江苏省扬州市宝应中学2020-2021学年高二上学期期中数学试题
2023-2024学年江苏省扬州中学高二(上)期中数学试卷【答案版】

2023-2024学年江苏省扬州中学高二(上)期中数学试卷一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.) 1.经过A(0,√3)、B (﹣1,0)两点的直线的倾斜角为( ) A .π6B .π3C .2π3D .5π62.抛物线x 2=2ay 的准线方程是y =2,则实数a 的值为( ) A .﹣8B .﹣4C .4D .83.已知P (x ,y )是椭圆x 2144+y 225=1上的点,则x +y 的值可能是( )A .13B .14C .15D .164.若点(2,1)在圆x 2+y 2﹣x +y +a =0的外部,则a 的取值范围是( ) A .(12,+∞) B .(−∞,12)C .(−4,12)D .(−∞,−4)∪(12,+∞)5.已知F 1,F 2是椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于M ,N 两点,则△MNF 2的周长为( ) A .10B .16C .20D .266.已知抛物线C :y 2=16x ,直线l :x =4与C 交于A 、B 两点,M 是射线BA 上异于A 、B 的动点,圆C 1与圆C 2分别是△OMA 和△OMB 的外接圆(O 为坐标原点),则圆C 1与圆C 2面积的比值( ) A .小于1 B .大于1C .等于1D .与M 点的位置有关7.由伦敦著名建筑事务所SteynStudio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2−x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A .y 212−x 24=1B .3y 24−x 24=1C .x 24−y 24=1D .y 216−x 24=18.已知点M (2,4),若过点N (4,0)的直线l 交圆于C :(x ﹣6)2+y 2=9于A ,B 两点,则|MA →+MB →|的最大值为( ) A .12B .8√2C .10D .6√2二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知直线l :(a 2+a +1)x ﹣y +1=0,其中a ∈R ,则( ) A .直线l 过定点(0,1)B .当a =﹣1时,直线l 与直线x +y =0垂直C .当a =0时,直线l 在两坐标轴上的截距相等D .若直线l 与直线x ﹣y =0平行,则这两条平行直线之间的距离为√2210.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( ) A .a =2,c =1B .已知椭圆E 的离心率为12,短轴长为2C .△BF 1F 2是等边三角形,且椭圆E 的离心率为12D .设椭圆E 的焦距为4,点B 在圆(x ﹣c )2+y 2=9上11.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线y 2=4x 的焦点为F ,一束平行于x 轴的光线l 1从点M (3,1)射入,经过抛物线上的点P (x 1,y 1)反射后,再经抛物线上另一点Q (x 2,y 2)反射后,沿直线l 2射出,则下列结论中正确的是( ) A .k PQ =−34B .x 1x 2=1C .|PQ|=254D .l 1与l 2之间的距离为412.已知双曲线C :x 2−y 23=1的左、右焦点分别为F 1,F 2,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于M ,N ,则( )A .PF 12−PF 22的最小值为8B .PF 1•PF 2﹣OP 2为定值C .若直线l 与双曲线C 相切,则点M ,N 的纵坐标之积为﹣2D .若直线l 经过F 2,且与双曲线C 交于另一点Q ,则PQ 的最小值为6三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.) 13.双曲线M :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为 .14.在抛物线y 2=﹣4x 上求一点P ,使其到焦点F 的距离与到A (﹣2,1)的距离之和最小,则该点的坐标是 .15.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,﹣1),则该椭圆的面积为 .16.已知圆C 1和圆C 2均与x 轴及直线y =kx (k >0)相切,两圆交于P ,Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为134,则实数k 的值为 .四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.) 17.(10分)已知方程x 24+y 2m=1(m ∈R 且m ≠0).(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值; (2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18.(12分)已知直线l 经过直线l 1:3x +4y ﹣11=0,l 2:2x +3y ﹣8=0的交点M . (1)若直线l 经过点P (3,1),求直线l 的方程; (2)若直线l 与直线3x +2y +5=0垂直,求直线l 的方程.19.(12分)已知圆C 经过A (1,4),B (5,0)两点,且在x 轴上的截距之和为2. (1)求圆C 的标准方程;(2)圆M 与圆C 关于直线x ﹣y +1=0对称,求过点(3,0)且与圆M 相切的直线方程. 20.(12分)已知双曲线:x 25−m−y 2m−1=1(1<m <5)的一个焦点与抛物线C :y 2=2px (p >0)的焦点重合.(1)求抛物线C 的方程;(2)若直线l :x =ty +8交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O . 21.(12分)已知直线l :y =kx +√2(k ∈R),与双曲线C :x 23−y 2=1的左支交于A ,B 两点.(1)求实数k 的取值范围; (2)若△OAB 的面积为6√25(O 为坐标原点),求此时直线l 的斜率k 的值.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(2,√2),且离心率为√22. (1)求椭圆C 方程;(2)点A ,B 分别为椭圆C 的上下顶点,过点P (0,4)且斜率为k 的直线与椭圆C 交于不同的两点M ,N ,探究直线BM ,AN 的交点是否在一条定直线l 0上,若存在,求出该直线l 0的方程;若不存在,请说明理由.2023-2024学年江苏省扬州中学高二(上)期中数学试卷参考答案与试题解析一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.) 1.经过A(0,√3)、B (﹣1,0)两点的直线的倾斜角为( ) A .π6B .π3C .2π3D .5π6解:设直线AB 的倾斜角为α,则0≤α<π, 故k =tanα=√3−00−(−1)=√3, 故α=π3. 故选:B .2.抛物线x 2=2ay 的准线方程是y =2,则实数a 的值为( ) A .﹣8B .﹣4C .4D .8解:由题意可得−a2=2,则a =﹣4. 故选:B .3.已知P (x ,y )是椭圆x 2144+y 225=1上的点,则x +y 的值可能是( )A .13B .14C .15D .16解:由椭圆x 2144+y 225=1,可设x =12cos θ,y =5sin θ,其中θ∈[0,2π],则x +y =12cos θ+5sin θ=13sin (θ+φ),其中tanφ=125, 因为﹣1≤sin (θ+φ)≤1,所以﹣13≤x +y ≤13,即x +y 的取值范围为[﹣13,13],结合选项,可得A 符合题意. 故选:A .4.若点(2,1)在圆x 2+y 2﹣x +y +a =0的外部,则a 的取值范围是( ) A .(12,+∞) B .(−∞,12)C .(−4,12)D .(−∞,−4)∪(12,+∞)解:依题意,方程x 2+y 2﹣x +y +a =0可以表示圆,则(﹣1)2+12﹣4a >0,得a <12; 由点(2,1)在圆x 2+y 2﹣x +y +a =0的外部可知:22+12﹣2+1+a >0,得a >﹣4. 故−4<a <12.故选:C . 5.已知F 1,F 2是椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于M ,N 两点,则△MNF 2的周长为( ) A .10B .16C .20D .26解:利用椭圆的定义可知,|F 1M |+|F 2M |=2a =10,|F 1N |+|F 2N |=2a =10, ∴△MNF 2的周长为|F 1M |+|F 2M |+F 1N |+|F 2N |=10+10=20. 故选:C .6.已知抛物线C :y 2=16x ,直线l :x =4与C 交于A 、B 两点,M 是射线BA 上异于A 、B 的动点,圆C 1与圆C 2分别是△OMA 和△OMB 的外接圆(O 为坐标原点),则圆C 1与圆C 2面积的比值( ) A .小于1 B .大于1C .等于1D .与M 点的位置有关解:由抛物线C :y 2=16x ,可得焦点F (4,0),因为直线x =4与抛物线交于A ,B 两点,不妨设A 在B 的上方, 所以A (4,8),B (4,﹣8), A ,B 两点关于x 轴对称, 所以OA =OB , 所以∠OAB =∠OBA ,设圆C 1与圆C 2的半径分别为R 1,R 2, 在△OMA 和△OMB 中,由正弦定理可得,2R 1=OMsin∠OAB ,2R 2=OMsin∠OBA , 所以有2R 1=2R 2, 即R 1=R 2, 故两圆的面积相等, 所以面积的比值为1, 故选:C .7.由伦敦著名建筑事务所SteynStudio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2−x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A .y 212−x 24=1B .3y 24−x 24=1C .x 24−y 24=1D .y 216−x 24=1解:设双曲线的一个焦点为(0,﹣c ),一条渐近线方程为y =a bx ,即ax ﹣by =0, 则焦点到渐近线的距离d =√a 2+b=b =2,∵e =ca =2,c 2=a 2+b 2,b =2, ∴a 2=43,b 2=4, ∴双曲线方程为:3y 24−x 24=1.故选:B .8.已知点M (2,4),若过点N (4,0)的直线l 交圆于C :(x ﹣6)2+y 2=9于A ,B 两点,则|MA →+MB →|的最大值为( ) A .12B .8√2C .10D .6√2解:由已知圆的方程可得:圆心C (6,0),半径为r =3, 设AB 的中点为P (x ,y ),则由圆的性质可得:NP ⊥CP , 即NP →⋅CP →=0,而NP →=(x ﹣4,y ),CP →=(x ﹣6,y ), 所以(x ﹣4)(x ﹣6)+y 2=0,即点P 的轨迹方程为(x ﹣5)2+y 2=1, 设E 为NC 的中点,则E (5,0),半径为1,所以|MP |的最大值为|ME |+1=√(2−5)2+42+1=5+1=6, 又|MA →+MB →|=2|MP →|, 所以|MA →+MB →|的最大值为12, 故选:A .二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知直线l :(a 2+a +1)x ﹣y +1=0,其中a ∈R ,则( ) A .直线l 过定点(0,1)B .当a =﹣1时,直线l 与直线x +y =0垂直C .当a =0时,直线l 在两坐标轴上的截距相等D .若直线l 与直线x ﹣y =0平行,则这两条平行直线之间的距离为√22解:选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,a =﹣1时直线l 方程为x ﹣y +1=0,斜率是1,直线x +y =0斜率是﹣1,两直线垂直,B 正确; 选项C ,a =0时直线方程为x ﹣y +1=0,在x 轴上截距为x =﹣1,在y 轴上截距为y =1,不相等,C 错;选项D ,a 2+a +1=1即a =0或﹣1时,直线l 方程为x ﹣y +1=0与直线x ﹣y =0平行,距离为d =|1−0|√1+(−1)=√22,D 正确.故选:ABD . 10.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( ) A .a =2,c =1B .已知椭圆E 的离心率为12,短轴长为2C .△BF 1F 2是等边三角形,且椭圆E 的离心率为12D .设椭圆E 的焦距为4,点B 在圆(x ﹣c )2+y 2=9上 解:根据a 2=b 2+c 2之间的关系可得选项A 正确; 根据e =c a =12,2b =2,a 2=b 2+c 2即可求解,故选项B 正确; △BF 1F 2是等边三角形,且椭圆E 的离心率为12,只能确定a =2c ,e =c a =12,不能求椭圆E 标准方程,故选项C 不正确; 设椭圆E 的焦距为4,点B 在圆(x ﹣c )2+y 2=9上,所以2c =4,(0﹣c )2+b 2=c 2+b 2=a 2=9,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD .11.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线y 2=4x 的焦点为F ,一束平行于x 轴的光线l 1从点M (3,1)射入,经过抛物线上的点P (x 1,y 1)反射后,再经抛物线上另一点Q (x 2,y 2)反射后,沿直线l 2射出,则下列结论中正确的是( ) A .k PQ =−34 B .x 1x 2=1C .|PQ|=254D .l 1与l 2之间的距离为4解:A .由抛物线的光学性质可知,直线PQ 过抛物线的焦点F (1,0), 又MP 是水平的,所以可得P(14,1),因此k PQ =k PF =1−014−1=−43,即A 错误; B .易知直线PQ 的方程为y =−43(x −1),联立直线和抛物线{y =−43(x −1)y 2=4x ,消去y 可得4x 2﹣17x +4=0,由韦达定理可知x 1+x 2=174,x 1x 2=1,即B 正确; C .由x 1=14可得x 2=4,所以点Q 的坐标为Q (4,﹣4),利用抛物线定义可知|PQ|=|PF|+|QF|=x 1+x 2+p =174+2=254,即C 正确; ∵l 1与l 2两直线平行,∴l 1与l 2之间的距离为d =|y 1﹣y 2|=5,即D 错误. 故选:BC .12.已知双曲线C :x 2−y 23=1的左、右焦点分别为F 1,F 2,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于M ,N ,则( )A .PF 12−PF 22的最小值为8B .PF 1•PF 2﹣OP 2为定值C .若直线l 与双曲线C 相切,则点M ,N 的纵坐标之积为﹣2D .若直线l 经过F 2,且与双曲线C 交于另一点Q ,则PQ 的最小值为6 解:依题意得a =1,b =√3,c =2,F 1(﹣2,0),F 2(2,0),|PF 2|﹣|PF 1|=2a =2, 设P (x 0,y 0),则x 0≥1,x 02−y 023=1,即y 02=3x 02−3,双曲线C 的两条渐近线方程为y =±√3x ,对于A ,PF 12−PF 22=(x 0+2)2+y 02−[(x 0−2)2+y 02]=8x 0≥8,A 正确;对于B ,|PF 1|⋅|PF 2|−|OP|2=√(x 0+2)2+y 02⋅√(x 0−2)2+y 02−(x 02+y 02)=√(x 0+2)2+3x 02−3⋅√(x 0−2)2+3x 02−3−(x 02+3x 02−3) =(2x 0+1)⋅(2x 0−1)−(4x 02−3)=2是定值,B 正确;对于C ,不妨设M(x 1,√3x 1),N(x 2,−√3x 2),直线l 的方程为x =my +n , 由{x =my +n x 2−y 23=1,得(3m 2﹣1)y 2+6mny +3n 2﹣3=0, 若直线l 与双曲线C 相切,则Δ=36m 2n 2﹣12(3m 2﹣1)(n 2﹣1)=0, 化简整理得n 2=1﹣3m 2,则点M ,N 的纵坐标之积y 1y 2=−3x 1x 2=−3n 1−√3m n 1+√3m=−3n 21−3m 2=−3,C 错误;对于D ,若Q 在双曲线C 的右支,则通径最短,通径为2b 2a=6,若Q 在双曲线C 的左支,则实轴最短,实轴长为2a =2<6,D 错误. 故选:AB .三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.) 13.双曲线M :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为 y =±√2x .解:由题意可得e =ca =√3, 即c =√3a ,b =√c 2−a 2=√2a , 可得双曲线的渐近线方程y =±ba x ,即为y =±√2x . 故答案为:y =±√2x .14.在抛物线y 2=﹣4x 上求一点P ,使其到焦点F 的距离与到A (﹣2,1)的距离之和最小,则该点的坐标是 (−14,1) .