线段垂直平分线尺规作图题
1.3.2_线段的垂直平分线(2)

D
提示:
因为直线CD与线段AB的交点就是AB的中点,所以我们也用 这种方法作线段的中点.
回顾
思考 2
线段的垂直平分线的 性质定理
M
定理 线段垂直平分线上的点到这
条线段两个端点距离相等.
如图, ∵AC=BC,MN⊥AB,P是MN上任意一点 (已知), A ∴PA=PB (线段垂直平分线上的点到这 条线段两个端点距离相等).
所作出的三角形都全等吗? 若已知等腰三角形的底及底边上的高,
你能用尺规作出等腰三角形吗?能作几个?
做一做
初 露 锋 芒
已知底边及底边上的高,利用尺规作等腰三角形
a
h
已知:线段a,h(如图).
求作: △ABC,使AB=AC,且BC=a,高AD=h.
你能亲自写出作法吗?
随堂练习
已知:线段a,h(如图).
N
提示:这个结论是经常用来证明点在直线上
(或直线经过某一点)的根据之一.
试一试
小 试 牛 刀
1、已知直线和直线上一点P,利用尺规作直线
的垂线,使它经过点P.
C C
●
P B
A
D
l
想 一 想
学 无 止 境
1、已知直线和直线外一点P,利用尺规作直线 的垂线,使它经过点P.
P
●
l
想一想,做一做
利用尺规作出三角 形三条边的垂直平分线.
P
C
N
B
提示:
这个结论是经常用来证明两条线段相等的根据之一.
回顾
思考 3
线段的垂直平分线的 性质定理的逆定理
P
逆定理 到一条线段两个端点距离相等的点,在 这条线段的垂直平分线上. M 如图,
线段的垂直平分线

A E B
D
C
小结
1.线段的垂直平分线的作法
2.线段垂直平分线的性质定理
作业:
必做题:练习1,2,3 选做题:这个性质定理的逆命题是什么? 它是否成立?试着自己探究探究。
1 ∵以点A,B为圆心,大于 2
AB长为 在△AMO和△BMO中, AM=BM ∵ ∠AMO=∠BMO MO=MO ∴△AMO≌△BMO(SAS) ∴∠AOM=∠BOM=90° AO=BO 故MN是线段AB的垂直平分线。
∴AM=BM=AN=BN 在△AMN和△BMN中, AM=BM ∵ AN=BN MN=MN ∴△AMN≌△BMN(SSS) ∴∠AMO=∠BMO
思考2:在直线MN上任意取一点P,连接PA 与PB,请大家测量一下PA与PB的长度,看 一看它们之间有什么关系?
PA=PB
小组讨论: 你们选取的P点的位置相同吗?如果不同, 你们能找到什么规律?
规律:线段垂直平分线上的点到线段两端 点的距离相等。
已知:如图,直线MN经过线段AB的中点O,且 MN⊥AB,P是MN上任意一点。 求证:PA=PB
2.已知:△ABC中,D在BC上,AB=AC,DB=DC,E是 AD上的一点。 求证:BE=CE
证明:
在△ABD和△ACD中, AB=AC ∵ DB=DC AD=AD ∴△ABD≌△ACD(SSS) ∴∠ADB=∠ADC=90° ∴AD⊥BC 即AD是BC的垂直平分线。 ∵E是AD上的一点 ∴BE=CE
③尺规作图法: 1 1.作出一条线段AB,分别以点A,B为圆心,大于 AB长为半径 2 (为什么?)画弧交于点M,N。 2.过点M,N作直线。 则直线MN就是线段AB的垂直平分线。
思考1:为什么MN就是垂直平分 线呢?若MN交AB于点O,你能给 出证明吗?
关于线段垂直平分线的尺规作图

冀教2011课标版 八年级上册
线段的垂直平分线
——尺规作图
河北省承德市滦平县第三中学 齐占仓
1、线段是 轴对称 对称图形, 它的对称轴 是线段的垂直平分线
2、线段的垂直平分线的性质定理是 :
线段垂直平分线 上的点到线段两端的 距离相等
•c
A
B
• 3、线段的垂直平分线的性质定理的逆定理 是 : 到线段两端的距离相等的点在这条 线段的垂直平分线上
.C
A
B
.D
谈谈这节课你的收获:
。
当堂测评
已知两点A、B
求作:直线 l ,使点A、B关于 l 对称
A . .B
学习目标
1、通过经历探究尺规作图过程,掌握 用尺规作已知线段的垂直平分线, 过一点作已知直线的垂线
2、通过作图培养学生的动手能力和语 言表达能力
探究一
已知:线段AB
A
B
求作:线段AB的垂直平分线
要求:1、先独立思考下面的问题:
1)你是怎样思考的? 2)你是怎样作图的? 3)你这样作图的理由是什么? 2、如果自己没有思路可以小组合作完 成上 面 的问题。
探究二
已知:直线 l 和直线外一点 P. 求作:经过点 P,且垂直于 l 的直线
l
•P
l
பைடு நூலகம்
l
已知:直线 l 和直线上一点 P.
求作:经过点 P,且垂直于 l 的直线
初二数学线段的垂直平分线试题

