF=EG,即可求得EF的长,即可解题.解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=4,∠C=∠DBG,∵∠C+∠ABC=900,∴∠DBG+∠ABC=900,即∠ABG=900,∵DE⊥FG,DF=DG,∴EF=EG ==5.6.分析:延长FE 到G ,使EG =EF .连接CG ,由于已知条件通过SAS 证得△DEF ≌△CEG 得到DF =GC ,∠DFE =∠G ,由平行线的性质和已知条件得到∠G =∠CAE ,故有∠BAE =∠CAE ,结论可得.证明:如图,延长FE 到G ,使EG =EF ,连接CG .在△DEF 和△CEG 中,∵,∴△DEF ≌△CEG .∴DF =GC ,∠DFE =∠G .∵DF ∥AB ,∴∠DFE =∠BAE .∵DF =AC ,∴GC =AC .∴∠G =∠CAE .∴∠BAE =∠CAE .即AE 平分∠BAC .7.分析:(1)延长AD 到E 使AD =DM ,连接BM ,利用已知条件可证明△BDM ≌△ADC ,所以AM =2AD ,BM =AC ,由三角形的三边关系定理即可证明AB+AC >2AD ;(2)根据三角形中位线定理即可证明DE =AB .证明:(1)延长AD 到M 使AD =DM ,连接BM ,∵AD 是△ABC 的中线,∴BD =CD ,在△BDM 和△ADC 中,,∴△BDM ≌△ADC ,∴AC =BM ,AM =2AD ,∵AB+BM >AM ,∴AB+AC >2AD ;(2)∵DE ∥AB 交AC 于E ,DF ∥AC 交AB 于F ,∴四边形ABCD 是平行四边形,∴DE =AF ,∵BD =CD ,∴BF =AF ,∴DE =AB .8.分析:延长AD 至点G ,使得AD =DG ,连接BG ,CG ,易证四边形ABGC 是平行四边形,即可求得∠EAF =∠ABG ,即可求证△EAF ≌△BAG ,即可解题.证明:延长AD 至点G ,使得AD =DG ,连接BG ,CG ,∵AD =DG ,BD =CD ,∴四边形ABGC 是平行四边形,∴AC =AF =BG ,AB =AE =CG ,∠BAC+∠ABG =1800,∵∠EAF+∠BAC =1800,∴∠EAF =∠ABG ,在△EAF 和△BAG 中,⎪⎩⎪⎨⎧=∠=∠=BG AF ABG EAF AB AE ,∴△EAF ≌△BAG (SAS ),∴EF =AG ,∵AG =2AD ,∴EF =2AD .9.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.解:证明:方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G .∴∠F =∠CGE =90°.又∵∠BEF =∠CEG ,BE =CE ,∴△BFE≌△CGE.∴BF=CG.在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,∴△ABF≌△DCG.∴AB=CD.方法二:作CF∥AB,交DE的延长线于点F.∴∠F=∠BAE.又∵∠ABE=∠D,∴∠F=∠D.∴CF=CD.∵∠F =∠BAE,∠AEB=∠FEC,BE=CE,∴△ABE≌△FCE.∴AB=CF.∴AB=CD.方法三:延长DE至点F,使EF=DE.又∵BE=CE,∠BEF=∠CED,∴△BEF≌△CED.∴BF=CD,∠D=∠F.又∵∠BAE=∠D,∴∠BAE=∠F.∴AB=BF.∴AB=CD.10.分析:在AC上取一点H,使AH=AE,根据角平分线的定义可得∠EAO=∠HAO,然后利用“边角边”证明△AEO 和△AHO全等,根据全等三角形对应角相等可得∠AE0=∠AHO,根据角平分线的定义可得∠1=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=60°,再根据角平分线的定义和三角形的内角和定理求出∠4=60°,从而得到∠3=∠4,然后利用“边角边”证明△CFO和△CHO全等,根据全等三角形对应边相等可得CF=CH,再根据AC=AH+CH代换即可得证.证明:如图,在AC上取一点H,使AH=AE,∵AF是△ABC的角平分线,∴∠EAO=∠HAO,在△AEO和△AHO中,,∴△AEO≌△AHO(SAS),∴∠AE0=∠AHO,∵CE是△ABC的角平分线,∴∠1=∠2,∵∠1+∠3=∠AHO,∠2+∠B=∠AEO,∴∠3=∠B=60°,又∵∠B=60°,CE、AF是△ABC的角平分线,∴∠4=∠1+∠CAF=(180°﹣∠B)=(180°﹣60°)=60°,∴∠3=∠4,在△CFO和△CHO中,,∴△CFO≌△CHO(ASA),∴CF=CH,由图可知,AC=AH+CH,∴AC=AE+CF.11.分析:延长FA交BE于H,延长AF到G使FG=AF,连接CG,根据全等三角形的性质得到CG=AD,∠G=∠FAD,根据三角形的内角和和平角的定义得到∠ACG=∠BAE,根据全等三角形的性质得到∠CAG=∠B,等量代换即可得到结论.解:BE⊥AF,理由:延长FA交BE于H,延长AF到G使FG=AF,连接CG,∵F为CD的中点,∴CF=DF,在△CFG 与△DFA中,,∴△CFG≌△DFA,∴CG=AD,∠G=∠FAD,∵AB⊥AC,AD⊥AE,AE=AD,∴∠BAC =∠DAE=90°,AE=CG,∴∠BAE=360°﹣90°﹣90°﹣∠CAD=180°﹣∠CAD,∵∠ACG=180°﹣∠CAF﹣∠G =180°﹣∠CAE﹣∠DAF=180°﹣∠CAD,∴∠ACG=∠BAE,在△ACG与△BAE中,,∴△ACG≌△BAE,∴∠CAG=∠B,∵∠BAH+∠CAG=90°,∴∠BAH+∠B=90°,∴∠AHB=90°,∴AF⊥BE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中线倍长法
中线倍长法是指使用一组具备特定功能的几何形状,并把它们重复堆叠起来,形成空间结构的设计方式。