解:由抛物线方程为y 2=﹣4x ,可得2p =4,p2=1,∴焦点坐标为F (﹣1,0),准线方程为x =1.设点P 在准线上的射影为Q ,连结PQ ,则根据抛物线的定义得|PF |=|PQ |,由平面几何知识,可知当A 、P 、Q 三点共线时,|PQ |+|P A |达到最小值,此时|PF |+|P A |也达到最小值.∴|PF |+|P A |取最小值,点P 的纵坐标为1,将P (x ,1)代入抛物线方程,得12=﹣4x ,解得x =−14,∴使P 到A 、F 距离之和最小的点P 坐标为(−14,1).故答案为:(−14,1)15.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,﹣1),则该椭圆的面积为 9√2π .解:设A (x 1,y 1),B (x 2,y 2),记AB 的中点为M ,即M (2,﹣1),因为AB 的中点为M ,所以由中点坐标公式得{x 1+x 2=4y 1+y 2=−2, 因为直线AB 过椭圆焦点F (3,0),所以直线AB 斜率为k =y 1−y 2x 1−x 2=0−13−2=1, 又因为A ,B 在椭圆x 2a 2+y 2b 2=1上, 所以{x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式相减得x 12−x 22a 2+y 12−y 22b 2=0, 整理得y 1−y 2x 1−x 2=−x 1+x 2y 1+y 2⋅b 2a 2,代值化简得2b 2=a 2, 因为椭圆x 2a 2+y 2b 2=1的焦点为F (3,0),所以a 2﹣b 2=9,得a =3√2,b =3,由题意可知,椭圆的面积为abπ=9√2π.故答案为:9√2π.16.已知圆C 1和圆C 2均与x 轴及直线y =kx (k >0)相切,两圆交于P ,Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为134,则实数k 的值为 43 .解:∵圆C 1和圆C 2与x 轴和直线y =kx (k >0)相切,两圆交于P ,Q 两点,其中P 点坐标为(3,2), ∴C 1和C 2在第一象限,设a ,b 为圆C 1和圆C 2的半径,则C 1(ma ,a ),C 2(mb ,b )(m >0),∵点P 在圆C 1和圆C 2,∴{(ma −3)2+(a −2)2=a 2(mb −3)2+(b −2)2=b 2, 又∵圆C 1和圆C 2与x 轴相切,∴a ,b 是m 2r 2﹣(6m +4)r +13=0的两个根,又∵ab =134,∴13m 2=134,解得m =2或m =﹣2(舍去), ∴k C 1C 2=12,∵直线C 1C 2的倾斜角是直线y =kx (k >0)的一半,∴k =2k C 1C 21−k C 1C 22=43. 故答案为:43. 四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.(10分)已知方程x 24+y 2m =1(m ∈R 且m ≠0).(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.解:(1)因为方程为焦点在y 轴上,所以a 2=m ,b 2=4,则离心率e =c a =√m−4√m =12,解得m =163, 故m =163.(2)由题意得 m =﹣4,c =√a 2+b 2=√4+4=2√2,故焦点坐标为(±2√2,0).18.(12分)已知直线l 经过直线l 1:3x +4y ﹣11=0,l 2:2x +3y ﹣8=0的交点M .(1)若直线l 经过点P (3,1),求直线l 的方程;(2)若直线l 与直线3x +2y +5=0垂直,求直线l 的方程.解:(1)由{3x +4y −11=02x +3y −8=0得{x =1y =2, 即直线l 1和l 2的交点为M (1,2).∵直线l 还经过点P (3,1),∴l 的方程为y−21−2=x−13−1,即x +2y ﹣5=0;(2)由直线l 与直线3x +2y +5=0垂直,可设它的方程为2x ﹣3y +n =0.再把点M (1,2)的坐标代入,可得2﹣6+n =0,解得n =4,故直线l 的方程为2x ﹣3y +4=0.19.(12分)已知圆C 经过A (1,4),B (5,0)两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线x ﹣y +1=0对称,求过点(3,0)且与圆M 相切的直线方程.解:(1)设圆C 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2﹣4F >0),令y =0,可得x 2+Dx +F =0,则x 1+x 2=﹣D =2,将A (1,4),B (5,0)代入可得,{1+16+D +4E +F =025+5D +F =0, 解得{D =−2E =0F =−15,所以圆C 方程为x 2+y 2﹣2x ﹣15=0,即(x ﹣1)2+y 2=16.(2)圆C 的圆心C (1,0),圆M 的圆心与C (1,0)关于x ﹣y +1=0对称,∴设圆M 的圆心为M (a ,b )则{a+12−b 2+1=0b a−1×1=−1,解得{a =−1b =2, 圆M 的标准方程为:(x +1)2+(y ﹣2)2=16,若过点(3,0)的直线斜率不存在,则方程为x =3,此时圆心C (﹣1,2)到直线x =3的距离为3+1=4=r ,满足题意;若过点(3,0)且与圆C 相切的直线斜率存在,则设切线方程为y =k (x ﹣3),即kx ﹣y ﹣3k =0,则圆心到直线kx ﹣y ﹣3k =0的距离为√k 2=4,解得k =34, 所以切线方程为34x −y −94=0,即3x ﹣4y ﹣9=0,综上,过点(3,0)且与圆C 相切的直线方程为x =3或3x ﹣4y ﹣9=0.20.(12分)已知双曲线:x 25−m −y 2m−1=1(1<m <5)的一个焦点与抛物线C :y 2=2px (p >0)的焦点重合.(1)求抛物线C 的方程;(2)若直线l :x =ty +8交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O . 解:(1)由双曲线方程x 25−m −y 2m−1=1(1<m <5),可得其焦点在x 轴上且焦点坐标为F 1(﹣2,0),F 2(2,0),又F 2(2,0)为抛物线C :y 2=2px (p >0)的焦点,所以p 2=2⇒p =4, 即可得抛物线C 的方程为y 2=8x ;(2)证明:设A (x 1,y 1),B (x 2,y 2),联立{x =ty +8y 2=8x⇒y 2−8ty −64=0,Δ=64t 2+4×64>0, 由韦达定理得y 1+y 2=8t ,y 1y 2=﹣64,所以OA →⋅OB →=x 1x 2+y 1y 2=(ty 1+8)(ty 2+8)+y 1y 2=(t 2+1)y 1y 2+8t (y 1+y 2)+64=(t 2+1)(﹣64)+8t (8t )+64=0,所以OA →⊥OB →,即以AB 为直径的圆经过原点O .21.(12分)已知直线l :y =kx +√2(k ∈R),与双曲线C :x 23−y 2=1的左支交于A ,B 两点. (1)求实数k 的取值范围;(2)若△OAB 的面积为6√25(O 为坐标原点),求此时直线l 的斜率k 的值.解:(1)不妨设A (x 1,y 1),B (x 2,y 2),联立{y =kx +√2x 23−y 2=1,消去y 并整理得(1−3k 2)x 2−6√2kx −9=0,因为直线l 与双曲线C 的左支交于A ,B 两点,所以1﹣3k 2≠0且Δ>0,由韦达定理得x 1x 2=−91−3k 2>0,x 1+x 2=6√2k 1−3k 2<0,① 所以k >0,13<k 2<1,解得√33<k <1, 则实数k 的取值范围为(√33,1);(2)易知点O 到直线l 的距离d =√2√k +1, 若△OAB 的面积为6√25, 此时12|AB|⋅d =12√1+k 2|x 1−x 2|⋅√2√k 2+1=√22|x 1−x 2|=6√25,② 联立①②,解得6√1−k 2|3k 2−1|=125,即36k 4+k 2﹣21=0,因为√33<k <1, 所以k =√32, 故直线l 的斜率k 的值为√32. 22.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点(2,√2),且离心率为√22. (1)求椭圆C 方程;(2)点A ,B 分别为椭圆C 的上下顶点,过点P (0,4)且斜率为k 的直线与椭圆C 交于不同的两点M ,N ,探究直线BM ,AN 的交点是否在一条定直线l 0上,若存在,求出该直线l 0的方程;若不存在,请说明理由.解:(1)因为椭圆的离心率为√22, 可得e =c a =√1−b 2a 2=√22, 即a 2=2b 2,① 又因为椭圆C :x 2a 2+y 2b2=1(a >b >0)过点(2,√2), 所以42b 2+2b 2=1,②联立①②,解得a 2=8,b 2=4,所以椭圆C 方程为x 28+y 24=1:(2)易知A (0,2),B (0,﹣2),不妨设直线MN 的方程为y =kx +4,M (x 1,y 1),N (x 2,y 2),联立{x 28+y 24=1y =kx +4,消去y 并整理得(1+2k 2)x 2+16kx +24=0, 此时Δ=(16k )2﹣4×24•(1+2k 2)=64k 2﹣96>0, 解得k 2>32,由韦达定理得x 1+x 2=−16k1+2k 2,x 1⋅x 2=241+2k 2,直线AN 的方程为y −2=y 2−2x 2x ,直线BM 的方程为y +2=y 1+2x 1x , 联立{y −2=y 2−x x 2x y +2=y 1+2x 1x ,可得y−2y+2=(y 2−2)x 1(y 1+2)x 2=kx 1x 2+2x 1kx 1x 2+6x 2, 因为x 1=−16k 1+2k 2−x 2, 所以y−2y+2=24k 1+2k 2+2(−16k 1+2k 2−x 2)24k 1+2k 2+6x 2=−8k−(2+4k 2)x 224k+(6+12k 2)x 2=−13,解得y =1,故直线BM ,AN 的交点在定直线y =1上.。
江苏省扬州市宝应中学2020-2021学年第一学期高二年级期中考试数学试题及答案

=
m+ m
5
=
1+
5 m
,e
∈
6, 2
2
所以 3 < 1+ 5 < 2 , 2m
解得 5 < m < 10 ,
所以实数 m 的取值范围是 (5,10) . ----12 分
19.解:(1)由不等式 f ( x) < 0 的解集是 (2,3) 知,
−b = 2 + 3 b = −5 2 和 3 是方程 x2 + bx + c = 0 的两个根.由根与系数的关系,得 c = 2× 3 ,即 c = 6 .
所以 f ( x) = x2 − 5x + 6 .
----6 分
(2)不等式 f ( x) − t2 + t ≤ 0 对于任意 x ∈[−3,3] 恒成立,
6
读万卷书 行万里路
旗开得胜
即 f ( x) ≤ t2 − t 对于任意 x ∈[−3,3] 恒成立.
由于 f ( x) = x2 − 5x + 6 的对称轴是 x = 5 ,
轴上方)两点,若 PF = λ FQ ,则实数 λ 的值为_______
四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.已知 m ∈ R ,命题 p : ∀x ∈[0,1] , m ≥ 2x − 2 ,命题 q : ∃x ∈[−1,1] , m ≤ x .
(1)若 p 为真命题,求实数 m 的取值范围;
()
A.38
B.35
C.32
D.29
uuur
5.如图,在四面体 OABC 中, D 是 BC 的中点, G 是 AD 的中点,则 OG 等于( )
2020~2021学年度第一学期高二期中测试数学试题

2020~2021学年度第一学期高二级期中测试数学试题注意事项:1.本试题共4页,四大题,22小题,满分120分,考试时间120分钟,答案必须填写在答题卡上,在试题上作答无效,考试结束后,只交答题卡。
2.作答前,认真浏览试卷,请务必规范、完整填写答题卡的卷头。
3.考生作答时,请使用0.5mm黑色签字笔在答题卡对应题号的答题区域内作答。
第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,共60分)1.在△ABC中,B=135°,C=15°,a=4,则此三角形的最大边长为()A. 5√2B. 5√3C. 4√2D. 4√32.在△ABC中,已知角A,B,C的对边分别为a,b,c,且a2−b2−c2=−√2bc,则角A的数为()A. 30°B. 45°C. 120°D. 135°3.在△ABC中,c=√3,b=1,B=30∘,则△ABC的面积为()A. √32或√3 B. √34或√32C. √34或√3 D. √34.已知正数组成的等比数列{a n},若a3⋅a18=100,那么a7+a14的最小值为()A. 20B. 25C. 50D. 不存在5.已知1、a1、a2、3成等差数列,1、b、4成等比数列,则a1+a2b=()A. 54B. −2C. 2D. ±26.在递增的等比数列{a n}中,a4,a6是方程x2−10x+16=0的两个根,则数列{a n}的公比q=()A. 2B. ±2C. 12D. 12或27.已知a>0,那么a−2+4a的最小值是()A. 1B. 2C. 4D. 58.设a>b,c>d则下列不等式中一定成立的是()A. a+c>b+dB. ac>bdC. a−c>b−dD. a+d>b+c9. 设p :2x 2−3x +1≤0,q :x 2−(2a +1)x +a(a +1)≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( )A. [0,12]B. (0,12)C. (−∞,0]∪[12,+∞)D. (−∞,0)∪(12,+∞)10. 命题“∃x 0>0,x 02−4x 0+3<0”的否定是( )A. ∀x ≤0,x 2−4x +3<0B. ∃x 0≤0,x 02−4x 0+3<0 C. ∀x >0,x 2−4x +3≥0D. ∃x 0>0,x 02−4x 0+3≥011. 若平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,−1,0),则平面α和平面β的位置关系是( )A. 平行B. 相交但不垂直C. 垂直D. 重合12. 在空间直角坐标系中,点P(3,4,5)关于yOz 平面对称的点的坐标为( )A. (−3,4,5)B. (−3,−4,5)C. (3,−4,−5)D. (−3,4,−5)第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,共20分)13. 已知空间向量m ⃗⃗⃗ =(1,−2x +1,2),n ⃗ =(y,3,x +z ),且m ⃗⃗⃗ =n ⃗ ,则x +2y +3z =__. 14. 在空间直角坐标系中,已知点A(1,0,2)与点B(1,−3,1),则|AB |=________,若在z轴上有一点M 满足|MA |=|MB |,则点M 的坐标为_________. 15. 记S n 为数列{a n }的前n 项和,若a 1=1,a n =2a n−1+1,则S 6= 16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若sinAsinB =ba+c ,a =2c ,则cos A =________.三、解答题(本大题共6小题,共70分)17. 已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,向量m⃗⃗⃗ =(cosA,a −2b),n ⃗ =(2c,1)且m ⃗⃗⃗ ⊥n ⃗ . (1)求角C ;(2)若c =2,△ABC 的面积为√3,求△ABC 的周长.18.设向量a⃗=(sinx,cosx),b⃗ =(cosx,√3cosx),x∈R,函数f(x)=a⃗•(a⃗+b⃗ ).(1)求函数f(x)的最小正周期;(2)ΔABC中边a,b,c所对的角为A,B,C,若acosB+bcosA=2ccosC,c=√3,)取最大值时,求△ABC的面积.当f(B219.已知数列{a n}满足:21⋅a1+22⋅a2+23⋅a3+⋯+2n⋅a n=(n−1)⋅2n+1+2对一切n∈N∗成立.(1)求数列{a n}的通项公式;}的前n项和S n.(2)求数列{1a n⋅a n+2(3n+S n)对一切正整数n都成立,20.已知数列{a n}的前n项和为S n,且a n=12(1)证明:数列{a n+3}是等比数列,并求出数列{a n}的通项公式;(a n+3),求数列{b n}的前n项和B n.(2)设b n=n321.如图,在正方体ABCD−A1B1C1D1中,点E为棱AB的中点.(1)证明:A1B//平面D1CE;(2)求平面A1BC1与平面CED1所成二面角的正弦值.22.已知四棱锥P−ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=√2,M,N分别是PD,PB的中点.(1)求证:MQ//平面PCB;(2)求截面MCN与底面ABCD所成二面角的大小;(3)求点A到平面MCN的距离.答案和解析1. 解:∵B =135°,∴b 为最大边,A =180°−135°−15°=30°, 由正弦定理得b =asinB sinA=4×√2212=4√2.故选:C .2.解:因为a 2−b 2−c 2=−√2bc ,由余弦定理可得,cosA =b2+c 2−a 22bc=√22, 因为A 为三角形的内角,故A =45°.