高二下学期数学理科期末测试
人教版高二数学下册期末考试理科数学试卷(附答案)
( ) 即 a 2x −1 = 2x −1对一切实数 x 都成立.
∴ a = 1,∴ a = b = 1 .……5 分
f ( x) 是 R 上的减函数。……6 分
⑵ 不等式 f (t2 − 2t) + f (2t2 − k ) 0等价于 f (t2 − 2t) f (k − 2t2 ) .
又 f ( x) 是 R 上的减函数,∴ t2 − 2t k − 2t2 . ……8 分
内碳 14 含量的测量,估计该古墓群应该形成于公元前 850 年左右的西周时期,已
知碳 14 的“半衰期”为 5730 年(即含量大约经过 5730 年衰减为原来的一半),
由此可知,所测生物体内碳 14 的含量应最接近于( )
A.25﹪
B.50﹪
C.70﹪
D.75﹪
11. 对 大 于 1 的 自 然 数 m 的 三 次 幂 可 用 奇 数 进 行 以 下 形 式 的 “ 分 裂 ” :
地运往 C 地, 现在 AB 上的距点 B 为 x 的点 M 处修一公路至点 C.已知铁路运 费为每公里 2 元,公路运费为每公里 4 元. (1)将总运费 y 表示为 x 的函数. (2)如何选点 M 才使总运费最小?
-5-
-6-
11B-SX-0000001 20. (本小题满分 12 分)
已知数列an 的前 n 项和为 Sn ,且 a1 = 1, Sn = n2an (n N+ )
( ) ( ) ⑵ 若对任意的 t R ,不等式 f t2 − 2t + f 2t2 − k 0恒成立,求实数 k 的取
值范围.
18. (本小题满分 12 分)
为了增强环保意识,某社团从男生中随机抽取了 60 人,从女生中随机抽取了
2022年年高二下学期数学(理)期末试卷(附答案)
年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()()q p ⌝∨⌝B.()q p ⌝∨C.()()q p ⌝∧⌝D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.10012. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2e e B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的值为25.0,则输出的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) X 1 2 3···12P121121 121 ···1210,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极 坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.性别是否熬夜看球21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行试销,得到如下单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间;(Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值; (Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<.求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a ,211ln ,0)1(ln x ax a f <<>,又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。
高二下学期期末考试理科数学试卷
巴一中学高二下学期期末考试理科数学试卷一、选择题(本大题共10个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符号题目要求的,请把正确选项的番号填在答题卡相应的位置上。
1、大,中,小三个盒子中分别装有同一种产品120个,60个,20个,现在需从这三个盒子中,抽取一个样本容量为25的样本,较为恰当的抽样方法为 ( )A .分层抽样B .简单随机抽样C .系统抽样D .其他抽样方式2、如果右边程序执行后输出的结果是132,那么在程序until 后面的“条件”应为 ( )A .i > 11B . i >=11C . i <=11D .i<11 3、算法共有三种逻辑结构,即顺序结构,条件结构和循环结构,下列说法正确的是( )A .一个算法只能含有一种逻辑结构B . 一个算法最多可以包含两种逻辑结构C . 一个算法必须含有上述三种逻辑结构D . 一个算法可以含有上述三种逻辑结构的任意组合4、在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组。
已知该组的频率为m ,该组上的直方图的高为h ,则| a -b |等于 ( ) A .mhB .mh C .hm D .m+h5、一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30] ,3;(30,40],4;(40,50],5;(50,60],4;(60,70],2;则样本在区间(-∞,50]的频率为( ) A .1005 B .10025 C .10050 D .10070 6、甲乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出的次品数分别为甲:0,1,0,2,2,0,31,2,4,乙:2,3,1,1,0,2,1,1,0,1,则出次品数较少的为( )A .甲B . 乙C .相同D .不能比较7、某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( )A .32B .16C .8D .208、已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140 B .740C .310D .71209、若在二项式10)1( x 的展开式中任取一项,则该项的系数为奇数的概率是 ( )A .410B .411C .511D .61110、设随机变量X 服从正态分布N (0,1),记Q (x )=P (X <x ),则下列结论不正确的是 ( ) A .Q (0)=0.5B .Q (x )=1-Q (-x )C .P (|x |<a )=2 Q (a )-1D .P (|x |>a )=1-Q (a )二、填空题(本大题共6个小题,每小题4分,共24分)请把答案填在答题卡相应的位置上。
高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题
2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
高二数学下期期末理科考试题(选修2-2,选修2-3 )
高二数学下期期末理科考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、复数Z=2+i 在复平面内的对应点在( )A 第一象限B 第二象限C 第三象限D 第四象限2、定积分dx x +⎰1110的值为( ) A 1 B ln2 C2122- D 212ln 21- 3、10)1(xx +展开式中的常数项为( ) A 第5项 B 第6项 C 第5项或第6项 D 不存在4、设随机变量ξ服从B (21,6),则P (ξ=3)的值是( ) A 165 B 163 C 85 D 83 5、曲线232+-=x x y 上的任意一点P 处切线的斜率的取值范围是( )A ⎪⎪⎭⎫⎢⎣⎡+∞,33B ⎪⎪⎭⎫ ⎝⎛+∞,33C ()+∞-,3D [)+∞-,36、某班一天上午安排语、数、外、体四门课,其中体育课不能排在每一、每四节,则不同排法的种数为( )A 24B 22C 20D 127、将骰子(骰子为正方体,六个面分别标有数字1,2...,6)先后抛掷2次,则向上的点数之和为5的概率是( )A 154B 92C 91D 181 8、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )9、某个命题与正整数有关,若当n=k(*N k ∈)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得( )A 当n=6时,该命题不成立B 当n=6时,该命题成立C 当n=4时,该命题成立D 当n=4时,该命题不成立x y O 图1 x y O A x y O Bx y O C y OD x10、等比数列}{n a 中,4,281==a a ,函数))...()(()(821a x a x a x x x f ---=,则=)0(,f ( )A 62B 92C 122D 152二、填空题(本大题共5小题,每小题5分,共25分)11、已知231010-=x x C C ,则x= 。
高二数学下学期期末考试理科试题(解析版)
由于直线 过原点,且倾斜角为 ,故其极坐标方程为 .