初二数学线段的垂直平分线试题1.已知线段AB和它外一点P,若PA=PB,则点P在AB的___________________;若点P在AB的___________________,则PA=PB.【答案】垂直平分线上;垂直平分线上.【解析】根据线段的垂直平分线的性质和判定,即可得到结果。
若PA=PB,则点P在AB的垂直平分线上;若点P在AB的垂直平分线上,则PA=PB.【考点】本题考查了线段的垂直平分线的性质和判定点评:解答本题的关键是掌握线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等。
线段的垂直平分线的判定方法:到线段两端点的距离相等的点在这条线段的垂直平分线上。
2.已知:△ABC中,边AB,AC的垂直平分线相交于点P.求证:点P在BC的垂直平分线上.【答案】见解析【解析】画出图形后根据线段垂直平分线的性质得出PA=PB,PA=PC,推出PB=PC即可.∵P在AB的垂直平分线EF上,∴PA=PB,∵P在AC的垂直平分线MN上,∴PA=PC,∴PB=PC,∴点P在BC的垂直平分线上.【考点】本题考查了线段的垂直平分线的性质和判定点评:解答本题的关键是掌握线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等。
线段的垂直平分线的判定方法:到线段两端点的距离相等的点在这条线段的垂直平分线上。
3.⑴作一个钝角三角形,利用尺规作这个三角形三条边的垂直平分线;⑵作直角三角形和锐角三角形,利用尺规作三角形三条边的垂直平分线;⑶你发现三角形三条边的垂直平分线与三角形的形状有怎样的位置关系?【答案】⑴、⑵略;⑶锐角三角形三边的垂直平分线的交点在三角形内部;直角三角形三边的垂直平分线的交点在斜边上,即斜边的中点;钝角三角形三边的垂直平分线的交点在三角形外部.【解析】根据垂直平分线的尺规作图的方法,即可作出图形,再根据图形分析。
⑴、⑵略;⑶锐角三角形三边的垂直平分线的交点在三角形内部;直角三角形三边的垂直平分线的交点在斜边上,即斜边的中点;钝角三角形三边的垂直平分线的交点在三角形外部.【考点】本题考查了线段的垂直平分线点评:解答本题的关键是掌握垂直平分线的尺规作图的方法。
16.2尺规作图线段垂直平分线

永年县第四中学 吴睿
课前回顾
M P
1.垂直平分线的定义: ∵MN是AB的垂直平分线 AD=BD; ∴ MN⊥AB , A D B 2.垂直平分线的性质: N ∵MN是AB的垂直平分线 ∴ PA=PB ( 线段垂直平分线上点与这条线段两个端点的距离相等 ) 3.垂直平分线的判定: ∵PA=PB ∴ P在AB的垂直平分线上 ( 到线段两端距 离相等的点,在这条线段的垂直平分线上 )
先分别作出不同形状的三角形,再按要求去作图.
驶向胜利 的彼岸
作线段的垂直平分线
如果两个图形成轴对称,怎样作出图形的对称轴?
如果两个图形成轴对 称,其对称轴是任何一对 对应点所连线段的垂直平 分线.因此,只要找到任 意一组对应点,作出对应 点所连线段的垂直平分线, 就得到此图形的对称轴.
小结
1.说说线段垂直平分线的作法; 2.画成轴对称的图形的对称轴的几种常见方 法: (1)将图形对折; (2)用尺规作图; (3)用刻度尺先取一对对称点连线的中点,然 后画垂线.
(3)由DE是BC的垂直平分线得:BD=CD;所以AD+CD= AD+BD=AB. (4)由(2)中式子-(1)中式子得BC=10cm.
课堂练习
练习4 如图,过点P 画∠AOB 两边的垂线,并和 同桌交流你的作图过程. A
P O
B
独立作业
1
习题1.5
1.利用尺规作出三角形三条边的垂直平分线.
老师期望:
课堂练习
练习3:如图,与图形A成轴对称的是哪个图形? 画出它们的对称轴.
思考
两个成轴对称的图形,不经过折叠,你用什 么方法画出它的对称轴? 我们已经知道,如果两个图形关于某条直线 对称,那么对称轴是任何一对对应点所连线 段的垂直平分线.因此我们只要找到这两个 图形的一对对应点,然后画出以这两个对应 点为端点的线段的垂直平分线就可以了. 提问:如何画一条线段的垂直平分线呢?
线段的垂直平分线含答案

12、(2020•泉州)如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.假设△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,那么线段DE的长为_________.
解答:解:∵在△ABC中,别离以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.
∴MN是AB的垂直平分线,
∴AD=BD,
∵△ADC的周长为10,
∴AC+AD+CD=AC+BD+CD=AC+BC=10,
∵AB=7,
∴△ABC的周长为:AC+BC+AB=10+7=17.
1、(2020•绍兴)如图,在△ABC中,别离以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.假设△ADC的周长为10,AB=7,那么△ABC的周长为( )
A、7B、14
C、17D、20
考点:线段垂直平分线的性质。
专题:几何图形问题;数形结合。
分析:第一依照题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,那么可求得△ABC的周长.
应选C.
点评:此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.
2、(2020•丹东)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.假设AC=9,那么AE的值是( )
A、6 B、4
15.2 线段的垂直平分线练习题 2021——2022学年沪科版八年级数学上册