故选:B .3.解:中,B =30∘,b =1,c =√3,,∴sinC =√32,∴C =60∘或120∘,∴A =90∘或30∘,∴△ABC 的面积为12bcsinA =√32或√34.故选B .4.解:∵正数组成的等比数列{a n },a 3⋅a 18=100,∴a 14⋅a 7=a 3⋅a 18=100,a 7>0,a 14>0,∴a 7+a 14≥2√a 14⋅a 7=2√100=20, 当且仅当a 7=a 14时取等号,∴a 7+a 14的最小值为20.故选:A .5.解:由1、a 1、a 2、3成等差数列,可得a 1+a 2=1+3=4,又1、b 、4成等比数列,可得b 2=4,解得b =±2,则a 1+a 2b=42=2或a 1+a 2b=4−2=−2,故选:D .6.解:根据题意,a 4,a 6是方程x 2−10x +16=0的两个根,则有{a 4+a 6=10a 4a 6=16,解可得:{a 4=8a 6=2或{a 4=2a 6=8,又由等比数列{a n }是递增的,必有{a 4=2a 6=8,则有q 2=a6a 4=4,即q =2;故选:A .7.解:根据题意,a −2+4a =a +4a −2,又由a >0,则a −2+4a =a +4a −2≥2√a ×4a −2=2,当且仅当a =2时等号成立,即a −2+4a 的最小值是2;故选:B .8.解:∵b <a ,d <c ,∴设b =−1,a =−2,d =2,c =3选项B ,(−2)×3>(−1)×2,不成立选项C ,−2−3>−1−2,不成立 选项D ,−2+2>−1+3,不成立故选:A .9.解:p :2x 2−3x +1≤0,解得:12≤x ≤1,q :x 2−(2a +1)x +a(a +1)≤0,解得:a ≤x ≤a +1.若q 是p 的必要不充分条件,则{a ≤121≤a +1,解得:0≤a ≤12.故选:A .10.解:因为特称命题的否定是全称命题,所以命题“∃x 0>0,x 02−4x 0+3<0”的否定是∀x >0,x 2−4x +3≥0.故选:C .11.解:由题意可得(1,2,0)⋅(2,−1,0)=1×2−2×1+0×0=0,故两个平面的法向量垂直,故平面α和平面β的位置关系为垂直,故选C .12.解:在空间直角坐标系中,关于yOz 平面对称,y ,z 不变.点P(3,4,5)关于yOz 平面对称的点的坐标为(−3,4,5), 故选A . 13.解:因为空间向量m⃗⃗⃗ =(1,−2x +1,2),n ⃗ =(y,3,x +z ),且m ⃗⃗⃗ =n ⃗ , 所以{1=y−2x +1=32=x +z ,所以x =−1,y =1,z =3,所以x +2y +3z =−1+2+9=10;故答案为10.14.解:∵点A(1,0,2)与点B(1,−3,1),∴|AB|=√(1−1)2+(−3−0)2+(1−2)2=√10, ∵在z 轴上有一点M 满足|MA|=|MB|,∴设M(0,0,c),则√(1−0)2+(0−0)2+(2−c)2=√(1−0)2+(−3−0)2+(1−c)2, 解得c =−3,∴点M 坐标为(0,0,−3).故答案为:(0,0,−3).15.解:∵a n =2a n−1+1, ∴a n +1=2(a n−1+1),故数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n , 则a n =2n −1,∴S n =2×(1−2n )1−2−n =2n+1−n −2,则S 6=27−8=120.16.解:由题意,sin Asin B =ba+c ,由正弦定理可得ab =ba+c ,因为a =2c ,所以a b =ba+a 2,即b 2=3a 22,所以b =√32a ,所以在△ABC 中由余弦定理得cosA =b 2+c 2−a 22bc=32a 2+14a 2−a 22×√2a×2=√64.故答案为√64.17.解:(1)由m⃗⃗⃗ =(cosA,a −2b),n ⃗ =(2c,1)且m ⃗⃗⃗ ⊥n ⃗ . 所以2ccosA =2b −a .由正弦定理得:2sinCcosA =2sinB −sinA . 2sinCcosA =2sin(A +C)−sinA =2sinAcosC +2cosAsinC −sinA ,整理得2sinAcosC =sinA ,由sinA >0,可得cosC =12,由于0<C <π,所以C =π3. (2)由于,△ABC 的面积为√3,所以12absinC =√3,整理得ab =4,由余弦定理,c 2=a 2+b 2−2abcosC =4,整理得(a +b)2−4=3ab ,解得a +b =4. 所以三角形的周长为a +b +c =4+2=6.18.解:(1)由已知f(x)=a →⋅(a →+b →)=sinx(sinx +cosx)+cosx(cosx +√3cosx)=12sin2x +√32cos2x +1+√32=sin(2x +π3)+1+√32,所以的最小正周期是T =2π2=π;(2)由正弦定理得sinAcosB +sinBbcosA =2sinCcosC , 即sin(A +B)=sinC =2sinCcosC , 因为sinC ≠0,所以cosC =12,又0<C <π,所以C =π3,又f(B 2)=sin(B +π3)+1+√32,因为B ∈(0,2π3),所以 B =π6时f(B2)取到最大值, 此时A =π2,又c =√3,所以b =1,得S ΔABC =12bcsinA =√32.19.解:(1)由题意,当n =1时,21⋅a 1=2,解得a 1=1,当n ≥2时,由21⋅a 1+22⋅a 2+23⋅a 3+⋯+2n ⋅a n =(n −1)⋅2n+1+2,可得 21⋅a 1+22⋅a 2+23⋅a 3+⋯+2n−1⋅a n−1=(n −2)⋅2n +2, 两式相减,可得2n ⋅a n =(n −1)⋅2n+1+2−(n −2)⋅2n −2=[2(n −1)−(n −2)]⋅2n =n ⋅2n , ∴a n =n ,当n =1时,a 1=1也符合上式,∴a n =n ,n ∈N ∗. (2)由(1)知,1a n ⋅a n+2=1n(n+2)=12(1n−1n+2),∴S n =1a 1⋅a 2+1a 2⋅a 3+1a 3⋅a 4+1a 4⋅a 5+⋯+1a n−1⋅a n+1+1a n ⋅a n+2=12(1−13)+12(12−14)+12(13−15)+12(14−16)+⋯+12(1n −1−1n +1)+12(1n −1n +2) =12(1−13+12−14+13−15+14−16+⋯+1n −1−1n +1+1n −1n +2) =12(1+12−1n+1−1n+2)=n(3n+5)4(n+1)(n+2).20.解:(1)数列{a n }的前n 项和为S n ,且a n =12(3n +S n ),由已知得S n =2a n −3n ①,所以S n+1=2a n+1−3(n +1)② 由②−①得:a n+1=2a n +3,即a n+1+3=2(a n +3),所以a n+1+3a n +3=2(常数),又a 1=2a 1−3,解得 a 1=3.所以数列{a n +3}是以6为首项,2为公比的等比数列. 故a n +3=6⋅2n−1,即a n =3(2n −1).(2)由于b n =n3(a n +3),所以b n =n3⋅(3×2n −3+3)=n ⋅2n .设B n =1⋅2+2⋅22+⋯+n ⋅2n ③2B n =1⋅22+2⋅23+⋯+n ⋅2n+1 ④ ④−③得:B n =−(2+22+23+⋯+2n )+n ⋅2n+1=−2n+1−22−1+n ⋅2n+1.整理得B n =2+(n −1)⋅2n+1.21.(1)证明:在正方体ABCD −A 1B 1C 1D 1中,A 1D 1= //BC ,∴四边形ABCD 为平行四边边形,∴A 1B//CD 1,∵CD 1⊂平面D 1CE ,A 1B ⊄平面D 1CE ,∴A 1B 平行平面D 1CE , (2)解:如图:以点D 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系D −xyz :设AB =2,则D(0,0,0),A(2,0,0),B(2,2,0),E(2,1,0),C 1(0,2,2),A 1(2,0,2),D 1(0,0,2),C(0,2,0),设平面A 1BC 1的法向量为n ⃗ =(x,y ,z), 由A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,−2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,2,0),则{A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =2y −2z =0,A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =−2x +2y =0,取x =1,y =1,z =1,则n ⃗ =(1,1,1) 设平面CED 1的法向量为m ⃗⃗⃗ =(a,b ,c),由D 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,−2),EC ⃗⃗⃗⃗⃗ =(−2,1,0), 则{D 1C ⃗⃗⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =2b −2c =0,AC ⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =−2a +b =0,取a =1,b =2,z =2,则m⃗⃗⃗ =(1,2,2), 可得m ⃗⃗⃗ ·n ⃗ =3,|m ⃗⃗⃗ |=3,|n ⃗ |=√3,cos <m⃗⃗⃗ ·n ⃗ >=53√3=5√39, ∴平面A 1BC 1与平面CED 1所成二面角的正弦值为√1−(5√39)2=√69.22.解:以A 为原点,以AD ,AB ,AP 分别为x ,y ,z 建立空间直角坐标系O −xyz ,由AB =2,CD =1,AD =√2,PA =4PQ =4,M ,N 分别是PD ,PB 的中点, 可得:A(0,0,0),B(0,2,0),C(√2,1,0),D(√2,0,0),P(0,0,4),Q(0,0,3),M(√22,0,2),N(0,1,2),∴BC ⃗⃗⃗⃗⃗ =(√2,−1,0),PB ⃗⃗⃗⃗⃗ =(0,2,−4),MQ ⃗⃗⃗⃗⃗⃗⃗ =(−√22,0,1) 设平面的PBC 的法向量为n 0⃗⃗⃗⃗ =(x,y,z), 则有:{n 0⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(√2,−1,0)=0⇒√2x −y =0n 0⃗⃗⃗⃗ ⊥PB ⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(0,2,−4)=0⇒2y −4z =0令z =1,则x =√2,y =2⇒n 0⃗⃗⃗⃗ =(√2,2,1),(3分) ∴MQ ⃗⃗⃗⃗⃗⃗⃗ ⋅n 0⃗⃗⃗⃗ =(−√22,0,1)⋅(√2,2,1)=0,又MQ ⊄平面PCB ,∴MQ//平面PCB ;(2)设平面的MCN 的法向量为n ⃗ =(x,y,z),又CM ⃗⃗⃗⃗⃗⃗ =(−√22,−1,2),CN⃗⃗⃗⃗⃗⃗ =(−√2,0,2) 则有:{n ⃗ ⊥CM⃗⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(−√22,−1,2)=0⇒−√22x −y +2z =0n ⃗ ⊥CN ⃗⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(−√2,0,2)=0⇒−√2x +2z =0令z =1,则x =√2,y =1⇒n ⃗ =(√2,1,1), 又AP⃗⃗⃗⃗⃗ =(0,0,4)为平面ABCD 的法向量, ∴cos〈n ⃗ ,AP⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅AP ⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|AP⃗⃗⃗⃗⃗ |=42×4=12,又截面MCN 与底面ABCD 所成二面角为锐二面角,∴截面MCN 与底面ABCD 所成二面角的大小为π3,(3)∵CA ⃗⃗⃗⃗⃗ =(−√2,−1,0),∴所求的距离d =|n ⃗⃗ ⋅CA ⃗⃗⃗⃗⃗||n ⃗⃗ |=|−√2×√2−1×1+1×0|2=32;。
2020年江苏省扬州中学高二(上)期中数学试卷

高二(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.命题“∃x∈Z,使x2+2x+m≤0”的否定是()A. ∀x∈Z,都有x2+2x+m≤0B. ∃x∈Z,使x2+2x+m>0C. ∀x∈Z,都有x2+2x+m>0D. 不存在x∈Z,使x2+2x+m>02.两数√2+1与√2−1的等比中项是()A. −1B. 12C. 1D. ±13.“0<m<1”是“方程x2m +y22−m=1表示椭圆”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.双曲线x24−y212=1的焦点到渐近线的距离为()A. 2B. √3C. 3D. 2√35.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,S n是数列{a n}的前n项和,则S9等于()A. −8B. −6C. 10D. 06.双曲线x2m −y2n=1(mn≠0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A. 316B. 38C. 163D. 837.已知S n是数列{a n}的前n项和,则“{a n}是等差数列”是“{S nn}是等差数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知数列{a n},{b n}都是等差数列,S n,T n分别是它们的前n项和,并且S nT n =7n+3n+3,则a2+a23b8+b17=()A. 176B. 134C. 193D. 1369.过(14,0)的直线与抛物线y2=x交于A,B两点,若|AB|=4,则弦AB的中点到直线x+12=0的距离等于()A. 74B. 94C. 4D. 210.已知数列{a n},如果a1,a2−a1,a3−a2,…,a n−a n−1,…,是首项为1,公比为13的等比数列,则a n=()A. 32(1−13n) B. 32(1−13n−1) C. 23(1−13n) D. 23(1−13n−1)11.已知点M(1,0),A,B是椭圆x24+y2=1上的动点,且MA⃗⃗⃗⃗⃗⃗ ⋅MB⃗⃗⃗⃗⃗⃗ =0,则MA⃗⃗⃗⃗⃗⃗ ·BA⃗⃗⃗⃗⃗ 的取值是()A. [23,1] B. [1,9] C. [23,9] D. [√63,3]12.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上不与左右顶点重合的任意一点,I,G分别为△PF1F2的内心和重心,当IG⊥x轴时,椭圆的离心率为()A. 13B. 12C. √32D. √63二、填空题(本大题共4小题,共20.0分)13.若“x>3”是“x>m”的必要不充分条件,则m的取值范围是______.14.已知数列{a n}满足a1=1,a n+1=3a n+2,则数列{a n}的通项公式a n=______ .15.过原点作一条倾斜角为θ的直线与椭圆x2a2+y2b2=1(a>b>0)交于A、B两点,F1,F2为椭圆的左,右焦点,若∠F1AF2=π2,且该椭圆的离心率e∈[√22,√63],则θ的取值范围为______.16.过抛物线y2=4x焦点的直线l与抛物线交于A,B两点,与圆(x−1)2+y2=r2交于C,D两点,若有三条直线满足|AC|=|BD|,则r的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.(1)已知数列{a n}的前n项和为S n,若S n=3n+2n+1,求a n.(2)已知{a n}是各项为正的等比数列,a1=2,a3=2a2+16,设b n=log2a n,求数列{b n}的前n项和.18.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为√3,且a2c=√23.(1)求双曲线C的方程;(2)已知直线x−y+m=0与双曲线C交于不同的两点A,B且线段AB的中点在圆x2+y2=5上,求m的值.19.已知p:(x+1)(2−x)≥0,q:关于x的不等式x2+2mx−m+6>0恒成立.(1)当x∈R时q成立,求实数m的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.20.已知{a n}为等差数列,前n项和为S n(n∈N∗),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4−2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n−1}的前n项和(n∈N∗);(3)设c n=log2b2n−1,P n为数列{4n2c n c n+1}的前n项和,求不超过P2019的最大整数.21.如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点M(−2,1)是抛物线上的一点.(1)求抛物线C的标准方程;(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线MP,MQ的斜率分别为k1,k2,且满足k2−k1=1,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.22.