(2)由 得 ,
设 , 对应的极径分别为 ,则 , ,
三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.已知集合 , .
(1)若 , ,求实数 的取值范围;
(2)若 ,且 ,求实数 取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求出 ,再根据包含关系可得关于 的不等式组,从而求实数 的取值范围,注意对 是否为空集分类讨论;
所以p∧q为假命题,p∨q为真命题,p∧( q)为假命题, q为假命题.
故选B.
【点睛】(1)本题主要考查命题的真假和复合命题的真假的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.
8.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为
【详解】依题意,产品的质量X(单位:千克)服从正态分布N(90,64),得 ,
,
质量在区间 内的产品估计有 件.
故选A.
【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线的对称性,属于基础题.
11.2021年广东新高考将实行 模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率( )
公园
甲
乙
丙
丁
获得签名人数
45
60
30
15
高二数学(理科)下学期期末考试试卷
高二数学(理科)下学期期末考试试卷注意:选择题答案用2B 铅笔涂在答题卡上;填空题、解答题答案写在答题卷上。
一、选择题:(本大题共8小题;每小题5分;共40分。
在每小题给出的四个选项中;只有一项符合题目要求) 1、已知复数122,1z i z i =+=-;则21·z z z =在复平面上对应的点位于 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2、“1x >”是“2x x >”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 3、在二项式6(1)x -的展开式中;含3x 的项的系数是( )A . 15-B . 15C .20-D .204、某市组织一次高三调研考试;考试后统计的数学成绩服从正态分布;其密度函数200)80(221)(--=x ex f σπ;则下列命题不正确的是( )5、某人的密码箱上的密码是一种五位数字号码;每位上的数字可在0到9这10个数字中选取;该人记得箱子的密码1;3;5位均为0;而忘记了2;4位上的数字;只要随意按下2;4位上的数字;则他按对2;4位上的数的概率是( ) A.52 B.51 C.101 D.1001 6、已知A (-1;0);B (1;0);若点),(y x C 满足=+-=+-|||||,4|)1(222BC AC x y x 则( ) A .6 B .4 C .2 D .与x ;y 取值有关7、某通讯公司推出一组手机卡号码;卡号的前七位数字固定;从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”;则这组号码中“优惠卡”的个数为( ) A.2000 B.4096C.5904D.83208、如图;在杨辉三角形中;斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1;3;3;4;6;5;10;…;记此数列的前n 项之和为n S ;则21S 的值为( ) A .66 B .153 C .295 D .361二、填空题:(本大题共6小题;每小题5分;共30分。
高二理科数学下册期末复习测试题及答案
高二理科数学下册期末复习测试题及答案第Ⅰ卷选择题共60分一、选择题每小题5分,共50分。
1、已知复数满足,则等于A. B. C. D.2、一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个是女孩的概率是A. B. C. D.3、黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2021个图案中,白色地面砖的块数是A.8046B.8042C.4024D.60334、右图是计算1+3+5+…+99的值的算法程序框图, 那么在空白的判断框中, 应该填入下面四个选项中的A. i≤50B. i≤97C. i≤99D. i≤1015、一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分100分。
某学生选对每道题的概率为0.8,则考生在这次考试中成绩的期望与方差分别是A、80;8B、80;64C、70;4D、70;36、在上有一点,它到的距离与它到焦点的距离之和最小,则点的坐标是A.-2,1B. 1,2C.2,1D. -1,27、从某校高三年级中随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示,若某高校 A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为A.10B.20C.8D.168、设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为A. B. C. D.9、如图所示,定点A和B都在平面α内,定点P α,PB⊥α,C是α内异于A和B 的动点,且PC⊥AC,那么,动点C在平面α内的轨迹是A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点10、矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影落在BC边上,若二面角C—AB—D的平面角大小为,则sin 的值等A. B. C. D.二、填空题每题5分,共25分,注意将答案写在答题纸上11、若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B10,0.8,则EX, EY分别是, .12、甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,且。
四川省乐山市2022高二数学下学期期末考试试题 理(含解析)
【答案】B
【解析】
函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x( ﹣a)=lnx﹣2ax+1,
令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,
函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,
7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的 ,则一开始输入的x的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据程序框图,当输入的数为 ,则输出的数为 ,令 可得输入的数为 .
【答案】
【解析】
【分析】
总体含100个个体,从中抽取容量为5的样本,则每个个体被抽到的概率为 .