15.2 线段的垂直平分线【基础练习】知识点1线段垂直平分线的画法1.如图1,小林同学在一张透明纸上画了一条线段MN,然后对折将点M,N重合,再打开,过折痕画直线AB,交MN于点B,则直线AB是线段MN的.图12.如图2,画线段PQ的垂直平分线.图2PQ的长为半径画弧,两弧分别交于点(1)分别以点和点为圆心,大于12和点;(2)过点和点作直线,则直线就是线段PQ的垂直平分线.知识点2线段垂直平分线的性质3.如图3,C是线段AB的垂直平分线上的一点,垂足为D,则下列结论正确的有()①AD=BD;②∠ADC=∠BDC=90°;③△ACD≌△BCD;④AC=BC.图3A.1个B.2个C.3个D.4个4.[2020·枣庄]如图4,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()图4A.8B.11C.16D.175.如图5,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,交AB于点M,△BCN的周长是7 cm,则BC的长为()图5A.1 cmB.2 cmC.3 cmD.4 cm6.[2020·合肥瑶海区期末]如图6,在△ABC中,DE垂直平分AC,交AC于点E,交BC于点D,连接AD,AE=4 cm,则△ABC的周长与△ABD的周长的差为()图6A.2 cmB.4 cmC.6 cmD.8 cm知识点3线段垂直平分线的判定7.已知线段AB外有两点M,N,且MA=MB,NA=NB,直线MN交线段AB于点O,则点O是线段AB的,直线MN是线段AB的.若直线MN上另有一点P,则P A与PB的数量关系是,你的依据是.8.如图7,AC=AD,BC=BD,则有()图7A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB9.下列条件不能判定直线MN是线段AB的垂直平分线的是()A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB且点M不在AB上10.如图8,AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.图8【能力提升】11.如图9,在△ABC中,D是AB的中点,且CD⊥AB,若∠A=45°,则∠B=°.图912.如图10所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,交AB于点D,∠A=50°,AB+BC=6,则△BCF的周长为,∠EFC=°.图1013.如图11,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20 cm,则AB=cm.图1114.如图12,在四边形ABCD中,AD∥BC,E为边DC的中点,连接AE并延长交BC的延长线于点F.图12(1)AD与FC的数量关系是;(2)若AD=1 cm,AB=5 cm,则当BC的长为时,点B在线段AF的垂直平分线上.15.[教材练习第1题变式题]为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使点P到该镇所属A村、B村、C村的距离都相等(A,B,C不在同一直线上,相对位置如图13所示),请用尺规作图的方法确定点P的位置.(要求: 写出已知、求作,不写作法,保留作图痕迹)图1316.[2019·合肥长丰县期末]如图14,已知AB比AC长3 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14 cm,求AB和AC的长.图1417.操作实验:如图15①,把等腰三角形沿顶角的平分线对折并展开,发现被折痕分成的两个三角形成轴对称,所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等(证明略).探究应用:如图15②,CB⊥AB,垂足为B,DA⊥AB,垂足为A,E为AB的中点,AB=BC, CE⊥BD.(1)BE与AD是否相等,为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;(3)∠DBC与∠DCB相等吗?试说明理由.图15答案1.垂直平分线2.(1)P Q M N(2)M N MN3.D[解析] ∵CD是线段AB的垂直平分线,∴AD=BD,∠ADC=∠BDC=90°,故①②正确;又∵CD=CD(公共边),∴△ACD≌△BCD,故③正确;由③可得④正确(也可直接根据线段垂直平分线上的点到线段两端的距离相等,得出④正确).4.B[解析] ∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.5.C[解析] ∵MN是线段AB的垂直平分线,∴AN=BN.∵△BCN的周长=BN+NC+BC=7 cm,∴AN+NC+BC=7 cm,∴AC+BC=7 cm,∴BC=7-4=3(cm).6.D[解析] ∵DE垂直平分AC,AE=4 cm,∴AD=CD,AC=2AE=8 cm.∵△ABC的周长=AB+AC+BC,△ABD的周长=AB+AD+BD=AB+BC,∴△ABC的周长与△ABD的周长的差为AC=8 cm.7.中点垂直平分线P A=PB线段垂直平分线上的点到线段两端的距离相等8.A9.C10.证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵MB=MC,∴点M在线段BC的垂直平分线上.∴直线AM是线段BC的垂直平分线.11.45[解析] ∵D是AB的中点,CD⊥AB,∴CD是线段AB的垂直平分线,∴AC=BC.易证Rt△ACD≌Rt△BCD,∴∠B=∠A=45°.12.640[解析] 因为直线DE为边AB的垂直平分线,所以AF=BF.所以△BCF的周长=CF+BF+BC=CF+AF+BC=AC+BC=AB+BC=6.∠EFC=∠AFD=90°-∠A=90°-50°=40°. 13.20[解析] ∵EF垂直平分AB于点F,∴AE=BE.∵BE+CE=20 cm,∴AE+CE=20 cm,即AC=20 cm.∵AD垂直平分BC于点D,∴AB=AC=20 cm.14.(1)AD=FC(2)4 cm[解析] (1)因为AD∥BC,所以∠D=∠ECF.因为E为边DC的中点,所以DE=CE.在△ADE和△FCE中,因为{∠D=∠ECF, DE=CE,∠AED=∠FEC,所以△ADE≌△FCE.所以AD=FC.(2)因为点B在线段AF的垂直平分线上,所以AB=BF.又因为AB=5 cm,FC=AD=1 cm,所以BC=BF-FC=5-1=4(cm),即当BC=4 cm时,点B在线段AF的垂直平分线上.15.解:已知:A,B,C三点不在同一直线上.求作:一点P,使P A=PB=PC.如图所示,点P即为所求.16.解:∵DE 是BC 的垂直平分线,∴CD=BD ,∴△ACD 的周长=AC+CD+AD=AC+BD+AD=AC+AB.由题意得{AB -AC =3,AB +AC =14,解得{AC =5.5,AB =8.5,∴AB 和AC 的长分别为8.5 cm,5.5 cm .17.解:(1)BE=AD.理由:∵BD ⊥EC ,DA ⊥AB ,∴∠BEC+∠ABD=90°,∠ADB+∠ABD=90°. ∴∠ADB=∠BEC.在△ADB 和△BEC 中, ∵{∠ADB =∠BEC ,∠DAB =∠EBC =90°,AB =BC ,∴△ADB ≌△BEC (AAS ). ∴BE=AD.(2)对.理由:∵E 是AB 的中点,∴AE=BE.∵AD=BE ,∴AE=AD.在△ABC 中,因为AB=BC ,∴∠BAC=∠BCA.由题意易知AD ∥BC ,∴∠DAC=∠BCA. ∴∠BAC=∠DAC.在△ADC 和△AEC 中, ∵{AD =AE ,∠DAC =∠EAC ,AC =AC ,∴△ADC ≌△AEC (SAS ). ∴DC=EC.∴点C在线段DE的垂直平分线上.∵AD=AE,∴点A在线段DE的垂直平分线上.∴AC是线段DE的垂直平分线. (3)∠DBC=∠DCB.理由:∵△ADB≌△BEC,∴BD=EC.又∵DC=EC,∴DC=BD.∴∠DBC=∠DCB.。
线段垂直平分线知识点+经典例题

第三讲 线段的垂直平分线【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.2121【典型例题】类型一、线段的垂直平分线定理例1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC (已证)∴点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD 是线段BC 的垂直平分线。
线段的垂直平分线例题