如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右准线方程为x=4,A,B分别是椭圆C的左,右顶点,过右焦点F且斜率为k(k>0)的直线l与椭圆C相交于M,N两点.(1)求椭圆C的标准方程;(2)记△AFM,△BFN的面积分别为S1,S2,若S1S2=32,求k的值;(3)设线段MN的中点为D,直线OD与右准线相交于点E,记直线AM,BN,FE 的斜率分别为k1,k2,k3,求k2⋅(k1−k3)的值.答案和解析1.【答案】C【解析】解:命题“∃x∈Z,使x2+2x+m≤0”的否定是:∀x∈Z,都有x2+2x+m>0,故选:C.将“存在”换为“∀”同时将结论“x2+2x+m≤0”换为“x2+2x+m>0”.求含量词的命题的否定,应该将量词交换同时将结论否定.2.【答案】D【解析】解:设两数√2+1与√2−1的等比中项是x,则由等比中项的定义可得x2= (√2+1)(√2−1)=1,∴x=±1,故选:D.设两数√2+1与√2−1的等比中项是x,则由等比中项的定义可得x2=(√2+1)(√2−1)=1,解方程求得x的值.本题主要考查等比数列的定义和性质,等比中项的定义.属于基础题.3.【答案】B【解析】解:若方程x2m +y22−m=1表示椭圆,则{m>02−m>0m≠2−m;解得0<m<2且m≠1;故“0<m<1”⇒方程x2m +y22−m=1表示椭圆;反之,方程x2m +y22−m=1表示椭圆推不出“0<m<1“.∴“0<m<1”是“方程x2m +y22−m=1表示椭圆”的充分不必要条件.故选:B.根据椭圆的标准方程,先推出方程x2m +y22−m=1表示椭圆的等价条件,再根据充分必要条件的定义得出结论即可.本题考查了椭圆的标准方程,充分必要条件的定义,属于基础题.【解析】解:由题得:其焦点坐标为(±4,0).渐近线方程为y=±√3x所以焦点到其渐近线的距离d=√3√3+1=2√3.故选:D.先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.本题给出双曲线的方程,求它的焦点到渐近线的距离.着重考查了点到直线的距离公式、双曲线的标准方程与简单几何性质等知识,属于基础题.5.【答案】D【解析】【分析】本题考查了等比数列的性质,等差数列的通项公式及其前n项和公式,属于基础题.由a1,a3,a4成等比数列,可得a32=a1a4,再利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:∵a1,a3,a4成等比数列,∴a32=a1a4,∴(a1+2×2)2=a1⋅(a1+3×2),化为2a1=−16,解得a1=−8.∴则S9=−8×9+9×82×2=0,故选D.6.【答案】A【解析】解:抛物线y2=4x的焦点为(1,0),则双曲线的焦距为2,则有{m+n=11m=4解得m=14,n=34∴mn=316故选:A.先根据抛物线方程求得抛物线的焦点,进而可知双曲线的焦距,根据双曲线的离心率求得m,最后根据m+n=1求得n,则答案可得.本题主要考查了圆锥曲线的共同特这.解题的关键是对圆锥曲线的基本性质能熟练掌握.【解析】解:∵{a n }是等差数列⇔S n =An 2+Bn ⇔S n n=An +B ⇔{Snn }是等差数列,∴“{a n }是等差数列”是“{Snn}是等差数列”的充要条件. 故选:C .等差数列的判定结合充要条件的判定可得结果.本题考查了等差数列的判定、充要条件的判定,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】解:数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S nT n=7n+3n+3,则a 2+a 23b8+b 17=a 1+a 24b 1+b 24=S 24T 24=7×24+324+3=193,故选:C .由题意利用等差数列的性质、前n 项和公式,求得要求式子的值. 本题主要考查等差数列的性质、前n 项和公式,属于基础题.9.【答案】B【解析】解:如图,而抛物线y 2=x 的焦点F 为(14,0), ∴弦AB 的中点到准线x =−14的距离为2,则弦AB 的中点到直线x +12=0的距离等于2+14=94. 故选:B .求出弦AB 的中点到抛物线准线的距离,进一步得到弦AB 的中点到直线x +12=0的距离.本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,是中档题.10.【答案】A【解析】解:由题意a n =a 1+(a 2−a 1)+(a 3−a 2)+⋯+(a n −a n−1)=1−(13)n1−13=32(1−13n)故选:A .因为数列a 1,(a 2−a 1),(a 3−a 2),…,(a n −a n−1),…,此数列是首项为1,公比为13的等比数列,根据等比数列的通项公式可得数列{a n }的通项. 考查学生对等比数列性质的掌握能力,属于基础题.11.【答案】C【解析】 【分析】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力,属于中档题.利用MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =0,可得MA ⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ ⋅(MA ⃗⃗⃗⃗⃗⃗ −MB ⃗⃗⃗⃗⃗⃗ )=MA ⃗⃗⃗⃗⃗⃗ 2,设A(2cosα,sinα),可得MA ⃗⃗⃗⃗⃗⃗ 2=(2cosα−1)2+sin 2α,即可求解数量积的取值范围. 【解答】解:∵MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =0,可得MA⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ ⋅(MA ⃗⃗⃗⃗⃗⃗ −MB ⃗⃗⃗⃗⃗⃗ )=MA ⃗⃗⃗⃗⃗⃗ 2, 设A(2cosα,sinα),则MA ⃗⃗⃗⃗⃗⃗ 2=(2cosα−1)2+sin 2α=3cos 2α−4cosα+2=3(cosα−23)2+23,∴cosα=23时,MA ⃗⃗⃗⃗⃗⃗ 2的最小值为23;cosα=−1时,MA ⃗⃗⃗⃗⃗⃗ 2的最大值为9, 故选:C .12.【答案】A【解析】解:如图所示,设P(x 0,y 0),不妨设y 0>0. F 1(−c,0),F 2(c,0).则G(x 03,y3),∵IG ⊥x 轴,∴x I =x 03.设三角形内切圆的半径为r .由三角形内切圆的性质可得:12r(2a +2c)=12⋅2c ⋅y 0.解得r =cy 0a+c ,∴y I =cya+c .设PF 1,PF 2分别与内切圆相切于点D ,E . 则PD =PE =12(2a −2c)=a −c .在Rt△PDI中,由勾股定理可得:PD2+ID2=PI2.∴(a−c)2+(cy0a+c )2=(x0−x03)2+(y0−cy0a+c)2,化为:x029 4(a−c)2+y02b2=1.与椭圆x2a2+y2b2=1(a>b>0)比较可得:a2=94(a−c)2,∴a=32(a−c),可得ca=13.∴e=13.故选:A.如图所示,设P(x0,y0),不妨设y0>0.利用三角形重心性质可得G(x03,y03),根据IG⊥x轴,可得x I=x03.设三角形内切圆的半径为r.由三角形内切圆的性质可得:12r(2a+2c)=12⋅2c⋅y0.可得r=cy0a+c=y I.设PF1,PF2分别与内切圆相切于点D,E.可得PD=PE=12(2a−2c)=a−c.在Rt△PDI中,由勾股定理可得:PD2+ID2=PI2.化简整理即可得出.本题考查了椭圆的标准方程及其性质、三角形内切圆的性质、三角形重心性质、三角形面积计算公式,考查了推理能力与计算能力,属于难题.13.【答案】m>3【解析】解:若“x>3”是“x>m”的必要不充分条件,则{x|x>m}⫋{x|x>3},即m>3,即实数m的取值范围是m>3,故答案为:m>3.根据充分条件和必要条件的定义结合不等式的关系进行求解即可.本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.14.【答案】2×3n−1−1【解析】解:由a n+1=3a n+2,得a n+1+1=3(a n+1),又a1=1,所以{a n+1}是以2为首项、3为公比的等比数列,∴a n+1=2×3n−1,a n=2×3n−1−1.故答案为:2×3n−1−1.由a n+1=3a n +2,得a n+1+1=3(a n +1),从而可判断{a n }是以2为首项、3为公比的等比数列,进而可求得a n +1.本题考查由数列递推公式求数列通项,属中档题.15.【答案】[π6,5π6]【解析】解:由题可知,AF 1+AF 2=2a ,即2ccos θ2+2csin θ2=2a .∴c a =1sin θ2+cos θ2=√2sin(θ2+π4),又∵e ∈[√22,√63],∴sin(θ2+π4)∈[√32,1]. 又∵θ∈[0,π]∴θ∈[π6,5π6].故答案为:[π6,5π6].根据直角三角形的性质,找到e 与θ的数量关系,利用函数思想可求出来.本题主要考查椭圆的简单几何性质,利用了三角函数恒等变形,并考查了给值求角.16.【答案】(2,+∞)【解析】解:抛物线y 2=4x 焦点为(1,0),(1)当直线l ⊥x 轴时,直线l :x =1与抛物线交于A(1,2)、B(1,−2), 与圆(x −1)2+y 2=r 2交于C(1,r),D(1,−r),满足|AC|=|BD|.(2)当直线l 不与x 轴垂直时,设直线l 方程y =k(x −1).A(x 1,y 1),B(x 2,y 2), 联立方程组{y =k(x −1)y 2=4x,化简得k 2x 2−(2k 2+4)x +k 2=0,由韦达定理x 1+x 2=2+4k 2,由抛物线得定义,过焦点F 的线段|AB|=|AF|+|BF|=x 1+x 2+2=4+4k 2,当四点顺序为A 、C 、D 、B 时,∵|AC|=|BD|,∴AB 的中点为焦点F(1,0),这样的不与x 轴垂直的直线不存在; 当四点顺序为A 、C 、B 、D 时, ∵|AC|=|BD|, ∴|AB|=|CD|, 又∵|CD|=2r ,∴4+4k 2=2r ,即2k 2=r −2,当r >2时存在互为相反数的两斜率k ,即存在关于x =1对称的两条直线.综上,当r ∈(2,+∞)时有三条满足条件的直线. 故答案为:(2,+∞).求得抛物线的焦点,讨论直线l 的斜率不存在,可得A ,B ,C ,D ,满足题意;当直线的斜率存在,设直线l 方程y =k(x −1).A(x 1,y 1),B(x 2,y 2),联立直线方程和抛物线方程,运用韦达定理和抛物线的定义,讨论当四点顺序为A 、C 、D 、B 时,当四点顺序为A 、C 、B 、D 时,考虑是否存在与直线x =1对称的直线,即可得到所求范围. 本题考查抛物线的定义、方程和运用,考查直线方程和抛物线方程联立,运用韦达定理,考查分类讨论思想,化简运算能力和推理能力,属于中档题.17.【答案】解:(1)当n =1时,a 1=s 1=6;当n ≥2时,a n =s n −s n−1=(3n +2n +1)−[3n−1+2(n −1)+1]=2⋅3n−1+2, 由于a 1不适合此式,所以a n ={6,n =12⋅3n−1+2,n ≥2.(2)设等比数列的公比为q ,q >0,由a 1=2,a 3=2a 2+16,得2q 2=4q +16, 即q 2−2q −8=0,解得q =−2(舍)或q =4.∴a n =a 1q n−1=2×4n−1=22n−1;b n =log 2a n =log 222n−1=2n −1, ∵b 1=1,b n+1−b n =2(n +1)−1−2n +1=2, ∴数列{b n }是以1为首项,以2为公差的等差数列, 则数列{b n }的前n 项和T n =n ×1+n(n−1)×22=n 2.【解析】(1)应用数列的递推式,化简可得所求通项公式;(2)设等比数列的公比为q ,q >0,应用等比数列的通项公式解方程可得q ,可得a n ,b n ,再由等差数列的求和公式,可得所求和.本题考查数列的递推式的应用,等差数列和等比数列的定义、通项公式和求和公式的应用,考查方程思想和运算能力,属于基础题.18.【答案】解:(1)由题意,{ca =√3a 2c=√23,解得a =√63,c =√2.∴b 2=c 2−a 2=2−23=43. ∴双曲线C 的方程为3x 22−3y 24=1;(2)由{3x 22−3y 24=1x −y +m =0,得3x 2−6mx −3m 2−4=0,设A(x 1,y 1),B(x 2,y 2),∴x 1+x 2=2m ,又中点在直线x −y +m =0上, ∴中点坐标为(m,2m),代入x 2+y 2=5得m =±1,满足判别式Δ>0. ∴m 的值为±1.【解析】本题考查双曲线方程的求法,以及直线和双曲线相交的性质,是中档题. (1)由已知可得关于a ,c 的方程组,求解可得a ,c 的值,结合隐含条件求得b ,则双曲线方程可求;(2)联立直线方程与双曲线方程,利用根与系数的关系求得AB 的中点坐标,代入圆的方程求得m 值.19.【答案】解:(1)∵4m 2+4m −24<0,∴m 2+m −6<0,∴−3<m <2, ∴实数m 的取值范围为:(−3,2). (2)p :−1≤x ≤2,设A ={x|−1≤x ≤2},B ={x|x 2+2mx −m +6>0}, ∵p 是q 的充分不必要条件,∴A ⊊B①由(1)知,−3<m <2时,B =R ,满足题意;②m =−3时,B ={x|x 2−6x +9>0}={x|x ≠3},满足题意; ③m =2时,B ={x|x 2+4x +4>0}={x|x ≠−2},满足题意; ④m <−3,或m >2时,设f(x)=x 2+2mx −m +6, f(x)对称轴为x =−m ,由A ⊊B 得 {−m <−1f(−1)>0或{−m >2f(2)>0, ∴{m >1−3m +7>0或{m <−23m +10>0,∴1<m <73或−103<m <−2,∴−103<m <−3或2<m <73综上可知:−103<m <73【解析】(1)由△<0得含m 的不等式,解之得m 的取值范围;(2)把p 是q 的充分不必要条件转化为由A ⊊B ,在各种情况下找出充要条件不等式组,进而求出实数m的取值范围.本题考查了充分必要条件,考查解不等式问题,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,由b2+b3=12,得b1(q+q2)=12,而b1=2,∴q2+q−6=0.由q>0,解得q=2.∴b n=2n.由b3=a4−2a1,可得3d−a1=8①,由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n−2.∴数列{a n}的通项公式为a n=3n−2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n−1}的前n项和为T n,由a2n=6n−2,b2n−1=2×4n−1,有a2n b2n−1=(3n−1)×4n,∴T n=2×4+5×42+8×43+⋯+(3n−1)×4n,4T n=2×42+5×43+8×44+⋯+(3n−4)×4n+(3n−1)×4n+1,上述两式相减,得−3T n=2×4+3×42+3×43+⋯+3×4n−(3n−1)×4n+1=12×(1−4n)1−4−4−(3n−1)×4n+1=−(3n−2)×4n+1−8.得T n=3n−23×4n+1+83.∴数列{a2n b2n−1}的前n项和为3n−23×4n+1+83.(3)由(1)知:b2n−1=22n−1,则c n=log222n−1=2n−1.∴4n2c n c n+1=4n2(2n−1)(2n+1)=4n24n2−1=1+1(2n−1)(2n+1)=1+12×(12n−1−12n+1),∴P n=[1+12(11−13)]+[1+12(13−15)]+⋯+[1+12(12n−1−12n+1)]=n+n2n+1,∴P2019=2019+20194039>2019,∴不超过P2019的最大整数为2019.【解析】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,运用等差数列和等比数列的通项公式和求和公式,解方程可得首项和公差、公比,进而得到所求通项公式;(2)求得a2n b2n−1=(3n−1)×4n,运用数列的错位相减法求和,结合等比数列的求和公式,可得所求和;(3)求得b2n−1=22n−1,c n=log222n−1=2n−1.4n2c n c n+1=1+12×(12n−1−12n+1),运用数列的裂项相消求和,化简可得所求和P n,计算可得所求最大值.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,裂项相消求和,考查化简运算能力和推理能力,属于中档题.21.【答案】解:(1)设抛物线C 的标准方程为x 2=2py(p >0),将点M 的坐标代入抛物线C 的方程得2p =4,得p =2, 因此,抛物线C 的标准方程为x 2=4y ;(2)设点P 、Q 的坐标分别为(x 1,y 1)、(x 2,y 2),则y 1=x 124,y 2=x 224,k 2−k 1=y 2−1x 2+2−y 1−1x1+2=x 224−1x 2+2−x 124−1x 1+2=x 2−24−x 1−24=x 2−x 14=1,∴x 2−x 1=4.