【详解】因为总体含100个个体,
所以从中抽取容量为5的样本,则每个个体被抽到的概率为 .
【点睛】本题考查简单随机抽样的概念,即若总体有 个个体,从中抽取 个个体做为样本,则每个个体被抽到的概率均为 .
14.已知复数z满足 ,则 _____.
在区间 上任取两个实数a,b所对应的点 构成的区域为正方形 ,
所以函数 无零Biblioteka 的概率 .【点睛】本题考查几何概型计算概率,考查利用面积比求概率,注意所有基本事件构成的区域和事件所含基本事件构成的区域.
10.根据如下样本数据得到的回归方程为 ,则
3
4
5
6
7
8
A. , B. , C. , D. ,
福建省2023年高二下学期数学(理)期末试卷(附答案)
福建省高二下学期数学(理)期末试卷3.独立性检验的临界值表:P(K 2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0.4550.7801.3232.0722.7063.8415.0246.6357.87910.828第I 卷(100分)一、选择题(本大题共8小题,每小题5分,共40分。
每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.已知随机变量ξ的数学期望E ξ=0.05且η=5ξ+1,则Eη等于 A. 1.15 B. 1.25 C. 0.75 D. 2.52. 某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是A.40.80.2⨯B.445C 0.8⨯ C.445C 0.80.2⨯⨯ D. 45C 0.80.2⨯⨯ 3.6个人排成一排,其中甲、乙不相邻的排法种数是A.288B.480C.600D.6404.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为A .41004901C C - B .4100390110490010C C C C C + C .4100110C C D .4100390110C C C5. 已知服从正态分布2(,)N μσ的随机变量在区间(,)μσμσ-+,(2,2)μσμσ-+和(3,3)μσμσ-+内取值的概率分别为68.3%,95.4%和99.7%。
某校高一年级1000名学生的某次考试成绩服从正态分布2(90,15)N ,则此次成绩在(60,120)范围内的学生大约有A.997B.972C.954D.683人6.某车间加工零件的数量x 与加工时间y 的统计数据如下表:零件数x (个) 10 20 30 加工时间y (分钟)213039现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为A .84分钟B .94分钟C .102分钟D .112分钟7. 先后抛掷红、蓝两枚骰子,事件A :红骰子出现3点,事件B :蓝骰子出现的点数为奇数,则(|)P A B =A.61B.31C.21D.365 8.甲、乙、丙、丁四个人排成一行,则乙、丙两人位于甲同侧的排法总数是A.16B.12C.8D.6二、填空题(本大题共4小题,每小题5分,共20分)9. 6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.10.若5(1)ax -展开式中各项系数和为32,其中a R ∈,该展开式中含2x 项的系数为_________.11.已知某一随机变量X 的概率分布列如下,且E (X )=7,求D (X ) . 12.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件。
2021-2022学年新疆克拉玛依市高级中学高二下学期期末数学(理)试题(解析版)
2021-2022学年新疆克拉玛依市高级中学高二下学期期末数学(理)试题一、单选题1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( ) A .{0,2} B .{1,2} C .{0} D .{2,1,0,1,2}--【答案】A【分析】由交集定义计算.【详解】根据集合交集中元素的特征,可得{0,2}A B ⋂=, 故选:A.【点睛】本题考查集合的交集运算,属于简单题. 2.若1sin 3α=,则cos2α= A .89B .79C .79-D .89-【答案】B【详解】分析:由公式2cos2α12sin α=-可得结果. 详解:227cos2α12199sin α=-=-= 故选B.点睛:本题主要考查二倍角公式,属于基础题.3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是 A .1y x= B .x y e -= C .21y x =-+ D .lg y x =【答案】C【详解】试题分析:因为函数1y x=是奇函数,所以选项A 不正确;因为函为函数x y e -=既不是奇函数,也不是偶函数,所以选项B 不正确;函数21y x =-+的图象抛物线开口向下,对称轴是y 轴,所以此函数是偶函数,且在区间()0,∞+上单调递减,所以,选项C 正确;函数lg y x =虽然是偶函数,但是此函数在区间()0,∞+上是增函数,所以选项D 不正确;故选C .【解析】1、函数的单调性与奇偶性;2、指数函数与对数函数; 3函数的图象.4.为了得到函数y=sin 3x π+()的图象,只需把函数y=sinx 的图象上所有的点A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向上平行移动3π个单位长度D .向下平行移动3π个单位长度【答案】A【详解】试题分析:为得到函数πsin()3y x =+的图象,只需把函数sin y x =的图象上所有的点向左平行移动π3个单位长度,故选A.【解析】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数()y f x =的图象向右平移a 个单位长度得()y f x a =-的图象,而函数()y f x =的图象向上平移a 个单位长度得()y f x a =+的图象.左、右平移涉及的是x 的变化,上、下平移涉及的是函数值()f x 的变化. 5.执行如图所示的程序框图,输出的s 值为( )A .2B .32C .53D .85【答案】C【详解】试题分析:0k =时,03<成立,第一次进入循环:111,21k s +===;13<成立,第二次进入循环:2132,22k s +===;23<成立,第三次进入循环:31523,332k s +===,33<不成立,输出53s =,故选C.【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错. 6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .0,1 B .1,2C .()2,4D .()4,+∞【答案】C【详解】因为(2)310f =->,3(4)202f =-<,所以由根的存在性定理可知:选C. 【解析】本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.7.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是 A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥【答案】B【详解】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确. 【解析】空间点线面位置关系.8.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则直线l 的方程为 A .20x y +-= B .20x y -+= C .30x y +-= D .30x y -+=【答案】D【详解】试题分析:圆22(3)4x y +-=的圆心为点(0,3),又因为直线l 与直线10x y +-=垂直,所以直线l 的斜率1k =.由点斜式得直线,化简得30x y -+=,故选D .【解析】1、两直线的位置关系;2、直线与圆的位置关系.9.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π【答案】C【详解】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.