线段的垂直平分线例题一、背景介绍在几何学中,线段的垂直平分线是指将一条线段分为两个等长的部分且与线段垂直的直线。
垂直平分线在几何学中有广泛的应用,它的性质和构造方法都具有一定的重要性。
本文将为您介绍线段的垂直平分线的特性和构造方法,并附带一些例题来帮助读者更好地理解这一概念。
二、特性线段的垂直平分线具有如下特性:1.垂直性:垂直平分线与线段的形成的角度为90度,即两者垂直相交。
2.等分性:垂直平分线将线段分成两个等长的部分。
3.对称性:垂直平分线将线段分成两个完全对称的部分,即它们镜像对称。
三、构造方法下面介绍两种常见的线段的垂直平分线的构造方法:1. 使用两个圆设线段AB为所需平分的线段。
步骤: 1. 以A为圆心,以AB的长度为半径作一个圆,并将A点记作C。
2. 以B 为圆心,以AB的长度为半径作一个圆,并将B点记作D。
3. 连接CD,CD即为AB 的垂直平分线。
2. 使用尺规作图法设线段AB为所需平分的线段。
步骤: 1. 以A为圆心,以任意半径作一个圆,并将交点记作C和D。
2. 以B为圆心,以与上一步圆的半径相同的半径作一个圆,并将交点记作E和F。
3. 连接CF,CF即为AB的垂直平分线。
四、例题分析下面通过几个例题来加深对线段的垂直平分线的理解:1. 例题一已知线段AB的长度为10cm,求其垂直平分线的长度。
解题思路:根据特性2,垂直平分线将线段分成两个等长的部分,所以垂直平分线的长度为5cm。
2. 例题二已知线段CD的垂直平分线EF的长度为12cm,求线段CD的长度。
解题思路:由于垂直平分线分割线段成等长的两部分,所以线段CD的长度为垂直平分线EF的长度的两倍,即CD的长度为24cm。
3. 例题三已知线段EF的长度为16cm,求线段EF的垂直平分线所在的位置。
解题思路:由于垂直平分线将线段分割成等长的两部分,所以垂直平分线所在的位置距离线段EF的两端点的距离都为线段EF长度的一半,即垂直平分线所在的位置距离E点和F点的距离都为8cm。
线段的垂直平分线(1)练习

线段的垂直平分线(1)练习目标导航1.能够证明线段垂直平分线的性质定理、判定定理.2.能利用尺规作图作已知线段的垂直平分线.基础过关1.线段垂直平分线上的点到这条线段两个端点的距离;反之,到一条线段两个端点的距离相等的点,在.2.下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且P A=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个3.如图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则BD=__________cm;若P A=10 cm,则PB=__________cm;此时,PD=__________cm.3题图5题图7题图4.已知线段AB及一点P,P A=PB=3cm,则点P在__________上.5.如图,BC是等腰△ABC和等腰△DBC的公共底,则直线AD必是__________的垂直平分线.6.在△ABC中,AB=AC=6 cm,AB的垂直平分线与AC相交于E点,且△BCE的周长为10 cm,则BC=______ cm.7.如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A.2B.3C.4D.5能力提升8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于D点,求:∠BCD的度数.9.已知D是Rt△ABC斜边AC的中点,DE⊥AC交BC于E,且∠EAB∶∠BAC=2∶5,求∠ACB的度数.10.如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E ,DB =10cm ,求AC 的长.11.如图,在△ABC 中,AB 的垂直平分线交AC 于D ,如果AC=5 cm ,BC=4cm ,求△DBC 的周长12.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.13.如图,在△ABC 中,AB =AC ,AB 的垂直平分线交BC 的延长线于E ,交AC 于F ,∠A =50,ED CAAB +BC =16cm ,求△BCF 的周长和∠EFC 的度数.聚沙成塔如图:AD 平分∠BAC 交BC 于D ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,求证:AD 垂直平分EF.FE C B AABC D EF。
线段的垂直平分线的性质(3)---尺规作图

能否利用画线段垂直平分线的方法解决呢?试试看,完成 整个作图. 图 24.4.8 以C为圆心,任一线段的长为半径画弧,交l于A、B两点, 则C是线段AB的中点.因此,过C画直线l的垂线转化为 画线段AB的垂直平分线.
①.如图,点C在直线l上,试过点C画出直线l 的垂线.
作法:(1)以点C为圆心,任一线段的长为半径画弧, 图 24.4.9 交直线l于点A、B; (2)以A为圆心,以大于CB长为半径在直线一侧画弧;
M P B N
定理:线段垂直平分线 上的点与这条线段两个 端点的距离相等。 NhomakorabeaA
∵点P在线段AB的垂直平分线上(已知) ∴PA=PB (线段垂直平分线上的点与这条线段 两个端点的距离相等。 )
M P
逆定理:与一条线段两个端点 距离相等的点,在这条线段的 垂直平分线上。
B
A
N
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (和一条线段两个端点 距离相等的点,在这条线段 的垂直平分线上)
(3)以点B为圆心,以同样的长为半径在直线的同 一侧画弧,两弧交于点D; (4)经过点C、D作直线CD.
回忆:角的平分线上的画法
B
E
C
O
D
A
角的平分线上的点到角的两边的距 离相等.
如图,已知∠AOB及M、N两点,求 作:点P,使点P到∠AOB的两边距 离相等,且到M、N的两点也距离相 A 等。
M N
P O
B
※画已知线段的垂直平分线
定义:垂直 于一条线段并且平分 这条线段的直 线,叫做线段的垂直平分线(或叫中垂线). • 已知:线段AB, • 求作:作直线CD交AB于O,使 CD⊥AB,AO=BO.
步骤: • 1、以点A为圆心,以大于AB一半的长为半径 画弧; • 2、以点B为圆心,以同样的长为半径画弧, 两弧的交点分别记为C、D, • 3.连结CD. 则CD是线段AB的垂直平分线.
线段的垂直平分线的作图