①对函数y =x 24求导得y′=x2,所以,直线PS 的方程为y −y 1=x 12(x −x 1),即y =x 1x 2−x124,同理可知,直线QS 的方程为y =x 2x 2−x 224,联立直线PS 和QS 的方程{y =x 1x2−x 124y =x 2x 2−x 224,得{x =x 1+x22y =x 1x 24, 所以,点S 的坐标为(x 1+x 22,x 1x 24),PS ⃗⃗⃗⃗⃗ =(x 2−x 12,x 1x 2−x 124)=(2,x 1),同理可得QS ⃗⃗⃗⃗⃗ =(−2,−x 2), 由三角形面积的向量公式可得S △PQS =12|−2x 2+2x 1|=|x 1−x 2|=4. 因此,△PQS 的面积为定值4.【解析】(1)先设抛物线C 的标准方程为x 2=2py(p >0),将点M 的坐标代入抛物线C 的方程,可求出p 的值,于是可得出抛物线C 的标准方程;(2)设点P 、Q 的坐标分别为(x 1,y 1)、(x 2,y 2),利用已知条件得出x 2−x 1=4,利用导数求出抛物线C 在点P 、Q 处的切线方程,联立求出点S 的坐标,然后利用三角形面积的向量公式求出△PQS 的面积,进而解答题中的问题.本题考查直线与抛物线的综合问题,考查利用导数求切线方程,同时也考查了三角形面积的计算,考查计算能力,属于中等题.22.【答案】解:(1)设椭圆的焦距为2c(c >0).依题意,ca =12,且a 2c=4,解得a =2,c =1.故b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)设点M(x 1,y 1),N(x 2,y 2).据题意,S 1S 2=32,即12×|AF|×|y 1|12×|BF|×|y 2|=32,整理可得|y 1||y 2|=12,所以NF ⃗⃗⃗⃗⃗⃗ =2FM ⃗⃗⃗⃗⃗⃗ . 代入坐标,可得{1−x 2=2(x 1−1) −y 2=2y 1 ,即{x 2=3−2x 1 y 2=−2y 1 又点M ,N 在椭圆C 上,所以{x 124+y 123=1 (3−2x1)24+(−2y 1)23=1 ,解得{x 1=74y 1=3√58 所以直线l 的斜率k =3√5874−1=√52. (3)法一:依题意,直线l 的方程为y =k(x −1).联立方程组{y =k(x −1) x 24+y 23=1 整理得(4k 2+3)x 2−8k 2x +4k 2−12=0,所以x 1+x 2=8k 24k 2+3,x 1x 2=4k 2−124k 2+3.故x D =x 1+x 22=4k 24k 2+3,y D =k(x D −1)=−3k4k 2+3,所以直线OD 的方程为y =−34k x ,令x =4,得y E =−3k ,即E(4 , −3k ). 所以k 3=−3k4−1=−1k.所以k 2⋅(k 1−k 3)=k 2⋅(k 1+1k )=y 2x 2−2⋅(y 1x 1+2+1k ), =k(x 2−1)x 2−2⋅[k(x 1−1)x 1+2+1k ]=k 2(x 1−1)(x 2−1)+(x 2−1)(x 1+2)(x 1+2)(x 2−2),=k 2[x 1x 2−(x 1+x 2)+1]+x 1x 2−x 1+2x 2−2x 1x 2−2x 1+2x 2−4,=k 2[x 1x 2−(x 1+x 2)+1]+x 1x 2−(x 1+x 2)−2+3x 2x 1x 2−2(x 1+x 2)−4+4x 2=,k 2[4k 2−124k 2+3−8k 24k 2+3+1]+4k 2−124k 2+3−8k 24k 2+3−2+3x 24k 2−124k 2+3−2×8k 24k 2+3−4+4x 2,=3x 2−21k 2+184k 2+34x 2−28k 2+244k 2+3=3(x 2−7k 2+64k 2+3)4(x 2−7k 2+64k 2+3)=34.法二:依题意,直线l 的方程为y =k(x −1),即x =1k y +1,记m =1k , 则直线l 的方程为x =my +1,与椭圆C 联立方程组{x =my +1 x 24+y 23=1 整理得(4+3m 2)y 2+6my −9=0, 所以y 1+y 2=−6m4+3m 2,y 1y 2=−94+3m 2. 故y D =y 1+y 22=−3m 4+3m 2,x D =my D +1=44+3m 2,所以直线OD 的方程为y =−3m 4x ,令x =4,得y E =−3m ,即E(4,−3m).所以k 3=−3m 4−1=−m .所以k 2⋅(k 1−k 3)=k 2⋅(k 1+1k )=y 2x 2−2⋅(y 1x 1+2+m)=y 1y 2+my 2(x 1+2)(x 1+2)(x 2−2),=y 1y 2+my 2(my 1+3)(my 1+3)(my 2−1)=(m 2+1)y 1y 2+3my 2m 2y1y 2−my 1+3my 2−3,=(m 2+1)y 1y 2+3my 2m 2y1y 2−m(y 1+y 2)−3+4my 2=−9(m 2+1)4+3m 2+3my 2−9m 24+3m 2+6m24+3m 2−3+4my 2,=−9(m 2+1)4+3m 2+3my 2−12(m 2+1)4+3m 2+4my 2=34.法三:依题意,点M(x 1,y 1),N(x 2,y 2)在椭圆C 上,所以{x 124+y 123=1 x 224+y 223=1 两式相减,得x 22−x 124+y 22−y 123=0,即y 2+y 1x2+x 1⋅y 2−y 1x 2−x 1=−34,所以k OD ⋅k =−34,即k OD =−34k,所以直线OD 的方程为y =−34k x ,令x =4,得y E =−3k ,即E(4 , −3k ),所以k 3=−3k4−1=−1k. 又直线AM 的方程为y =k 1(x +2),与椭圆C 联立方程组{y =k 1(x +2) x 24+y 23=1 整理得(4k 12+3)x 2+16k 12x +16k 12−12=0,所以−2⋅x 1=16k 12−124k 12+3,得x 1=6−8k 124k 12+3,y 1=k 1(x 1+2)=12k14k 12+3.所以点M 的坐标为(6−8k 124k 12+3 , 12k14k 12+3). 同理,点N 的坐标为(8k 22−64k 22+3 , −12k24k 22+3). 又点M ,N ,F 三点共线, 所以k =12k 14k 12+36−8k 124k 12+3−1=−12k 24k 22+38k 22−64k 22+3−1,整理得(4k 1k 2+3)(3k 1−k 2)=0,依题意,k 1>0,k 2>0,故k 2=3k 1. 由k =12k 14k 12+36−8k 124k 12+3−1=4k11−4k 12可得,1k =1−4k 124k 1=14k1−k 1,即1k +k 1=14k 1. 所以k 2⋅(k 1−k 3)=3k 1⋅(k 1+1k )=3k 1⋅14k 1=34.【解析】(1)根据椭圆的性质和离心率公式即可求出a ,c 的值,即可求出b ,椭圆方程可得,(2)设点M(x 1,y 1),N(x 2,y 2),根据三角形面积,即可求出NF ⃗⃗⃗⃗⃗⃗ =2FM ⃗⃗⃗⃗⃗⃗ ,再根据点在椭圆上,即可求出点M 的坐标,即可求出直线的斜率,(3)法一:依题意,直线l 的方程为y =k(x −1),根据韦达定理,直线方程,直线的斜率,化简整理即可求出,法二:设直线l 的方程为x =my +1,根据韦达定理,直线方程,直线的斜率,化简整理即可求出,法三:依题意,点M(x 1,y 1),N(x 2,y 2)在椭圆C 上,根据点差法,三点共线,直线方程,斜率公式,化简整理即可本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理和斜率公式等基础知识,考查运算求解能力,考查方程思想,是难题.。
江苏新高考2020-2021学年高二上学期数学期中考试复习题 Word版含解析

江苏新高考2020-2021学年高二上学期数学期中考试复习题一、单选题1、已知等比数列{a n }(a 1≠a 2)的公比为q ,且a 7,a 1,a 4成等差数列,则q 等于( ) A .1或-32B .-32C.32 D .12、若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系是( ) A .d <a <c <b B .a <c <b <d C .a <d <b <cD .a <d <c <b3、已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5·a 7,则P 与Q 的大小关系是( ) A .P >Q B .P <Q C .P =QD .无法确定4、等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n 是( )A .5B .6C .5或6D .6或75、若在等差数列{a n }中,d =-2,a 1+a 4+a 7+…+a 31=50,那么a 2+a 6+a 10+…+a 42的值为( )A .60B .-82C .182D .-96 6、对于函数y =f (x ),部分x 与y 的对应关系如表:数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+…+x 9的值为( )A .41B .42C .44D .487、已知{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) A .24 B .27 C .30 D .33 8、若a >0,b >0,则不等式-b <1x<a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <1bC.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1b D.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a9、若等比数列{a n }的前n 项和S n =3n +t ,则t +a 3的值为( ) A .1 B .-1 C .17 D .18 10、对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1bB .ab ≤a 2+b 22C .ab ≤22⎪⎭⎫⎝⎛+b aD.22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22 11、2+1与2-1的等比中项是( ) A .1 B .-1 C .±1 D.1212、如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一 D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一13、已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,又b n =1a n a n +1,则数列{b n }的前n项的和S n 为( ) A .4(1-1n +1 )B .4(12-1n +1)C .1-1n +1D.12-1n +114、已知正实数a ,b ,c 满足a 2-ab +4b 2-c =0,当cab 取最小值时,a +b -c 的最大值为( )A .2 B.34 C.38 D.1415、一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}16、已知等差数列前n 项和为S n ,且S 13<0,S 12>0,则此数列中绝对值最小的项为( ) A .第5项B .第6项C .第7项D .第8项17、若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .418、已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1等于( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 19、已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( )A .21B .20C .19D .1820、已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2二、填空题21、在数列{a n }中,S n =2n 2-3n +1,则通项公式a n =________.22、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.23、已知数列{a n }中,a 1=1,且P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,若函数f (n )=1n +a 1+1n +a 2+1n +a 3+…+1n +a n(n ∈N *,且n ≥2),则函数f (n )的最小值为________. 24、若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +12y -1z 的最大值为________.25、在1和17之间插入n 个数,使这n +2个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当1a +25b取最小值时,n =________.26、当x ,y ,z 为正数时,4xz +yzx 2+y 2+z 2的最大值为________.三、解答题27、解关于x 的不等式:mx 2-(m -2)x -2>0.28、求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.29、某投资商到一开发区投资72万元建起了一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f (n )表示前n 年的纯利润总和,(f (n )=前n 年的总收入-前n 年的总支出-投资额72万元). (1)该厂从第几年开始盈利?(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.30、已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n ,b 1+12b 2+13b 3+…+1n b n =b n +1-1.(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .31、如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成,已知休闲区A1B1C1D1的面积为4 000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式;(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?32、解关于x的不等式:x2-(m+m2)x+m3<0.33、设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,2]上有零点,求实数a的取值范围.34、已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,求实数a 的取值范围.35、已知{a n }为等差数列,前n 项和为S n ,{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4(其中n ∈N *). (1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).36、一公司举行某产品的促销活动,经测算该产品的销售量p 万件(生产量与销售量相等)与促销费用x 万元满足p =3-2x +1(其中0≤x ≤a ,a 为正数).已知生产该产品还需投入成本(10+2p )万元(不含促销费用),产品的销售价格定为⎝⎛⎭⎫4+20p 元/件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)促销费用投入多少万元时,厂家的利润最大.37、关于x的一元二次方程x2+(m-1)x+1=0在区间[0,2]上有实数解,求实数m的取值范围.38、若关于x的不等式(2x-1)2<ax2的解集中的整数恰有3个,求实数a的取值范围.1\答案 B解析 在等比数列{a n }中,由a 1≠a 2,得q ≠1, 因为a 7,a 1,a 4成等差数列, 所以a 7+a 4=2a 1, 即a 4(q 3+1)=2a 4q 3,所以q 6+q 3-2=0, 解得q 3=1(舍)或q 3=-2. 所以q =-32. 2\答案 A解析 因为a <b ,(c -a )(c -b )<0,所以a <c <b , 因为(d -a )(d -b )>0, 所以d <a <b 或a <b <d , 又因为d <c ,所以d <a <b , 综上可得d <a <c <b . 3\答案 A解析 由题设知a n >0,q >0且q ≠1,所以a 3≠a 9,a 3>0,a 9>0,P =a 3+a 92>a 3·a 9,因为a 3·a 9=a 5·a 7,所以P >Q . 4\答案 C解析 由题设可知a 1=-a 11,所以a 1+a 11=0,所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6. 