【解析】三视图与表面积.10.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏【答案】B【详解】设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7=()711212a--=381,解得a1=3.故选B.11.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C ⨯=种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.12.有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B二、填空题13.262()x x+的展开式中常数项是__________(用数字作答). 【答案】240【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.14.设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________.【答案】11【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得.【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.15.记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______. 【答案】2【分析】转化条件为()112+226a d a d =++,即可得解.【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.16.如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【分析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值. 【详解】AB AC ⊥,3AB =1AC =,由勾股定理得222BC AB AC =+, 同理得6BD 6BF BD ∴==在ACE △中,1AC =,3AE AD ==30CAE ∠=,由余弦定理得22232cos30132131CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF △中,2BC =,6BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯. 故答案为:14-.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.三、解答题17.已知函数()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调递增区间.【答案】(1)πT =(2)单调增区间:3πππ,π,Z 88k k k ⎡⎤-+∈⎢⎥⎣⎦【分析】(1)根据()()sin f x A x =+ωϕ的最小正周期为2πT ω=可得答案;(2)根据复合函数的单调区间解不等式即可.【详解】(1)()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ;2T == (2)3sin y x =的单调递增区间为ππ2π,2π,Z 22k k k ⎡⎤-+∈⎢⎥⎣⎦,所以()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭中,ππ2π,2ππ2422k x k ⎡⎤-+∈⎢⎣+⎥⎦,解之:3πππ,π,Z 88x k k k ⎡⎤∈-+∈⎢⎥⎣⎦,综上所述:函数()f x 的单调递增区间为:3πππ,π,Z 88k k k ⎡⎤-+∈⎢⎥⎣⎦18.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式;(2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(1)3(1)12n a n n =+-⨯=+;(2)2101 【详解】(Ⅰ)设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.(Ⅱ)由(Ⅰ)可得2nn b n =+.所以()()()()231012310212223210b b b b +++⋅⋅⋅+=++++++⋅⋅⋅++()()2310222212310=+++⋅⋅⋅+++++⋅⋅⋅+()()1021211010122-+⨯=+-()112255=-+ 112532101=+=.【解析】1、等差数列通项公式;2、分组求和法.19.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)本题证明线面平行,根据其判定定理,需要在平面DEF 内找到一条与PA 平行的直线,由于题中中点较多,容易看出//PA DE ,然后要交待PA 在平面DEF 外,DE 在平面DEF 内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得DE AC ⊥,因此考虑能否证明DE 与平面ABC 内的另一条与AC 相交的直线垂直,由已知三条线段的长度,可用勾股定理证明DE EF ⊥,因此要找的两条相交直线就是,AC EF ,由此可得线面垂直. 【详解】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA ⊄平面DEF ,DE ⊂平面DEF ,所以//PA 平面DEF .(2)由(1)//PA DE ,又PA AC ⊥,所以DE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ⊥平面ABC ,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 【解析】线面平行与面面垂直.20.已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(1)求,a b 的值;(2)讨论()f x 的单调性,并求()f x 的极大值. 【答案】(1)4a b ==;(2)见解析.【详解】试题分析:(1)求导函数,利用导数的几何意义及曲线()y f x =在点()()0,0f 处切线方程为44y x =+,建立方程,即可求得a ,b 的值;(2)利用导数的正负,可得()f x 的单调性,从而可求()f x 的极大值.试题解析:(1)()()24x x e ax b f a x =++--'.由已知得()04f =,()04f '=. 故4b =,8a b +=. 从而4a =,4b =.(2)由(1)知,()()2414x f x e x x x =+--,()()()14224422x x f x e x x x e ⎛⎫=+--=+- ⎝'⎪⎭.令()0f x '=得,ln2x =-或2x =-. 从而当()(),2ln 2,x ∈-∞--+∞时,0fx ;当()2,ln 2x ∈--时,()0f x '<.故()f x 在(),2-∞-,()ln 2,-+∞上单调递增,在()2,ln 2--上单调递减.当2x =-时,函数()f x 取得极大值,极大值为()()2241f e --=-.【解析】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【方法点晴】本题考查了利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.求极值的步骤是:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0f x '=,求出函数定义域内的所有根;(4)列表检验()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.21.甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率为23外,其余每局甲队获胜的概率都是12,假设每局比赛结果相互独立. (1)求甲队分别以3:0,3:2获胜的概率;(2)若比赛结果为3:0,胜方得3分,对方得0分,比赛结果为3:1,胜方得3分,对方得1分,比赛结果为3:2,胜方得3分,对方得2分,求甲队得分的分布列和数学期望.【答案】(1)甲队分别以3:0,3:2获胜的概率分别为11,84;(2)分布列见解析;期望为178.【分析】(1)根据相互独立事件的概率公式计算可得;(2)由题意知,随机变量X 的所有可能的取值,根据事件的互斥性计算概率值,从而写出X 的分布列,求出所对应的数学期望.【详解】解:(1)甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,记“甲队以3:0获胜”为事件A ,记“甲队以3:2获胜”为事件B ,3223234111121(),()1282234P A C P B C ⎛⎫⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪⎪⎝⋅⋅ ⎪⎝⎭⎝⎭⎭⎝⎭, 所以甲队分别以3:0,3:2获胜的概率分别为11,84.(2)若甲队得3分,则甲胜,结果可以为3:0,3:1,3:2,若甲队得0分,1分,2分,则甲败,结果可以为0:3,1:3,2:3,设甲队得分为X 则X 的可能取值为0、1、2、3,303111(0)1228P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⋅⎭⋅⎝, 12131113(1)1122216P X C ⋅⋅⋅⎛⎫⎛⎫⎛⎫==--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 2224111(2)1122382P X C ⎛⎫⎛⎫⎛⎫==⋅--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⋅⋅ 32122322334*********(3)112222222316P X C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⋅⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅ X 的分布列为:甲队得分的数学期望31917()123168168E X =⨯+⨯+⨯= 22.已知函数()()2e 2e x xf x a a x =+--(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)见解析;(2)(0,1).【详解】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)∈+∞a ,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(),-∞+∞,()()()()2221121x x x xf x ae a e ae e =+---'=+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(),-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(),ln x a ∈-∞-时,()0f x '<;当()ln ,x a ∈-+∞时,()0f x '>,所以()f x 在(),ln a -∞-单调递减,在()ln ,a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为()1ln 1ln f a a a-=-+. ①当1a =时,由于()ln 0f a -=,故()f x 只有一个零点; ②当()1,a ∈+∞时,由于11ln 0a a-+>,即()ln 0f a ->,故()f x 没有零点; ③当()0,1a ∈时,11ln 0a a-+<,即()ln 0f a -<. 又()()4222e 2e 22e 20f a a ----=+-+>-+>,故()f x 在(),ln a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>- ⎪⎝⎭,则()()00000000e e 2e 20n n n nf n a a n n n =+-->->->.由于3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()f x 在()ln ,a -+∞有一个零点.综上,a 的取值范围为()0,1.点睛:研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x有2个零点求参数a的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调与其交点的个数,从而求出a的取值范围;第二种方法是直性、极值、最值,判断y a接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
高二下学期期末考试理科数学试题 (含答案)
高二下学期期末考试理科数学试题(含答案)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合A=﹛-2,0,2﹜,B=﹛x |x 2-x -2=0﹜,则A∩B= ( )(A) ∅ (B ){2} (C ){0} (D) {-2}2.复数的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i3.已知命题p :∃x 0∈R ,lg x 0<0,那么命题 ⌝p 为A. ∀x ∈R ,lg x >0B. ∃x 0∈R ,lg x 0>0C. ∀x ∈R ,lg x ≥0D. ∃x 0∈R ,lg x 0≥04.已知向量(2,1)a =,(3,)b m =,若(2)//a b b +,则m 的值是( )A .32B .32-C .12D .12- 5.已知实数,x y 满足3141y x x y y ≤-⎧⎪+≤⎨⎪≥⎩,则目标函数z x y =-的最大值为( )A .-3B .3C .2D .-26.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) (A ) 5 (B(C ) 2 (D ) 17.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727 (B ) 59 (C )1027 (D) 13 8.若21()nx x -展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84- B. 84 C. 36- D. 369.已知三棱锥P ABC -的三条棱PA ,PB ,PC 长分别是3、4、5,三条棱PA ,PB ,PC 两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是 ( )A .25π B.50π C. 125π D.都不对10.已知ω>0,函数f(x)=sin(ωx +4π)在(2π,π)上单调递减,则ω的取值范围是( ) (A )[21,45] (B )[21,43] (C )(0,21] (D )(0,2] 11.已知双曲线2222:1x y C a b-=(0a >,0b >)的左顶点为M ,右焦点为F ,过左顶点且斜率为l 的直线l 与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,双曲线C 的离心率为( ) A . 3 B .2 C. 53 D .4312.若存在实数[ln3,)x ∈+∞,使得(3)21x a e a -<+,则实数a 的取值范围是( )A .(10,+∞)B .(-∞,10) C. (-∞,3) D .(3,+∞)二、填空题(本题共4道小题,每小题5分,共20分)13.已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14.已知3()5sin 8f x x a x =+-,且(2)4f -=-,则(2)f = .15.函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.16.