PA =PB PC =PC
A
∴ Rt△PCA ≌Rt△PCB(HL).
C
B
∴ AC =BC.
又 PC⊥AB,
∴ 点P 在线段AB 的垂直平分线上
已知:如图,PA =PB. 求证:点P 在线段AB的垂直平分线上.
证明:如图取AB的中点C,连接PC, 则AC =BC
在△PCA 和△PCB 中,
PA =PB PC =PC (公共边)
已知:如图,PA =PB. 求证:点P 在线段AB 的垂直平分线上.
P
P
A C
B
法一:作PC⊥AB ,垂足为点C
A C
B
法二:取AB的中点C,连接PC
证明:
已知:如图,PA =PB.
求证:点P 在线段AB的垂直平分线上. 证明:如图作PC⊥AB ,垂足为点C
P
则∠PCA =∠PCB =90°.
在Rt△PCA 和Rt△PCB 中,
P
∵ 点P在线段AB的垂直平分线上
∴ PA =PB.
A
C
B
对点训练:
练习1 如图,在△ABC 中,BC =8,AB 的中垂线
交BC于D,AC 的中垂线交BC 于E,则△ADE 的周长等
于___8___. A
B
DE
C
课堂练习P62
2.如图,AD⊥BC,BD =DC,点C 在AE 的垂直平分
线上,AB,AC,CE 的长度有什么关系?AB+BD
用符号语言表示为:
∵ PA =PB,
A C
B
∴ 点P 在线段AB 的垂直平分线上.
对点训练:P62 2
练习3 如图,AB =AC,MB =MC.直线AM 是线段BC 的垂直平分线吗?
专题06 线段的垂直平分线必考压轴题(学生版)

专题07线段的垂直平分线一.选择题1.(2分)(2022春•辽阳期末)如图,在△ABC中,DE是AC的垂直平分线.若AE=2,△ABD的周长为8,则△ABC的周长为()A.9B.10C.11D.122.(2分)(2022秋•丰泽区校级期末)如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB的度数为()A.56°B.58°C.60°D.63°3.(2分)(2022春•威宁县期末)如图,DE,DF分别是线段AB,BC的垂直平分线,连接AD,CD,则下列结论正确的是()A.AD=CD B.∠A=∠C C.∠B=∠ADC D.DE=DF4.(2分)(2022春•高州市期中)如图,从△ABC内一点O出发,把△ABC剪成三个三角形(如图1),边AB,BC,AC放在同一直线上,点O都落在直线MN上(如图2),直线MN∥AC,则点O是△ABC的()A.三条角平分线的交点B.三条高的交点C.三条中线的交点D.三边中垂线的交点5.(2分)(2022秋•渝北区校级期中)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.9B.10C.11D.156.(2分)(2020秋•济南期末)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10cm,则AB=()A.4cm B.5cm C.6cm D.不能确定7.(2分)(2019春•九江期末)已知锐角三角形ABC中,∠A=65°,点O是AB、AC垂直平分线的交点,则∠BCO 的度数是()A.25°B.30°C.35°D.40°8.(2分)(2021秋•成武县期中)如图,在△ABC中,边BC的垂直平分线l与AC相交于点D,垂足为E,如果△ABD的周长为12cm,BE=4cm,则△ABC的周长为()A.18cm B.15cm C.16cm D.20cm9.(2分)(2021春•乾县期末)如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC 边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE=1.则AC的长为()A.13B.14C.15D.1610.(2分)(2020•黄岩区模拟)如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC :S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有()A.1个B.2个C.3个D.4个二.填空题11.(2分)(2022春•光明区期末)如图,在△ABC中,AB=10,AC=6,边BC的垂直平分线DE分别交AB、BC 于点E、D,则△ACE的周长为.12.(2分)(2022春•龙岗区校级期末)如图,BD垂直平分AC,交AC于E,∠BCD=∠ADF,FA⊥AC,垂足为A,AF=DF=5,AD=6,则AC的长为.13.(2分)(2021秋•沛县期末)如图,△ABC中,AB的垂直平分线交AC于D,已知AC=10cm,BC=7cm,则△BCD的周长是.14.(2分)(2021春•雁塔区校级期末)如图,在△ABC中,∠A=60°,∠ABC=45°,BD平分∠ABC,交AC于点D,BD的垂直平分线EF交AB于点E,交BC于点F.若AD=2,则AE的长为.15.(2分)(2020秋•灌南县校级期末)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=48°,则∠ABC的度数为.16.(2分)(2021春•峡江县期末)如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=10,CF=2,则AC=.17.(2分)(2019春•皇姑区期末)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠BEO的度数是.18.(2分)(2020春•道里区校级月考)已知△ABC中,点D为BC边上一点,且BD:CD=7:4,点A、E均在CD 的垂直平分线上,BG⊥BD,连接GD交AB于点F,若∠AFD=45°,EC=GD,∠GDB+∠ECB=90°,AC=,则CD=.19.(2分)(2019秋•温岭市期中)如图,在△ABC中,已知点O是边AB、AC垂直平分线的交点,点E是∠ABC、∠ACB角平分线的交点,若∠O+∠E=180°,则∠A=度.20.(2分)(2022春•锦江区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=.三.解答题21.(6分)(2022春•普宁市期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.22.(6分)(2022春•兰州期中)如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是AB上的一点,且在BD的垂直平分线EG上,DE交AC于点F,求证:点E在AF的垂直平分线上.23.(6分)(2021秋•任丘市期末)如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.24.(6分)(2020秋•滨城区期中)已知:△ABC是三边都不相等的三角形,点O和点P是这个三角形内部两点.(1)如图①,如果点P是这个三角形三个内角平分线的交点,那么∠BPC和∠BAC有怎样的数量关系?请说明理由;(2)如图②,如果点O是这个三角形三边垂直平分线的交点,那么∠BOC和∠BAC有怎样的数量关系?请说明理由;(3)如图③,如果点P(三角形三个内角平分线的交点),点O(三角形三边垂直平分线的交点)同时在不等边△ABC的内部,那么∠BPC和∠BOC有怎样的数量关系?请直接回答.25.(6分)(2022秋•高青县期中)在△ABC中,AB的垂直平分线分别交线段AB,BC于点M,P,AC的垂直平分线分别交线段AC,BC于点N,Q.(1)如图,当∠BAC=78°时,求∠PAQ的度数;(2)当∠PAQ=40°时,求∠BAC的度数.26.(6分)(2022春•市南区期末)如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.27.(8分)(2021秋•天山区校级期中)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N 两点,DM与EN相交于点F.(1)若AB=3cm,求△CMN的周长.(2)若∠MFN=70°,求∠MCN的度数.28.(8分)(2021春•本溪县期中)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为20cm,AC=8cm,求DC长.29.(8分)(2022春•汝州市期末)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,当P,Q两点都在射线ON上时,则线段AB与PB的数量关系是.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;。
尺规作图:线段的垂直平分线专项训练(含解析)印刷版