5\答案 B解析 a 2+a 6+a 10+…+a 42=a 1+d +a 4+2d +a 7+3d +…+a 31+11d =(a 1+a 4+…+a 31)+(d +2d +3d +…+11d ) =50+11×122d =50+66d =-82.6\答案 B解析 因为数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上, x n +1=f (x n ),所以x 1=2,x 2=4,x 3=8,x 4=2,x 5=4,x 6=8,x 7=2,x 8=4,…, 所以数列是周期数列,周期为3,一个周期内的和为14, 所以x 1+x 2+x 3+x 4+…+x 9=3×(2+4+8)=42.7\答案 D解析 根据等差数列的性质可知a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9也成等差数列, 故a 3+a 6+a 9=2×39-45=33.故选D. 8\答案 A解析 原不等式⎩⎨⎧1x>-b ,1x <a ,即⎩⎨⎧bx +1x>0,ax -1x >0,可得⎩⎨⎧x <-1b或x >0,x <0或x >1a,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1b 或x >1a .9\答案 C解析 a 1=S 1=3+t , 由a 1+a 2=9+t 得a 2=6, 由a 1+a 2+a 3=27+t 得a 3=18,由a 1a 3=a 22,得t =-1,故t +a 3=17. 10\答案 A解析 当a >0,b >0时,因为21a +1b ≤ab ,所以2ab ≤1a +1b ,当且仅当a =b 时等号成立,故A 不正确;显然B ,C ,D 均正确. 11\答案 C解析 设x 为2+1与2-1的等比中项, 则x 2=(2+1)(2-1)=1,∴x =±1. 12\答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4.又因为cd ≤(c +d )24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立. 13\答案 A解析 ∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n2,∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1.∴S n =4⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1=4⎝⎛⎭⎫1-1n +1.14\答案 C解析正实数a ,b ,c 满足a 2-ab +4b 2-c =0,可得c =a 2-ab +4b 2,c ab =a 2-ab +4b 2ab =a b+4ba-1≥2a b ·4b a -1=3.当且仅当a =2b 时取得等号,则a =2b 时,cab取得最小值,且c =6b 2,∴a +b -c =2b +b -6b 2=-6b 2+3b =-6⎝⎛⎭⎫b -142+38,当b =14时,a +b -c 有最大值38. 15\答案 D解析 由题意知,-b a =1,ca =-2,∴b =-a ,c =-2a ,又∵a <0,∴原不等式化为x 2-x -2≤0, ∴-1≤x ≤2. 16\答案 C解析 由S 13=13a 7,S 12=6(a 6+a 7)及S 13<0,S 12>0, 知a 7<0,a 6+a 7>0,即a 6>-a 7>0,故|a 6|>|a 7|.又等差数列为递减数列,故|a 1|>|a 2|>…>|a 6|>|a 7|,|a 7|<|a 8|<…, 故|a 7|最小.17\答案 C解析 由1a +2b =ab 知,a >0,b >0,所以ab =1a +2b≥22ab,即ab ≥22,当且仅当⎩⎨⎧1a =2b,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.18\答案 C解析 依题意a 2=a 1q =2,a 5=a 1q 4=14,两式相除可求得q =12,a 1=4,又因为数列{a n }是等比数列,所以{a n a n +1}是以a 1a 2为首项,q 2为公比的等比数列, 根据等比数列前n 项和公式可得 原式=a 1a 2(1-q 2n )1-q 2=323(1-4-n ). 19\答案 B解析 方法一 由a 1+a 3+a 5=105,得3a 3=105,即a 3=35,由a 2+a 4+a 6=99,得3a 4=99,即a 4=33,∴d =-2,a n =a 4+(n -4)×(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0,a n +1<0,得n =20,故选B.方法二 由方法一得到d =-2,则由a 3=a 1+2×(-2)=35得a 1=39,从而S n =-n 2+40n =-(n -20)2+400,则S n 最大时,n =20,故选B. 20\答案 A解析 将圆C :x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6,所以圆心为C (0,1). 因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )⎝⎛⎭⎫4b +1c =4c b +b c +5. 因为b >0,c >0,所以4c b +b c ≥24c b ·bc=4, 当且仅当4c b =bc 时等号成立.由此可得b =2c 且b +c =1, 即b =23,c =13时,4b +1c 取得最小值9.二、填空题21\答案 ⎩⎪⎨⎪⎧0,n =1,4n -5,n ≥2解析 n ≥2时,a n =S n -S n -1=2n 2-3n +1-[2(n -1)2-3(n -1)+1]=4n -5. n =1时,a 1=2-3+1=0不适合上式.∴a n =⎩⎪⎨⎪⎧0,n =1,4n -5,n ≥2.22\答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9. 23\答案712解析 由题意得a n -a n +1+1=0,即a n +1-a n =1,∴数列{a n }是首项为1,公差为1的等差数列, ∴a n =n ,∴f (n )=1n +1+1n +2+…+1n +n, ∴f (n +1)-f (n )=1n +1+1+1n +1+2+…+1n +1+n +1-⎝⎛⎭⎫1n +1+1n +2+…+1n +n=12n +1+12n +2-1n +1=12n +1-12n +2>0, ∴{f (n )}(n ∈N *,n ≥2)为递增数列, ∴f (n )min =f (2)=12+a 1+12+a 2=13+14=712.24\答案 12解析 ∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞),∴xy z =xy x 2+4y 2-3xy =1x y +4yx -3≤1(当且仅当x =2y 时等号成立), 此时1x +12y -1z =1y -12y2,令1y =t >0,则1x +12y -1z =t -12t 2=-12(t -1)2+12≤12(当且仅当t =1,即y =1时等号成立).25\答案 7解析 由已知得a +b =18,则1a +25b =⎝⎛⎭⎫1a +25b ×a +b 18=118⎝⎛⎭⎫25+1+25a b +b a ≥118(26+10)=2,当且仅当b =5a 时取等号,此时a =3,b =15,可得n =7. 26\答案172解析 ∵x 2+1617z 2≥21617xz ,当且仅当x =41717z 时,取等号,y 2+117z 2≥2117yz ,当且仅当y =1717z 时,取等号. ∴x 2+y 2+z 2=⎝⎛⎭⎫x 2+1617z 2+⎝⎛⎭⎫y 2+117z 2≥21617xz +2117yz =21717(4xz +yz ). ∴4xz +yz x 2+y 2+z2≤172,当且仅当x =41717z ,y =1717z ,即x ∶y ∶z =4∶1∶17时,取等号.∴4xz +yz x 2+y 2+z 2的最大值为172.三、解答题27\解 不等式:mx 2-(m -2)x -2>0化为(mx +2)(x -1)>0.当m =0时,不等式化为2(x -1)>0, 解得x >1,所以不等式的解集为(1,+∞); 当m ≠0时,不等式对应方程为⎝⎛⎭⎫x +2m (x -1)=0, 解得实数根为-2m ,1.当m >0时,不等式化为⎝⎛⎭⎫x +2m (x -1)>0,且-2m<1, 所以不等式的解集为⎝⎛⎭⎫-∞,-2m ∪(1,+∞); 当-2<m <0时,不等式化为⎝⎛⎭⎫x +2m (x -1)<0, 且1<-2m,所以不等式的解集为⎝⎛⎭⎫1,-2m ; 当m =-2时,-2m =1,不等式化为(x -1)2<0,其解集为∅;当m <-2时,不等式化为⎝⎛⎭⎫x +2m (x -1)<0, 且-2m<1,所以不等式的解集为⎝⎛⎭⎫-2m ,1. 综上,m >0时,不等式的解集为⎝⎛⎭⎫-∞,-2m ∪(1,+∞); m =0时,不等式的解集为(1,+∞); -2<m <0时,不等式的解集为⎝⎛⎭⎫1,-2m ; m =-2时,不等式的解集为∅; m <-2时,不等式的解集为⎝⎛⎭⎫-2m ,1. 28\解 当a =0时,S n =1.当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a ≠0且a ≠1时,aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a -(2n -1)a n ,此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a .当a =0时,也满足此式.综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.29\解 (1)由题意知f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.由f (n )>0,即-2n 2+40n -72>0,解得2<n <18, 由n ∈N *知,从第三年开始盈利. (2)年平均纯利润f (n )n=40-2⎝⎛⎭⎫n +36n ≤16, 当且仅当n =6时等号成立.即第6年,投资商年平均纯利润达到最大,年平均纯利润最大值为16万元. 30\解 (1)由a 1=2,a n +1=2a n ,得a n =2n . 由题意知,当n =1时,b 1=b 2-1,故b 2=2. 易知当n ≥2时,b 1+12b 2+13b 3+…+1n -1b n -1=b n -1,①b 1+12b 2+13b 3+…+1n b n =b n +1-1,②②-①得,1n b n =b n +1-b n ,整理得b n +1b n =n +1n(n ≥2),所以b n =b n b n -1·b n -1b n -2·…·b 3b 2·b 2=n (n ≥2),又b 1=1也满足上式,所以b n =n .(2)由(1)知,a n b n =n ·2n ,所以T n =2+2×22+3×23+…+n ×2n ,所以T n -2T n =-T n =2+22+23+…+2n -n ×2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.31\解 (1)S =(x +20)×⎝⎛⎭⎫4 000x +8=8x +80 000x +4 160,x >0. (2)∵x >0,∴S ≥28x ×80 000x+4 160=1 600+4 160=5 760,当且仅当8x =80 000x,即x =100时取等号.故要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长为100米,宽为40米. 32\解 方程x 2-(m +m 2)x +m 3=0的解为x 1=m 和x 2=m 2. 二次函数y =x 2-(m +m 2)x +m 3的图象开口向上,所以 ①当m =0或1时,原不等式的解集为∅; ②当0<m <1时,原不等式的解集为{x |m 2<x <m }; ③当m <0或m >1时,原不等式的解集为{x |m <x <m 2}. 33\解 (1)由f (x )<1,得x 2+2ax +3<1, 即x 2+2ax +2<0,其中Δ=4a 2-8.当Δ=4a 2-8≤0,即-2≤a ≤2时,不等式无解; 当Δ=4a 2-8>0,即a <-2或a >2时, 解方程x 2+2ax +2=0,可得x 1=-2a -4(a 2-2)2=-a -a 2-2,x 2=-2a +4(a 2-2)2=-a +a 2-2,则不等式的解集为(-a -a 2-2,-a +a 2-2). 综上所述,当-2≤a ≤2时,不等式无解;当a <-2或a >2时,不等式的解集为(-a -a 2-2,-a +a 2-2). (2)要使函数f (x )=x 2+2ax +3在区间[-1,2]上有零点,则有 ⎩⎪⎨⎪⎧Δ≥0,-1≤-a ≤2,f (2)≥0,f (-1)≥0或f (2)·f (-1)≤0,即⎩⎪⎨⎪⎧Δ=4a 2-12≥0,-1≤-a ≤2,f (-1)=1-2a +3≥0,f (2)=2+22a +3≥0或(4-2a )(5+22a )≤0,解得a ≤-524或a ≥2.所以实数a 的取值范围为a ≤-524或a ≥2.34\解 方法一 在区间[1,+∞)上,f (x )=x 2+2x +ax >0恒成立,等价于x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,不等式f (x )>0恒成立,故实数a 的取值范围为{a |a >-3}.方法二 f (x )=x +ax +2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正,当a <0时,函数f (x )单调递增,故当x =1时,f (x )min =3+a ,于是当且仅当f (x )min =3+a >0时,不等式f (x )>0恒成立.故实数a 的取值范围为{a |a >-3}.方法三 由x ∈[1,+∞)及题意可知a >(-x 2-2x )max =-3.故实数a 的取值范围为{a |a >-3}. 35\解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12, 得b 1(q +q 2)=12.而b 1=2,所以q 2+q -6=0, 解得q =-3或q =2.又因为q >0,所以q =2.所以b n =2n (n ∈N *). 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.② 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2(n ∈N *).所以数列{a n }的通项公式为a n =3n -2(n ∈N *),数列{b n }的通项公式为b n =2n (n ∈N *). (2)设数列{a 2n b n }的前n 项和为T n . 由a 2n =6n -2,得T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1. 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×(1-2n )1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 所以T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16(n ∈N *).36\解 (1)由题意知,y =⎝⎛⎭⎫4+20p ·p -(10+2p )-x , 将p =3-21+x 代入得y =16-4x +1-x,0≤x ≤a .(2)y =16-4x +1-x =17-⎝⎛⎭⎫4x +1+x +1≤17-24x +1·(x +1)=13, 当且仅当4x +1=x +1,即x =1时,等号成立.当a ≥1时,促销费用投入1万元时,厂家的利润最大; 当a <1时,y =17-⎝⎛⎭⎫4x +1+x +1在[0,a ]上单调递增,所以当x =a 时,函数有最大值,即促销费用投入a 万元时,厂家的利润最大.综上,当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,促销费用投入a 万元时,厂家的利润最大.37\解 设f (x )=x 2+(m -1)x +1,x ∈[0,2], 若f (x )=0在区间[0,2]上有一个实数解, ∵f (0)=1>0,∴f (2)<0或⎩⎪⎨⎪⎧ f (2)=0,-m -12≥2或⎩⎪⎨⎪⎧Δ=0,0<-m -12≤2. 又f (2)=22+(m -1)×2+1=2m +3, ∴m <-32或m =-1.若f (x )=0在区间[0,2]上有两个实数解, 则⎩⎪⎨⎪⎧ Δ>0,0<-m -12<2,f (2)≥0,即⎩⎪⎨⎪⎧(m -1)2-4>0,-3<m <1,4+(m -1)×2+1≥0.∴⎩⎪⎨⎪⎧m >3或m <-1,-3<m <1,m ≥-32,∴-32≤m <-1.综上,实数m 的取值范围为{m |m ≤-1}. 38\解 原不等式可化为(4-a )x 2-4x +1<0(a >0),由于该不等式的解集中的整数恰有3个,则有4-a >0,即a <4,故0<a <4,解不等式有2-a 4-a <x <2+a 4-a ,即2-a (2+a )(2-a )<x <2+a(2+a )(2-a ),亦即14<12+a <12<12-a 且12+a <x <12-a,要使该不等式的解集中的整数恰有3个,那么3<12-a ≤4,解得259<a ≤4916.。
江苏省扬州市宝应中学2020-2021学年第一学期高二数学周测试卷9