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且()2cos cos a b C c B -⋅=⋅.(1)求角C 的大小;(2)若2c =,ABC ∆.18.设数列{}n a 的前n 项和为n S ,满足112n n a S -=,又数列{}n b 为等差数列,且109b =,2346b b b ++=. (1)求数列{}n a 的通项公式;(2)记112n n n a c b b ++=,求数列{}n c 的前n 项和n T .19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值. 附:相关系数公式∑∑∑===----=n i i n i in i ii y y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,,//AD CD AB CD ⊥,122AB AD CD ===,点M 是线段EC 的中点.(1)求证://BM 面ADEF ;(2)求平面BDM 与平面ABF 所成锐二面角的余弦值.21.已知椭圆C :12222=+by a x (a >b >0)的焦点在圆x 2+y 2=3上,且离心率为23. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的直线l 与椭圆C 交于A ,B 两点,F 为右焦点,若△F AB 为直角三角形,求直线l 的方程.22.已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间;(2)证明:当2a e≥时, ()x f x e ->.试卷答案1.BB=﹛-1,2﹜,故A B=﹛2﹜.2.D略3.C4.A5.C6.BAC=1,但ABC ∆为直角三角形不是钝角三7.C该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为ππ5420=2710. 8.B略9.B10.A 592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C 另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤11.B12.B13.14.-1215.1(x )=sin(x +φ)-2sin φcos x =sin x cos φ-sin φcos x =sin(x -φ),故其最大值为1.16.817.(1)由()2cos cos a b C c B -⋅=⋅得2sin sin cos AcosC BcosC BsinC =+∴2sin cos sin A C A = ∴1cos 2C =∵0C π<< ∴3C π=(2)∵1sin 2ABC S ab C ∆=∴4ab = 又2222()23c a b abcosC a b ab =+-=+-∴2()16a b += ∴4a b += ∴周长为6.18.(1)设{}n b 的公差为d ,则1199366b d b d +=⎧⎨+=⎩ ∴101b d =⎧⎨=⎩∴1n b n =-当1n =时,11112a S -=,∴12a =当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-∴12n n a a -= ∴2n n a =(2)由(1)知 11,2n b n a =-=,()211211n c n n n n ⎛⎫==- ⎪++⎝⎭ ∴1211111212231n n T c c c n n ⎛⎫=+++=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-= ⎪++⎝⎭ 19.(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分 因为51()()(3)(1)000316i i i x x y y =--=-⨯-++++⨯=∑, …………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分==…………………………4分所以相关系数()()0.95n i i x x y y r --===≈∑.………5分 因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.……………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当70X >时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元.…………8分当5070X ≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元. ……………………………9分当50X <时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元, 所以商家在过去50周周总利润的平均值为4600元. ………………………12分20.(1)证明:取DE 中点N ,连,MN AN 则//MN AB ,且MN AB =∴ABMN 是平行四边形,∴//BM AN∵BM ⊄平面ADEF ,AN ⊂平面ADEF ,∴//BM 平面ADEF(2)如图,建立空间直角坐标系,则()()()()()2,0,0,2,2,0,0,4,0,0,0,0,0,0,2A B C D E因为点M 是线段EC 的中点,则()0,2,1M ,()0,2,1DM =,又()2,2,0DB =.设()111,,n x y z =是平面BDM 的法向量,则1111220,20DB n x y DM n y z ⋅=+=⋅=+=.取11x =,得111,2y z =-=,即得平面BDM 的一个法向量为()1,1,2n =-.由题可知,()2,0,0DA =是平面ABF 的一个法向量.设平面BDM 与平面ABF 所成锐二面角为θ,因此,cos 2DA n DA n θ⋅===⨯⋅. 21.解:(Ⅰ)因为椭圆的焦点在x 轴上,所以焦点为圆x 2+y 2=3与xa=2.分 (Ⅱ)当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y=kx ,设A(x 1,y 1),B(x 2,y 2).(ⅰ)当FA ⊥FB消y 得(4k 2+1)x 2-4=0.则x 1+x 2=0此时直线l 分 (ⅱ)当FA 与FB此时直线l综上,直线l 分 22.(1)函数()ln a f x x x =+的定义域为()0,+∞. 由()ln a f x x x =+,得()221a x a f x x x x ='-=-.………1分 ①当0a ≤时, ()0f x '>恒成立, ()f x 递增,∴函数()f x 的单调递增区间是()0,+∞ ………2分②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分(2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln x a x e x-+>,………5分 即ln x x x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+, 当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e =时, ()min 1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()x x xe φ-=,则()()1x x x x e xe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<.所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max 1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e ≥时, (f x )x e ->.………12分。
2020-2021年高二数学理科下学期期末考试试题(含解析)
2020-2021年⾼⼆数学理科下学期期末考试试题(含解析)第⼆学期期末统考试卷⾼⼆理科数学注意事项:(1)答卷前,考⽣务必⽤直径0.5毫⽶⿊⾊墨⽔签字笔将⾃⼰的学校、姓名、班级、考点等信息填写清楚,并在规定位置贴好条形码。