尺规作图:线段的垂直平分线专项训练一.选择题(共8小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线2.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°3.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°5.如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC6.如图,已知Rt△ABC中,∠C=90°,∠A=30°.按下列步骤作图:分别以A、B为圆心,以大于AB的长为半径作弧,两弧相交于点P和Q作直线PQ,分别交AC于点D,交AB于点E;连接BD.则下列结论中:①AD=BD,②∠CBD=30°③BC=AB;④S△ABC=4S△BCD正确的个数有()A.1个B.2个C.3个D.4个7.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CF C.BE=8 D.DA=DB8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列结论:①BH垂直平分线段AD;②AC平分∠BAD;③S△ABC=BC•AH;④AB=AD正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共4小题)9.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.10.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.12.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=°.三.解答题(共4小题)13.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平线上的一点,∴=().同理可得,PB=.∴=(等量代换).∴(到一条线段两个端点距离相等的点,在这条线段的)∴AB、BC、AC的垂直平分线相交于点P,且.14.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.15.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.16.尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)尺规作图:线段的垂直平分线专项训练参考答案与试题解析一.选择题(共8小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线【分析】利用线段垂直平分线的作法进而判断得出答案.【解答】解:如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.故选:A.2.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.3.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【分析】利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:D.5.如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC【分析】根据作图过程可得DE是AB的垂直平分线,根据线段垂直平分线的定义和性质可得AP=BP,DE ⊥AB,利用等量代换可证得PA+PC=BC.但是AP和PC不一定相等.【解答】解:由作图可得:DE是AB的垂直平分线,∵DE是AB的垂直平分线,∴AP=BP,DE⊥AB,∴AP+CP=BP+CP=BC,故A、B、C选项结论正确;∵P在AB的垂直平分线上,∴AP和PC不一定相等,故D选项结论不一定正确,故选:D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°.按下列步骤作图:分别以A、B为圆心,以大于AB的长为半径作弧,两弧相交于点P和Q作直线PQ,分别交AC于点D,交AB于点E;连接BD.则下列结论中:①AD=BD,②∠CBD=30°③BC=AB;④S△ABC=4S△BCD正确的个数有()A.1个B.2个C.3个D.4个【分析】根据作已知线段的垂直平分线可对①进行判断;利用∠DBA=∠CBD=30°可对②进行判断;利用含30度的直角三角形三边的关系可对③进行判断;通过证明△DCB≌△DEB≌△DEA,可对④进行判断.【解答】解:①用作法可得PQ垂直平分AB,则AD=BD,故此选项正确;②因为DA=DB,则∠A=∠DBA=30°,则∠CBD=30°,故此选项正确;③∵∠C=90°,∠A=30°,∴BC=AB,故此选项正确;④由以上可得:在△DCB和△DEB中,∴△DCB≌△DEB(AAS),在△ADE和△BDE中,,∴△ADE≌△BDE(SAS),故△DCB≌△DEB≌△DEA,∴S△ABC=3S△BCD,故此选项错误.故选:C.7.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CF C.BE=8 D.DA=DB【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:C.8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列结论:①BH垂直平分线段AD;②AC平分∠BAD;③S△ABC=BC•AH;④AB=AD正确的个数是()A.1个B.2个C.3个D.4个【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:①、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.②、错误.CA不一定平分∠BAD.③、错误.应该是S△ABC=•BC•AH.④、错误.根据条件AB不一定等于AD.故选:A.二.填空题(共4小题)9.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=5.【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为5.10.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两端点相等的点在线段的垂直平分线上.【分析】直接利用作图方法得出C点到A,B点距离相等,D点到A,B点距离相等,即可得出直线CD 垂直平分AB.【解答】解:小芸的作图依据是:到线段两端点相等的点在线段的垂直平分线上.故答案为:到线段两端点相等的点在线段的垂直平分线上.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为11.【分析】根据作图可得MN是BC的垂直平分线,根据线段垂直平分线的性质可得CD=DB,然后可得AD+CD=8,进而可得△ACD的周长.【解答】解:根据作图可得MN是BC的垂直平分线,∵MN是BC的垂直平分线,∴CD=DB,∵AB=8,∴CD+AD=8,∴△ACD的周长为:3+8=11,故答案为:11.12.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=8°.【分析】连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.【解答】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故答案为:8.三.解答题(共4小题)13.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平线上的一点,∴PB=PA(垂直平分线上任意一点,到线段两端点的距离相等).同理可得,PB=PC.∴PA=PC(等量代换).∴点P在AC的垂直平分线上,(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.【分析】根据线段垂直平分线的性质可得出PB=PA,同理可得出PA=PC,由此即可得出PA=PC,再根据线段垂直平分线的性质可得出点P是AC边垂直平线上的一点,从而证出结论.【解答】证明:∵点P是AB边垂直平线上的一点,∴PB=PA (垂直平分线上任意一点,到线段两端点的距离相等).同理可得,PB=PC.∴PA=PC(等量代换).∴点P是AC边垂直平线上的一点(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上),∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:PB;PA;垂直平分线上任意一点,到线段两端点的距离相等;PC;PA;PC;点P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.【分析】连接AB.根据“到线段两个端点距离相等的点在线段的垂直平分线上”知,点P应是AB线段的垂直平分线与直线m的交点.【解答】解:如图所示,点P是AB线段的垂直平分线与直线m的交点.15.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.【分析】(1)分别以A、B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;作直线MN,即MN为线段AB的垂直平分线;(2)由AB的垂直平分线MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由∠A=40°,根据等边对等角的性质,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得∠DBC 的度数.【解答】解:(1)如图:(2)解:∵AB的垂直平分线MN交AC于D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=70°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.16.尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:如图所示:P点即为所求.。
第03讲 线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)(原卷版)