它是以传统中国建筑中拱形拱门为设计元素,融合了现代空间建筑技术,以达成建筑空间效果的独特技术。

它最初由中国老牌建筑设计师陆文厦在上世纪八十年代提出,他基于传统的中国建筑拱形结构,提出了一种使用若干倍长的中线构建空间结构的设计方案,以此来巧妙地解决复杂的建筑空间布局问题。

中线倍长法以中线作为基本框架,通过倍长来模拟建筑拱形结构,既可以满足复杂的建筑空间布局,又可以达到拱形的空间效果,使空间变得更加宽敞、完美,并使之有着舒适的感受。

中线倍长法在其设计方法上也有着一些特点,主要体现在通过中线的使用,可以实现把传统的圆形结构形状“堆叠”,从而形成一种
较为宽敞的“拱门”形状,使建筑空间布局更加自由,不受传统拱形结构的限制。

中线倍长法由于具有灵活、高效以及适用性强等特点,被广泛运用于现代建筑空间设计,尤其是在大型建筑中,由于高度和空间结构上的复杂,中线倍长法则成为解决空间布置问题的有效方式。

中线倍长法的应用也被越来越多的应用于工业制造和现代建筑
空间设计中,可以有效地降低工程施工时间,提高工作效率。

特别是在大型建筑项目中,则可以有效地使用中线倍长法的方式简化工作,提高建筑质量,节省建筑施工费用。

因此,中线倍长法在现代建筑空
间设计中,是一个非常有用的技术工具,可以帮助建筑设计师有效地实现空间效果。

总而言之,中线倍长法是一种特定的建筑空间设计方式,它既可以满足复杂的建筑空间布局,又可以实现空间效果的最佳展示,所以在现代建筑空间设计中,中线倍长法是非常有效的工具。

相关文档
最新文档