江苏省宝应中学高二数学周测试卷9一、单项选择题1.命题“x ∃∈R ,2230x x -+<”的否定是A .x ∃∈R ,2230x x -+≥B .x ∀∈R ,2230x x -+<C .x ∃∉R ,2230x x -+<D .x ∀∈R ,2230x x -+≥2.“x <2”是“x 2﹣2x <0”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.准线方程为1y =的抛物线的标准方程为A .24x y =-B .24y x =-C .22x y =-D .24x y =4.若直线l 的方向向量m =(x ,﹣1,2),平面α的法向量n =(﹣2,﹣2,4),且直线l ⊥平面α,则实数x 的值是A .1B .5C .﹣1D .﹣55.函数22(1)1y x x x =+>-的最小值是 A .2 B .4 C .6 D .86.已知数列{}n a 是等比数列,20144a =,202016a =,则2017a =A .42B .42±C .8D .±87.如图,已知F 1,F 2分别为双曲线C :22221x y a b-=的左、右焦点,过F 2作垂直于x 轴的直线与双曲线C 相交于A ,B 两点,若△F 1AB 为等边三角形,则该双曲线的离心率是A .3B .3C .2D .58. 已知数列{}n a 的首项121a =,且满足21(25)(23)41615n n n a n a n n +-=-+-+,则{}n a 的最小的一项是( )A .4aB .5aC .9aD .10a二、 多项选择题9.已知函数2()43f x x x =-+,则()f x ≥0的充分不必要条件是 ( )A .[1,3]B .{1,3}C .(-∞,1][3,+∞)D .(3,4)10.与直线0x y +-=仅有一个公共点的曲线是 ( ) A .221x y += B .2212x y += C .221x y -= D .2y x = 11.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( ) A .若100S =,则0,065<>a a ; B .若412S S =,则使0n S >的最大的n 为15; C .若150S >,160S <,则{}n S 中7S 最大; D .若89S S <,则78S S <.12.在平面直角坐标系xOy 中,椭圆()222210x y a b a b +=>>上存在点P ,使得212PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率可能为( )A .12 B .31 C .14 D .51三、填空题(本大题共4小题, 每小题5分,共计20分.其中第16题共有2空,第一个空2分,第二个空3分;其余题均为一空, 每空5分.请把答案填写在答题卡相应位置上)13.已知数列{}n a 的前n 项和为n S ,点(n ,n S )在函数2()f x x x =-的图象上,则3a = .14.在空间直角坐标系中,A(1,﹣1,t ),B(2,t ,0),C(1,t ,﹣2),若AB ⊥BC ,则实数t的值为 .15.若关于x 的一元二次不等式220ax bx a -+<的解集为(m ,m +1),则实数b a的值为 . 16.已知椭圆C :22221x y a b+=(a >b >0)的焦点为F 1,F 2,如果椭圆C 上存在一点P ,使得12PF PF 0⋅=,且△PF 1F 2的面积等于4,则实数b 的值为 ,实数a 的取值范围为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17. 已知n S 为等差数列{}n a 的前n 项和,且47a =-,39S =-.(1)求数列{}n a 的通项公式;(2)若1()2n n n b a =+,求数列{}n b 的前n 项和n T .18. 已知抛物线C :22y px =(p >0)经过点A(1,﹣2),直线l 过抛物线C 焦点F 且与抛物线交于M 、N 两点,抛物线的准线与x 轴交于点B .(1)求实数p 的值;(2)若BM BN ⋅=4,求直线l 的方程.19. 如图,在四棱锥S —ABCD 中,底面ABCD 是矩形,SA ⊥平面ABCD ,AD =SA =2,AB =1,点E 是棱SD 的中点.(1)求异面直线CE 与BS 所成角的余弦值;(2)求二面角E —BC —D 的大小.20. 中欧班列是推进与“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设.目前车站准备在某仓库外,利用其一侧原有墙体,建造一间高为3m ,底面积为12m 2,且背面靠墙的长方体形状的保管员室.由于此保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元.设屋子的左右两面墙的长度均为xm(2≤x ≤6).(1)当左右两面墙的长度为多少米时,甲工程队的报价最低⋅(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900a(1+x)x 元(a >0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a 的取值范围21. 如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,焦距为(1)求椭圆C 的标准方程;(2)若M 是椭圆C 上一点,过点O 作OM 的垂线交直线y =N ,设OM 的斜率为k (k ≠0).求证:2211OM ON +为定值.22. 已知数列{}n a 的前n 项和为n S ,且满足22n n S a =-(N n *∈).(1)求数列{}n a 的通项公式;(2)若对任意的N n *∈,不等式1()n n n a a λ+-+≤15恒成立,求实数λ的最大值.。
江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。
江苏省2020学年高二数学上学期期中试题(含解析) (2)

高二数学上学期期中试题(含解析)一、选择题(每小题只有一个正确选项.)1.顶点在原点,焦点是()0,2F 的抛物线方程( ) A. 28y x = B. 28x y = C. 218y x =D. 218x y =【答案】B 【解析】 【分析】利用抛物线的定义即可求得答案. 【详解】由题意设抛物线的方程为22x py=()0p >,因焦点坐标为()0,2F ,则22p=, 4p ∴=,∴抛物线的方程为28x y =.故选:B.【点睛】本题考查抛物线的标准方程,由焦点位置确定方程类型以及p 的值是关键,属于基础题.2.圆锥的母线为2、底面半径为1,则此圆锥的体积..是( ) 3π 3πC. 2πD.23π 【答案】B 【解析】 【分析】根据圆锥的母线以及底面半径,求出圆锥的高,即可求出圆锥的体积. 【详解】由圆锥的母线为2,底面半径为1,得圆锥的高22213h =-=, 所以此圆锥的体积211313333V S h ππ=⋅=⨯⨯=. 故选:B.【点睛】本题考查圆锥的体积公式,求出圆锥的高是关键,属于基础题.3.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于A. ADB. FAC. AFD. EF 【答案】C 【解析】 【分析】由向量的线性运算的法则计算. 【详解】BC -BD =DC ,11()22BC BD DC DF -==, ∴AD +12(BC -BD )AD DF AF =+=. 故选C .【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础. 4.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A. –4 B. –2 C. 4 D. 2【答案】D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D. 【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.5.如图,正方体1111ABCD A B C D -中,E 、F 分别是边1AA 和AB 的中点,则EF 和1BC 所成的角是( )A. 30B. 60︒C. 45︒D. 120︒【答案】B 【解析】 【分析】根据异面直线所成角的定义,把直线1BC 平移和直线EF 相交,找到异面直线EF 与1BC 所成的角,解三角形即可求得结果.【详解】如图,取11A D 的中点G ,连接EG ,FG ,在正方体1111ABCD A B C D -中,设正方体边长为2, 易证GEF ∠(或补角)为异面直线EF 与1BC 所成的角, 在GEF ∆中,2EF =2EG =,6FG =由余弦定理得2261cos 42GEF +-∠==-,即120GEF ︒∠=, 所以异面直线EF 与1BC 所成的角为60︒. 故选:B.【点睛】本题考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想方法,属于基础题.6.将等腰直角三角形ABC 沿底边上的高线AD 折成60︒的二面角,则折后的直线BC 与平面ABD 所成角的正弦值( )A.12B.3 C.2 D.3 【答案】D 【解析】 【分析】根据翻折易知直线BC 与平面ABD 所成角为DBC ∠,即可得到答案.【详解】将等腰直角三角形ABC 沿底边上的高线AD 折成60︒的二面角,如图所示:在等腰直角三角形ABC 中,AD BC ⊥,易知直线BC 与平面ABD 所成角为DBC ∠,又BD DC =,60BDC ︒∠=, 所以DBC ∆为正三角形,故60DBC ︒∠=, 所以直线BC 与平面ABD 3故选:D.【点睛】本题考查学生的翻折问题,立体几何的空间想象能力,属于基础题.7.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C. 【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明. 8.椭圆22214x y a +=与双曲线2212x y a -=有相同的焦点,则a 的值为( )A. 1B. 1或2-C. 1或12D.12【答案】A 【解析】 【分析】先判断焦点位置,再依据椭圆与双曲线中,,a b c 的关系,列出方程,即可求出.【详解】由双曲线2212x y a -=知,0a >,焦点在x 轴上,所以依据椭圆与双曲线中,,a b c 的关系可得,242a a -=+,解得1a =,故选A . 【点睛】本题主要考查椭圆与双曲线的性质应用.9.如图,在四面体ABCD 中,已知,AB AC BD AC ⊥⊥那么D 在面ABC 内的射影H 必在( )A. 直线AB 上B. 直线BC 上C. 直线AC 上D. ABC ∆内部【答案】A 【解析】由,,AB AC BD AC ⊥⊥可得AC ABD ⊥平面,即平面ABC 内的射影H 必在平面ABC 与平面ABD 的交线AB 上,故选A10.已知圆C 的方程为22220x x y ay ++-=,其中a 为常数,过圆C 内一点()1,2的动直线l 与圆C 交于A ,B 两点,当ACB ∠最小时,直线l 的方程为20x y -=,则a 的值为( ) A. 1 B. 2 C. 3 D. 4【答案】C 【解析】 【分析】由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点()1,2的直线与直线20x y -=垂直,再由斜率的关系列式求解.【详解】将圆C :22220x x y ay ++-=化为()()22211x y a a ++-=+,圆心坐标为()1,C a -,半径21r a =+由题意可得,过圆心与点()1,2的直线与直线20x y -=垂直时,ACB ∠最小, 此时21112a -=---,即3a =. 故选:C.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.当1,12x ⎛⎫∈ ⎪⎝⎭时,函数()f x xlnx =,则下列大小关系正确的是( )A. ()()()22f x f x f x <<⎡⎤⎣⎦B. ()()()22f x f x f x <<⎡⎤⎣⎦ C. ()()()22f x f x f x ⎡⎤<<⎣⎦ D. ()()()22f x f x f x <<⎡⎤⎣⎦【答案】D 【解析】 【分析】对函数进行求导得出()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,而根据1,12x ⎛⎫∈ ⎪⎝⎭即可得出2x x <,从而得出()()()21f xf x f <<,从而得出选项.【详解】∵()f x xlnx =,∴()1ln f x x '=+,由于1,12x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数在1,12⎛⎫⎪⎝⎭上单调递增,由于112x <<,故2x x <,所以()()()210f x f x f <<=, 而()20f x ⎡⎤>⎣⎦,所以()()()22f xf x f x <<,故选D.【点睛】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.12.过双曲线M :()22210y x b b-=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且32OB OA OC =+,则双曲线的离心率是( ) 10 55 10【答案】B 【解析】 【分析】根据双曲线方程,得渐近线方程为y bx =或y bx =-,设过左顶点的直线l 的方程为1y x =+,与渐近线方程联立解得B ,C 的横坐标关于b 的式子,由32OB OA OC =+得B 为AC 的三等分点,利用向量坐标运算建立关于b 的方程并解之可得2b =,由此算出5c =即可得到双曲线的离心率.【详解】由题可知()1,0A -,所以直线l 的方程为1y x =+,因双曲线M 的方程为()22210y x b b-=>,则两条渐近线方程为y bx =或y bx =-,由1y bx y x =-⎧⎨=+⎩,解得1,11b B b b ⎛⎫- ⎪++⎝⎭,同理可得1,11b C b b ⎛⎫ ⎪--⎝⎭, 因32OB OA OC =+,又()1,0OA =-,1,11b OB b b ⎛⎫=-⎪++⎝⎭,1,11b OC b b ⎛⎫= ⎪--⎝⎭∴311b bb b =+-,解得2b =, 在双曲线中,225c a b =+= 所以双曲线的离心率5ce a==故选:B.【点睛】本题给出双曲线的渐近线与过左顶点A 的直线相交于B ,C 两点且B 为AC 的三等分点,求双曲线的离心率.着重考查了双曲线的标准方程和简单几何性质等知识,属于中档题.二、填空题13.曲线xy e =在点()0,1处的切线与坐标轴所围三角形的面积为______.【答案】12【解析】 【分析】求切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在0x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后求出切线的方程,从而问题解决.【详解】依题意得e xy '=,因此曲线xy e =在点()0,1处的切线的斜率01k e ==,所以相应的切线方程为1y x =+,当0x =时,1y =;当0y =时,1x =-; 所以切线与坐标轴所围三角形的面积为111122S =⨯⨯-=. 故答案为:12. 【点睛】本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力,属于基础题.14.已知(),P x y 是椭圆C :2214x y +=上一点,若不等式20x y a -+≥恒成立,则a 的取值范围是______. 【答案】)17,⎡+∞⎣ 【解析】 【分析】根据椭圆方程表示出椭圆的参数方程,即设()2cos ,sin P θθ,代入不等式中,利用两角和与差的余弦函数公式化为一个角的余弦函数,根据余弦函数的值域即可求出a 的取值范围. 【详解】根据题意设()2cos ,sin P θθ,即2cos x θ=,sin y θ=,代入不等式得:()124cos sin 170tan 4x y a a a θθθϕϕ⎛⎫-+=-+=++≥= ⎪⎝⎭恒成立, 即()17a θϕ-≤+恒成立,又()1cos 1θϕ-≤+≤,17a -≤-,即17a ≥,故a 的取值范围为)17,⎡+∞⎣. 故答案为:)17,⎡+∞⎣.【点睛】本题考查椭圆的参数方程,解题的关键是利用参数正确设点,属于基础题. 15.《九章算术》中,将底面是直角三角形的直三棱柱....称之为“堑堵”,已知某“堑堵”的底2的等腰三角形,面积最大的侧面是正方形,则该“堑堵”的外接球...的表面积为______. 【答案】8π 【解析】 【分析】由题意可知该直三棱柱是底面为直角三角形,又面积最大的侧面是正方形,则直三棱柱的高为2,进而可得外接球的半径2R =,即可得表面积.2的等腰直角三角形,又最大侧面为正方形,则该直三棱柱的高为2,所以该“堑堵”的外接球的半径22112R =+=248S R ππ==. 故答案为:8π.【点睛】本题考查了空间几何体的外接球的表面积的计算问题,属于基础题.16.设()()2222,44m n n D m e n m n R ⎛⎫=-+-∈ ⎪⎝⎭,则D 的最小值为______.21 【解析】 【分析】设()222ln 4n S x n x ⎛⎫=-+- ⎪⎝⎭(其中mx e =,则ln m x =),其几何意义为两点(),ln x x ,2,4n n ⎛⎫ ⎪⎝⎭的距离的平方,令()ln f x x =,()24x g x =,则()()()()221212211D x x f x g x g x +=-+-+⎡⎤⎣⎦,而()21g x +是抛物线24x y =上的点到准线1y =-的距离,从而1D +可以看作抛物线上的点()()22,x g x 到焦点距离和到()ln f x x =上的点的距离的和,即1D +的最小值是点()0,1F 到()ln f x x =上的点的距离的最小值.