第03讲线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)考点考向一.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE二.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.三.作图—基本作图基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.五.作图—应用与设计作图应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.六.作图—代数计算作图代数计算作图是实际问题中要求所作图形具备一定的条件,如角的度数或边的长度.(1)根据题意计算出图形所具备的条件,边长,角度等,在网格纸上作图或利用圆规和直尺作图.(2)直接利用尺规作图做出符合题意的图形.如在数轴上找到表示无理数的点.要熟悉几何图形的性质和5种基本作图的步骤,才能灵活运用熟练作图.考点精讲一.角平分线的性质(共5小题)1.(2021秋•温岭市期末)如图,OP平分∠AOB,E为OA上一点,OE=4,P到OB的距离是2,则△OPE 的面积为()A.2B.3C.4D.82.(2021秋•北仑区期中)如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2B.3C.4D.53.(2021秋•东阳市期末)如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N 为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC 于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.54.(2021秋•新昌县期末)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为()A.16B.20C.40D.805.(2021秋•诸暨市校级月考)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.二.线段垂直平分线的性质(共8小题)6.(2021秋•海曙区期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠EAG=40°,则∠BAC的度数是()A.140°B.130°C.120°D.110°7.(2021秋•温州期末)如图,已知线段AB,以点A,B为圆心,5为半径作弧相交于点C,D.连结CD,点E在CD上,连结CA,CB,EA,EB.若△ABC与△ABE的周长之差为4,则AE的长为()A.1B.2C.3D.48.(2021秋•余杭区月考)如图,在△ABC中,DE是AC的中垂线,分别交AC、AB于点D、E,若△BCE 的周长为8,BC=3,求AB的长.9.(2021秋•义乌市期中)如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF =90°,AF=3,AE=4.(1)求边BC的长;(2)求出∠BAC的度数.10.(2021秋•柯桥区月考)已知:如图,△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.11.(2021秋•余杭区期中)如图,△ABC中,∠BAC=130°,AB,AC的垂直平分线分别交BC于点E,F,与AB,AC分别交于点D,G,则∠EAF的度数为()A.65°B.60°C.70°D.80°12.(2021秋•上城区期中)如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC 于点E,F.(1)若∠DAC=20°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.13.(2021秋•西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=()A.50°B.80°C.90°D.100°三.作图—基本作图(共4小题)14.(2021秋•鄞州区期中)如图,在△ABC中,∠B=65°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.45°B.55°C.60°D.65°15.(2021秋•诸暨市期末)下列尺规作图分别表示:①作一个角的平分线,②作一条线段的垂直平分线.其中作法正确的是()A.①B.②C.①②D.无16.(2021秋•新昌县期末)如图,已知△ABC.(1)请用直尺和圆规作∠ABC的角平分线BD,交AC于点D.(保留作图痕迹,不写作法)(2)在(1)的条件下,若∠A=100°,∠C=28°,求∠BDA的度数.17.(2021秋•余姚市期末)如图,在△ABC中,CE⊥AB于点E.(1)用尺规作BD⊥AC,垂足为点D.(不写作法,保留痕迹)(2)在(1)所画的图中,若BE=CD.求证:AB=AC.四.作图—复杂作图(共5小题)18.(2021秋•临海市期末)如图,已知△ABC,点D在边AB上.(1)求作点D,使点D到点B,C的距离相等;(尺规作图,保留作图痕迹,不写作法)(2)连接DC,已知∠B=32°,求∠ADC的度数.19.(2021秋•缙云县期末)(拓展创新)如图所示,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点以顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,;(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)20.(2021秋•新昌县期中)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.(1)则MN是BC的线.(2)若AB=8,AC=4,求△ACD的周长.21.(2021秋•西湖区校级期中)如图,已知△ABC.(1)尺规作图:①作出△ABC的角平分线CD;②作出BC的中垂线交AB于点E.(2)连结CE,若∠ABC=60°,∠A=40°,则∠DCE=.22.(2021秋•拱墅区期中)如图,△ABC中,AC>AB.(1)作AB边的垂直平分线交BC于点P,作AC边的垂直平分线交BC于点Q,连接AP,AQ.(尺规作图,保留作图痕迹,不需要写作法)(2)在(1)的条件下,若BC=14,求△APQ的周长.五.作图—应用与设计作图(共6小题)23.(2021秋•临海市期末)如图,在5×5的网格纸中,△ABC的三个顶点都在格点上.请仅用直尺,按要求画图.(1)在图1中画出过点B的直线l,使其平分△ABC的面积;(2)在图2中画出线段BD,使其平分∠ABC,且点D在格点上.24.(2021秋•椒江区期末)如图,两条公路OA,OB相交于点O,在∠AOB内部有两个村庄C,D.为方便群众接种新冠疫苗,该地决定在∠AOB内部再启动一个方舱式接种点P,要求同时满足:(1)到两条公路OA,OB的距离相等.(2)到两村庄C,D的距离相等.请你用直尺和圆规作出接种点P的位置(保留作图痕迹).25.(2021秋•宁波期末)定义:如果三角形的两个内角α和β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.如图,在△ABC中,∠C=90°,AC=8,BC=6.请把这个三角形分割成两个三角形,使得其中一个为“类直角三角形”,并求出这个“类直角三角形”的面积.(备注:要求尺规作图)26.(2021秋•婺城区校级月考)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.27.(2021春•南岗区校级月考)如图,网格中的每个小正方形的边长都是2,线段交点称做格点.(1)画出△ABC的高CD;(2)连接格点,用一条线段将图中△ABC分成面积相等的两部分;(3)直接写出△ABC 的面积是.28.