(2)请将答案填写在答题卡相应位置上,否则作答⽆效,考试结束,只交答题卡。
(3)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分,满分150考试时间120分钟。
第Ⅰ卷(选择题,共60分)⼀、选择题;本题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的 1.已知i 为虚数单位,z 41ii=+,则复数z 的虚部为() A. ﹣2i B. 2iC. 2D. ﹣2【答案】C 【解析】【分析】根据复数的运算法则,化简得22z i =+,即可得到复数的虚部,得到答案.【详解】由题意,复数()()()41422111i i i i z i i i ?-==+++-=,所以复数z 的虚部为2,故选C. 【点睛】本题主要考查了复数的概念,以及复数的除法运算,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能⼒,属于基础题.2.已知直线l 1:310ax y +-=与直线l 2:6430x y +-=垂直,则a 的值为()A. ﹣2B. 92-C. 2D.92【答案】A 【解析】【分析】根据两直线垂直的条件,得到6340a ?+?=,即可求解,得到答案.【详解】由题意,直线l 1:310ax y +-=与直线l 2:6430x y +-=垂直,则满⾜6340a ?+?=,解得2a =-,故选A.【点睛】本题主要考查了两条直线的位置关系的应⽤,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能⼒,属于基础题.3.数列{}n a 满⾜3OA OB ?=-u u u v u u u v(2,)n n N ≥∈是数列{}n a 为等⽐数列的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】分析:由反例得充分性不成⽴,再根据等⽐数列性质证必要性成⽴.详解:因为0n a =满⾜211n n n a a a -+=,所以充分性不成⽴若数列{}n a 为等⽐数列,则11n n n na aa a +-=211 n n n a a a -+=,,即必要性成⽴. 选B.点睛:充分、必要条件的三种判断⽅法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图⽰相结合,例如“p ?q ”为真,则p 是q 的充分条件.2.等价法:利⽤p ?q 与⾮q ?⾮p ,q ?p 与⾮p ?⾮q ,p ?q 与⾮q ?⾮p 的等价关系,对于条件或结论是否定式的命题,⼀般运⽤等价法.3.集合法:若A ?B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.4.设 ()f x n 是函数 () f x 的导函数,()y f x =n 的图象如图所⽰,则()y f x =的图象最有可能的是 ()n nA. B. C. D.【答案】C 【解析】由导函数()y f x =n 的图象可得当0x <或2x >时,()0f x '>,当02x <<时,()0f x '<,所以函数()f x 的增区间为(,0)-∞和(2,)+∞,减区间为(0,2)。
高二下学期数学理科期末测试
高二下学期数学理科期末测试安阳市实验中学一、选择题。
1.已知复数1z i =-,则221z zz --等于( )A .2iB .-2iC .2D .-22.设曲线2y ax =在点(1,)a 处的切线与直线260x y --=平行,则a 等于 ( )A .1B .12C . 12-D .-13.64(1(1-的展开式中x 的系数是( )A .-4B .-3C .3D .44.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火矩手,若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为 ( ) A .151 B .168C .1306D .14085.观察两个相关变量的如下数据:x-1-2 -3 -4 -5 5 4 3 2 1 y -0.9-2-3.1-3.9-5.1 54.12.9 2.10.9 则两个变量间的回归直线方程为( )A .ˆ0.51yx =- B .ˆy x = C .ˆ20.3yx =+ D .ˆ1y x =+ 6.已知随机变量x 服从正态分布2(3,)N s ,则(3)P x <等于( )A .15 B .14 C .13D .127.由直线1,22x x ==,曲线1y x =及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 28.已知)(x f 是定义在),0(+¥上的非负可导函数,且满足()0)(/£+x f x xf ,对任意正数b a ,,若b a <,则必有 ( )A )()(a bf b af £B )()(b af a bf £C )()(b f a af £D )()(a f b bf £9.12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( ) A .2283C AB .2686C AC .2286C AD .2285C A10.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是 ( ) A .0.665 B .0.56 C .0.24 D .0.285 11.如图,一环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总 数为 ( ) A .96 B .84 C .60 D .48 12.已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==的图象可能是 ( )二、填空题。
广东省深圳市高级中学高二数学理下学期期末试卷含解析
广东省深圳市高级中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 双曲线的焦点坐标是()A.B.C.(0,±2)D.(±2,0)参考答案:C【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程分析可得其焦点位置以及c的值,由此可得其焦点坐标.【解答】解:根据题意,双曲线的方程为:,其焦点在y轴上,且c==2;则其焦点坐标为(0,±2),故选:C.2. 下列各式中,最小值等于2的是()A. B. C. D.参考答案:D略3. 下列说法错误的是().A.平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;B.一个平面内的两条相交直线与另外一个平面平行,则这两个平面平行;C.一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直。
D.如果两个平行平面同时和第三个平面相交,则它们的交线平行。
参考答案:C 4. 将点M的极坐标化成直角坐标是( )A. B. C. (5,5) D. (-5,-5)参考答案:A本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A5. 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数参考答案:C6. 已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2﹣2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A.3 B.C.D.2参考答案:D【考点】直线和圆的方程的应用.【专题】计算题;转化思想.【分析】先求圆的半径,四边形PACB的最小面积是2,转化为三角形PBC的面积是1,求出切线长,再求PC的距离也就是圆心到直线的距离,可解k的值.【解答】解:圆C:x2+y2﹣2y=0的圆心(0,1),半径是r=1,由圆的性质知:S四边形PACB=2S△PBC,四边形PACB的最小面积是2,∴S△PBC的最小值=1=rd(d是切线长)∴d最小值=2圆心到直线的距离就是PC的最小值,∵k>0,∴k=2故选D.【点评】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,是中档题.7. 如下分组正整数对:第1组为第2组为第3组为第4组为依此规律,则第30组的第20个数对是( )A. (12,20)B. (20,10)C. (21,11)D. (20,12)参考答案:C【分析】本题首先可根据题意找出每一组以及每一个数对所对应的规律,要注意区分偶数组与奇数组的不同,然后根据规律即可得出第组的第个数对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期数学理科期末测试安阳市实验中学一、选择题。