【详解】设()222ln 4n S x n x ⎛⎫=-+- ⎪⎝⎭(其中mx e =,则ln m x =),其几何意义为两点(),ln x x ,2,4n n ⎛⎫ ⎪⎝⎭的距离的平方,令()ln f x x =,()24x g x =,由ln y x =的导数为1y x'=,11k x ∴=,点2,4n n ⎛⎫ ⎪⎝⎭在曲线24x y =上,又2x y '=,22x k ∴=令()ln f x x =,()24x g x =,则()()()()221212211D x x f x g x g x +=-+-+⎡⎤⎣⎦,而()21g x +是抛物线24x y =上的点到准线1y =-的距离,即抛物线24x y =上的点到焦点()0,1F 的距离,从而1D +可以看作抛物线上的点()()22,x g x 到焦点距离和到()ln f x x =上的点的距离的和,即AF AB +,如图所示:由两点之间线段最短,得1D+的最小值是点()0,1F到()lnf x x=上的点的距离的最小值,由点到直线上垂线段最短,则1D+就最小,即D最小,设()00,lnB x x,则000ln111xx x-⋅=--,即200ln10x x+-=,解得1x=,即()10B,∴点()0,1F到()10B,的距离就是点()0,1F到()lnf x x=上的点的距离的最小值,故1D+的最小值为2,即D的最小值为21-.故答案为:21-.【点睛】本题考查函数的最小值的求法,考查导数、抛物线、两点间距离、点到直线距离等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.如图,在多面体ABCDEF中,底面ABCD为矩形,侧面ADEF为梯形,//AF DE,DE AD⊥.(1)求证:AD CE⊥;(2)求证:平面//ABF平面DCE.【答案】(1) 证明见解析 (2)证明见解析【解析】 【分析】(1)由题意可得DE AD ⊥,AD DC ⊥,从而AD ⊥平面DCE ,由此即可得证AD CE ⊥; (2)由题意可得//AB DC ,进而可得//AB 平面CDE ,又//AF DE ,即可得//AF 平面CDE ,由此即可得证平面//ABF 平面DCE .【详解】证明:(1)∵矩形ABCD ,∴AD CD ⊥, 又∵DE AD ⊥,且CDDE D =,,CD DE ⊂平面CDE ,∴AD ⊥平面CDE ,又∵CE ⊂平面CDE ,∴AD CE ⊥.(2)∵矩形ABCD ,∴//AB CD ,又CD ⊂平面CDE ,AB ⊄平面CDE ,∴//AB 平面CDE .又∵//AF DE ,DE ⊂平面CDE ,AF ⊄平面CDE .∴//AF 平面CDE ,又ABAF A =,,AB AF ⊂平面ABF ,∴平面//ABF 平面CDE .【点睛】本题考查线线垂直、面面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于基础题.18.已知圆C 经过点()2,1A -,且与直线1x y +=相切,圆心C 在直线2y x =-上. (1)求圆C 的方程;(2)点P 在直线210x y -+=上,过P 点作圆C 的两条切线,分别与圆切于M 、N 两点,求四边形PMCN 周长的最小值.【答案】(1) ()()22122x y -+=+ (2) 2322【解析】 【分析】(1)由题意设(),2C a a -,半径为()0r r >,则圆C 的方程为()()2222x a y a r -++=,由题意圆C 经过点()2,1A -,且与直线1x y +=相切,得到关于a ,r 的方程解得即可; (2)由题意得:四边形PMCN 周长2c PM PN r =++,其中22PM PN PC =-,利用点到直线的距离即可求得答案.【详解】(1)因为圆心C 在直线2y x =-上,所以可设(),2C a a -,半径为()0r r >, 则圆C 的方程为()()2222x a y a r -++=;又圆C 经过点()2,1A -,且与直线1x y +=相切,所以()()2222122111a a ra ar⎧-+-+=⎪⎨--=⎪+⎩,解得12ar=⎧⎪⎨=⎪⎩,所以圆C的方程为()()22122x y-+=+. (2)由题意:四边形PMCN周长2c PM PN r=++,其中22PM PN PC==-,即PC取最小值时,此时周长最小,又因P在直线210x y-+=上,即圆心C到直线210x y-+=的距离时,PC∴的最小值为22221512PC++==+,所以周长252222322c≥-+=+,故四边形PMCN周长的最小值为2322+.【点睛】本题考查直线与圆的位置关系,圆的方程的求法,属于中档题.19.2019年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形ABCD,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设AD的长为2x毫米.(注:343V R=π球,V Sh=柱,其中R为球半径,S为圆柱底面积,h为圆柱的高)(1)求胶囊中药物体积y关于x的函数关系式;(2)如何设计AD与AB的长度,使得y最大?【答案】(1) 2322253y x xπππ⎛⎫=-+⎪⎝⎭,250,xπ⎛⎫∈ ⎪⎝⎭. (2) AD为10032π-毫米,AB为255032ππ--毫米【解析】【分析】(1)利用已知条件结合体积公式求出胶囊中药物的体积y 关于x 的函数关系式; (2)通过函数的导数,判断函数的单调性求解函数的最值即可得到答案. 【详解】解:(1)由2250AB x π+=得25AB x π=-,0AB >,所以250,x π⎛⎫∈ ⎪⎝⎭, 所以药物体积()322321422525233y x x x x x ππππππ⎛⎫=⨯+-=-+ ⎪⎝⎭,250,x π⎛⎫∈ ⎪⎝⎭. (2)求导得2222350'x y x x πππ=-+,令'0y =,得5032x π=-或0x =(舍),当500,32x π⎛⎫∈ ⎪-⎝⎭,'0y >,y 在区间500,32π⎛⎫ ⎪-⎝⎭上单调增, 当5025,32x ππ⎛⎫∈ ⎪-⎝⎭,'0y <,y 在区间5025,32ππ⎛⎫ ⎪-⎝⎭上单调减, 所以当5032x π=-时,y 有最大值,此时100232AD x π==-,255032AB ππ-=-,答:当AD 为10032π-毫米,AB 为255032ππ--毫米时,药物的体积有最大值.【点睛】本题考查函数的单调性的应用,函数的数据应用,考查计算能力,属于基础题. 20.如图,三棱柱111ABC A B C -中,M ,N 分别为AB ,11B C 的中点.(1)求证://MN 平面11AAC C ;(2)若11CC CB =,2CA CB ==,3AB =,平面11CC B B ⊥平面ABC ,求二面角1B NC M--的余弦值.【答案】(1)证明见解析 (2) 74【解析】 【分析】(1)利用已知条件证四边形AMNP 为平行四边形即可得//MN 平面11AAC C ;(2)利用几何关系作出二面角1B NC M--的平面角,利用解三角形即可得到答案. 【详解】证明:(1)取11A C的中点,连接AP,NP,∵11C N NB=,11C P PA=,∴11//NP A B,1112NP A B =.在三棱柱111ABC A B C-中,∵11//A B AB,11A B AB=. ∴//NP AB,且12NP AB=.∵M为AB的中点,∴12AM AB=.∴NP AM=,且//NP AM.∴四边形AMNP为平行四边形.∴//MN AP,∵AP⊂平面11AAC C,MN⊄平面11AAC C,∴//MN平面11AAC C. 其他方法:(2)∵11CC CB=,N是11B C中点,∴11CN B C⊥.又∵三棱柱,∴11//BC B C,∴CN BC⊥,又∵平面11CC B B⊥平面ABC,平面11CC B B平面ABC BC=,CN⊂平面11CC B B,∴CN⊥平面ABC,又,CB CA⊂平面ABC,∴CN CB⊥,CN CA⊥,BCM∠为二面角1B NC M--的平面角,如图:在三角形CAB 中,2CA CB ==,3AB =,∴中线7CM =22273227cos 4722BCM ⎛⎫+- ⎪⎝⎭⎝⎭∴∠==⨯⨯,故二面角1B NC M --的余弦值为74. 【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 21.已知函数()()21ln 2f x x a b x =+-,,a b ∈R . (1)当0a =,2b =时,求函数()f x 在()0,∞+上的最小值; (2)设1b =-,若函数()f x 有两个极值点1x ,2x ,且12x x <,求()21f x x 的取值范围. 【答案】(1) 1ln2-. (2) 1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)当0a =,2b =时,求出函数的导数,通过函数()f x 在区间(2上单调递减;在)2,+∞上单调递增,求得最小值;(2)当1b =-时,()2'11x ax x a x f x x+++=+=,得到1x ,2x 是方程210x ax ++=的两根,从而12x x a +=-,121x x ⋅=,推出()21f x x 的表达式,记()()1ln 12x g x x x x=+>,利用函数的导数求得单调性,即可得到答案. 【详解】(1)当0a =,2b =时,()212ln 2f x x x =-,()0,x ∈+∞,则()()2'220x x x x f x x-=-=>,∴当()0,2x ∈时,()'0f x <;当()2,x ∈+∞时,()'0f x >,∴()f x 在()0,2上单调递减;在()2,+∞上单调递增,∴()()min 21ln 2f x f==-.(2)当1b =-时,()2'11x ax x a x f x x+++=+=,∴1x ,2x 是方程210x ax ++=的两根,∴12x x a +=-,121=x x , ∵12x x <且1>0x ,20x >,∴21>x ,221a x x =--, ∴()()2222221221ln 12ln 12x a x f x x x x x x ++==+,令()()1ln 12x g x x x x =+>,则()2'1ln 102x xg x =-++>,∴()g x 在()1,+∞上单调递增, ∴()()112g x g >=,即:()211,2f x x ⎛⎫∈+∞ ⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的单调性的求法,考查转化思想以及计算能力,属于中档题.22.如图,A 为椭圆22142x y +=的左顶点,过A 的直线l 交抛物线()220y px p =>于B 、C两点,C 是AB 的中点.(1)求证:点C横坐标是定值,并求出该定值;(2)若直线m 过C 点,且倾斜角和直线l 的倾斜角互补,交椭圆于M 、N 两点,求p 的值,使得BMN ∆的面积最大.【答案】(1)证明见解析,定值1. (2) 928p = 【解析】 【分析】(1)由题意可求()2,0A -,设()11,B x y 、()22,C x y ,l :2x my =-,联立直线与抛物线,利用C 是AB 的中点得122y y =,计算可得点C 的横坐标是定值; (2)由题意设直线m 的方程为213pm x m y ⎛⎫=--+ ⎪⎝⎭,联立方程,利用C 是AB 的中点,可得BMN AMN S S ∆∆=,根据三角形的面积公式以及基本不等式可求BMN ∆的面积最大值,由取等条件解得p 的值.【详解】(1)()2,0A -,过A 的直线l 和抛物线交于两点,所以l 的斜率存在且不为0,设l :2x my =-,其中m 是斜率的倒数,设()11,B x y 、()22,C x y ,满足222x my y px =-⎧⎨=⎩,即2240y pmy p -+=,>0∆且121224y y pmy y p+=⎧⎨=⎩,因为C 是AB 中点,所以122y y =,所以223pm y =,292m p =,所以222222133pm p x m m =⋅-=-=,即C 点的横坐标为定值1. (2)直线m 的倾斜角和直线l 的倾斜角互补,所以m 的斜率和l 的斜率互为相反数.设直线m为213pm x m y ⎛⎫=--+ ⎪⎝⎭,即4x my =-+, 联列方程224240x my x y =-+⎧⎨+-=⎩得()2228120m y my +-+=, ()()222848216960m m m ∆=-+=->,所以26m >;且12212282122m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩,∵点C 是AB 中点,∴BMN AMN S S ∆∆=, 设()2,0A -到MN 的距离2241d m --=+2121MN m y y =+-,()21222163322AMNm S MN d y y m∆-=⋅⋅=-=+26t m =-,213364166416AMN t S t t t t∆==++++13281642≤=⨯+8t =,214m =时取到, 所以9142p =,928p =. 法二:因为B 点在抛物线()220y px p =>上,不妨设2,2t B t p ⎛⎫⎪⎝⎭,又C 是AB 中点,则24,42t p t C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:224224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:28t p =,∴8414C p p x p -==为定值.(2)∵直线l 的斜率()02126tt k -==--,直线m 斜率'6t k =-, ∴直线m 的方程:()126t t y x -=--,即64x y t =-+,令6m t=代入椭圆方程整理得: ()2228120my my +-+=,设()11,B x y 、()22,C x y ,下同法一.【点睛】本题考查直线的方程和抛物线方程联立,注意运用椭圆的顶点坐标,运用韦达定理以及点到直线的距离公式,考查三角形的面积的最值求法,化简整理的运算能力,属于中档题.1、在最软入的时候,你会想起谁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省扬州市宝应中学2020-2021学年高二上学期
期中数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 不等式的解集为()
A.B.
C.D.
2. 已知,命题“”是真命题的一个充分不必要条件是()
A.B.C.D.
3. 已知双曲线的方程为,双曲线右焦点F到双曲线渐近线的距离为()
A.1 B.C.D.2
4. 我国古代数学名著《增删算法统宗》中有如下问题:“一个公公九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期借问长儿多少岁,各儿岁数要详推”大致意思是:一个公公九个儿子,若问他们的生年是不知道的,但从老大的开始排列,后面儿子比前面儿子小3岁,九个儿子共207岁,问老大是多少岁? ()
A.38 B.35 C.32 D.29
5. 如图,在四面体中,是的中点,是的中点,则等于
()
A.B.
C.D.
6. 若a,b为正实数,且,则的最小值为()
C.3 D.4
A.2
B.
7. 已知?分别是椭圆的左?右焦点,过的直线交椭圆于?两点,,,且轴.若点是圆上的一个动点,则的取值范围是()A.B.C.D.
8. 已知数列满足,是数列的前项和,则()
A.是定值,是定值B.不是定值,是定值C.是定值,不是定值D.不是定值,不是定值
二、多选题
9. 设是棱长为a的正方体,以下结论为正确的有()A.B.
C.D.
10. 已知曲线的方程为,则下列结论正确的是
()
A.当时,曲线为圆
B.当时,曲线为双曲线,其渐近线方程为
C.“”是“曲线为焦点在轴上的椭圆”的充分而不必要条件
D.存在实数使得曲线为双曲线,其离心率为
11. 已知数列的前项和为且满足,下列命题中正确的是()
A.是等差数列B.
C.D.是等比数列
12. 已知,则的值可能是()A.B.C.D.
三、填空题
13. 若关于x的不等式的解集是,则关于x的不等式
的解集是______.
14. 命题“,使”是假命题,则实数的取值范围为__________.
15. 已知等差数列的公差不为零,若,,成等比数列,则
______.
16. 已知抛物线C:的焦点为F,直线l:与C交于P、Q(P在x轴上方)两点,若,则实数λ的值为_______
四、解答题
17. 已知,命题,,命题,.(1)若p为真命题,求实数m的取值范围;
(2)若命题p与q一真一假,求实数m的取值范围.
18. 已知双曲线
(1)若,求双曲线的焦点坐标、顶点坐标和渐近线方程;
(2)若双曲线的离心率为,求实数的取值范围.
19. 已知函数,不等式的解集是.
(1)求的解析式;
(2)若对于任意,不等式恒成立,求的取值范围.
20. 在三棱柱中,平面,
,分别是的中点.
(1)求直线与平面所成角的正弦值;
(2)在棱上是否存在一点,使得平面与平面所成锐二面角为?若存在,确定点的位置;若不存在,请说明理由.
21. 已知数列是公差为正数的等差数列,其前项和为,且,
.数列满足,.
(1)求数列和的通项公式;
(2)是否存在正整数,,使得,,成等差数列?若存在,求出,的值;若不存在,请说明理由.
22. 已知椭圆过点,且离心率为.
(1)求椭圆的标准方程;
(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.。