(2021春•鼓楼区校级月考)我们知道,三角形具有性质:三条角平分线相交于一点,三条中线相交于一点.事实上,三角形还具有性质:三条高所在直线相交于一点.如图,在由小正方形组成的4×3的网格中,三角形的顶点都在小正方形的格点上.请运用上述三角形的性质,在该网格中,仅用无刻度的直尺,作出AC边上的高BH,再作出BC边上的高AK.(不写作法,保留作图痕迹)六.作图—代数计算作图(共1小题)29.(2021秋•诸暨市期中)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中解答下面问题.(1)图中线段AB的两端点都落在格点(即小正方形的顶点)上,求出AB的长度;(2)再以AB为一边画一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)请直接写出符合(2)中条件的等腰三角形ABC 的顶点C的个数.巩固提升一、单选题1.(2021·衢州市实验学校教育集团(衢州学院附属学校教育集团)八年级期末)如图,在,OA OB 上分别截取,OD OE ,使OD OE =,再分别以点,D E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线,OC OC 就是AOB ∠的角平分线.这是因为连结,CD CE ,可得到COD COE ≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ≌的条件是( )A .SASB .AASC .ASAD .SSS2.(2021·浙江八年级期末)如图是用直尺和圆规作一个角等于已知角的示意图,说明O O ∠'=∠的依据是( )A .SASB .SSSC .AASD .ASA3.(2020·浙江八年级期末)ABC 内找一点P ,使P 到B 、C 两点的距离相等,并且P 到C 的距离等于A 到C 的距离.下列尺规作图正确的是( )A .B .C .D .4.(2020·浙江八年级期末)如图,在AOB ∠的两边上,分别取OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分AOB ∠的依据是( )A .SSSB .SASC .AASD .HL5.(2020·浙江八年级期末)如图,已知ABC ,求作一点P ,使P 到A ∠的两边的距离相等,且PA PB =、下列确定P 点的方法正确的是( )A .P 为AB ∠∠、两角平分线的交点B .P 为AC AB 、两边上的高的交点 C .P 为AC AB 、两边的垂直平分线的交点D .P 为A ∠的角平分线与AB 的垂直平分线的交点二、填空题 6.(2019·浙江八年级期末)如图,依据尺规作图的痕迹,计算∠α=________°.7.(2019·浙江杭州·八年级月考)用直尺和圆规作一个角等于已知角的示意图如下,则要说明D O C DOC '''∠=∠,需要证明D O C DOC '''∆∆≌,则两个三角形全等的依据是________(写出全等简写).8.(2018·浙江全国·)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是_______.9.(2020·浙江高照实验学校八年级月考)如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=_____度.10.(2019·浙江杭州市·)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是_________.三、解答题11.(2019·浙江八年级期中)如图,在△ABC中,AB=AC,∠ABC=76°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.12.(2021·浙江八年级期末)电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A,B的电网必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置,从图中标出.(保留作图痕迹,说明理由)13.(2020·浙江)已知ABC ,用尺规作图:(1)作AC 边上的中线;(2)画AB 边上的高.14.(2019·浙江宁波·八年级期中)某小区为方便M 、N 两幢住宅楼的住户投放分类后的垃圾,拟在小区主路AB AC 、的交叉区域内设置一个垃圾投放点P ,现要求P 点到两条道路的距离相等,且使PM PN =,请你通过尺规作图找出这一P 点(不写作法,保留作图痕迹)15.(2020·浙江八年级期末)已知:线段c 和αβ∠∠,求作:ABC ,使得AB c A B αβ=∠=∠∠=∠,,(不写作法,但保留作图痕迹)16.(2020·浙江)已知线段a 及锐角α,用直尺和圆规作ABC ,使B α∠=∠,AB BC a ==.17.(2020·浙江)如图,线段a ,利用直尺和圆规按照下列要求作出图形.(保留作图痕迹,不要求写作法)(1)作一个等边三角形,边长为a ;(2)在第(1)题的图中,作一个α∠,使30︒=α.18.(2020·浙江八年级期末)如图,BAC ∠和点D .在BAC ∠内部,试求作一点P ,使得点P 到BAC ∠两边的距离相等,同时到点A ,D 的距离也相等.(不写作法,保留作图痕迹)19.(2021·浙江八年级期末)如图,已知ABC ,请按下列要求作图:(1)作BC边上的中线.(2)用直尺和圆规作ABC的角平分线CG.≌(使点D与A对应,点E与B对应,点F与C对应).(3)用直尺和圆规作DEF,使DEF ABC20.(2020·浙江八年级期中)如图,已知ABC(1)用直尺和圆规按下列要求作图:(保留作图痕迹)在BC上作点D,使点D到AB和AC的距离相等;过BE AD交CA的延长线于E;点B作//(2)若AF BE⊥,垂足为F,证明BF EF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
E
13cm
B
D
C
证明题:1.已知:ABC中,C=90,A=30o,BD 平分ABC交AC于D. 求证:D点在AB的垂直平分线上. A
30o
D
C
B
2.已知:如图,线段CD垂直平分AB,AB平分CAD. 求证:AD∥BC.
C 证明:
A
1 2
3B O
D
3.已知:如图,在ABC中, AB=AC,A=120o, AB的垂直平分线交AB于E,交BC于F. 求证:CF=2BF.
A
.N
. .M P 点P为所求
作的点
O
B
C
A
B
如图,已知∠AOB及M、N两点,求
作:点P,使点P到∠AOB的两边距
离相等,且到M、N的两点也距离相
等。
A
M N
O
B
已知:线段a,c,∠α 求作:ΔABC,使BC=a,AB=c,∠ABC=∠ α
a c
α
4.已知:如图,在ABC中,DE是AC的垂直平分线, AE=3cm, ABD的周长为13cm,求ABC 的周长
A
B
D
C
1.如图,点C在直线l上,试过点C画 出直线l的垂线.
图 24.4.8
1.画一个直角三角形,使其直角边分 别等于已知的两条线段.
(第 4 题)
2.画一个直角三角形,使其斜边和直 角边分别等于已知的两条线段.
(第 4 题)
动手实践
• AB、AC分别是菱形ABCD 的一条边和对角线,请你 用尺规把这个菱形补充完 整。
A
E
300
300
B
CF=2AF
60O F
30O C
AF=BF CF=2BF
证明题:4.已知:如图,AD平分BAC,EF垂直平分 AD交BC的延长线于F,连结AF. 求证: CAF= B.
A
3 21 E
4
B
D
C
F
如图,已知:AOB,点M、N. 求作:一点P,使点P到AOB两边的 距离相等,并且满足PM=PN.
典例赏析:
在∠AOB内有点M、N,试确定点P,使P到角的两边的距离 相等且到M、N的距离相等。
A
M
O
N
B
当堂训练:
1、如图:△ABC中,BC=a,DE、GF分别为AB、AC的 垂直平分线,则△AEG的周长为___。
A
D
F
B
E
G
C
4、如图:点D在△ABC的边BC上,且BC=BD+AD,试说 明D在AC的垂直平分线上。