1.已知复数1z i =-,则221z zz --等于( )A .2iB .-2iC .2D .-22.设曲线2y ax =在点(1,)a 处的切线与直线260x y --=平行,则a 等于 ( )A .1B .12C . 12-D .-13.64(1(1的展开式中x 的系数是( )A .-4B .-3C .3D .44.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火矩手,若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为 ( ) A .151B .168C .1306D .14085则两个变量间的回归直线方程为( )A .ˆ0.51yx =- B .ˆy x = C .ˆ20.3yx =+ D .ˆ1y x =+ 6.已知随机变量ξ服从正态分布2(3,)N σ,则(3)P ξ<等于( )A .15B .14 C .13D .127.由直线1,22x x ==,曲线1y x =及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 28.已知)(x f 是定义在),0(+∞上的非负可导函数,且满足()0)(/≤+x f x xf ,对任意正数b a ,,若b a <,则必有 ( )A )()(a bf b af ≤B )()(b af a bf ≤C )()(b f a af ≤D )()(a f b bf ≤9.12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( )A .2283C AB .2686C AC .2286C AD .2285C A10.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是 ( ) A .0.665 B .0.56 C .0.24 D .0.285 11.如图,一环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总 数为 ( ) A .96 B .84 C .60 D .48 12.已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==的图象可能是 ( )二、填空题。
13为了判断主修统计专业是否与性别有关,根据表中数据,判定主修统计专业与性别有关系,那么这种判断出错的可能性为 .14.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率相同且灯口向下放着.现需要一只卡口灯泡使用,电工师傅每从中任取一只并不放回,则他直到第3次才取得卡口灯泡的概率为 . 15.二项式10)211(x -的展开式中含51x的项的系数是 .16.已知函数[]2,2,)(23-∈+++=x c bx ax x x f 表示过原点的曲线,且在1±=x 处的切线的倾斜角均为π43,有以下命题: ①)(x f 的解析式为[]2,2,4)(3-∈-=x x x x f ; ②)(x f 的极值点有且只有一个; ③)(x f 的最大值与最小值之和等于零; 其中正确命题的序号为_ .三、解答题。
17.7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?(1)两中女生必须相邻而站; (2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的一种顺序站; (4)老师不站中间,女生不站两端.18.已知(41x +3x 2)n展开式中的倒数第三项的系数为45,求:(1)含x 3的项; (2)系数最大的项.19.甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约. 甲表示只要面试合格就签约. 乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约. 设每人面试合格的概率都是12,且面试是否合格互不影响. 求: (1)至少有1人面试合格的概率; (2)签约人数ξ的分布列和数学期望.20若由资料知,y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?21.(本小题满分10分)已知函数c bx x ax x f -+=44ln )()0(>x 在1=x 处取得极值c --3,其中c b a ,,为常数.(1)求b a ,的值;(2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式02)(2≥+c x f 恒成立,求c 的取值范围.选做题(二选一)22.(本小题满分10分)如图,已知⊙1O 与⊙2O 外 切于点P ,AB 是两圆的外公切线,A ,B 为切 点,AB 与21O O 的延长线相交于点C ,延长AP 交⊙2O 于 点D ,点E 在AD 延长线上. (1)求证:ABP ∆是直角三角形;(2)若AE AP AC AB ⋅=⋅,试判断AC 与EC 能否一定垂直?并说明理由.22.(本小题满分10分)设函数=)(x f lg(|3||7|)x x ++-a -.(1)当1=a 时,解关于x 的不等式0)(>x f ; (2)如果R x ∈∀,0)(>x f ,求a 的取值范围.参考答案一、1.B2.A3.B4.B5.B6.D7.D8.A9.C 10.A 11.B 12.D 二、13. 0.05 14. 7120 15.863- 16.①③ 三、17.解:(1)2名女生站在一起有站法22A 种,视为一种元素与其余5个全排,有66A 种排法, ∴有不同站法2626A A ⋅=1440种; (2)选站老师和女生,有站法33A 种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,有插入方法44A 种, ∴共有不同站法3434144.A A ⋅=种(3)7人全排列中,4名男生不考虑身高顺序的站法有44A 种,而由高到低有从左到右,或从右到左的不同,∴共有不同站法77442A A ⋅=420种;(4)中间和两侧是特殊位置,可如下分类求解:(1)老师站两侧之一,另一侧由男生站,有115245A A A ⋅⋅种站法;(2)两侧全由男生站,老师站除两侧和正中外的另外4个位置之一,有214444A A A ⋅⋅种站法, 19.解:用A 、B 、C 分别表示事件甲、乙、丙面试合格.由题意知A 、B 、C 相互独立,且1()()()2P A P B P C ===. (1)至少有1人面试合格的概率是3171()1()()()1().28P ABC P A P B P C -=-=-= (2) ξ的可能取值为0,1,2,3.(0)()()()P P ABC P ABC P ABC ξ==++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++3331113()()().2228=++= (1)()()()P P ABC P ABC P ABC ξ==++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++3331113()()().2228=++= 1(2)()()()().8P P ABC P A P B P C ξ====1(3)()()()().8P P ABC P A P B P C ξ====所以, ξ的分布列是ξ的期望0123 1.8888E ξ=⨯+⨯+⨯+⨯=20.解:(1)依题列表如下:521522215112.354512.31.239054105ii i i xx yb x x==--⨯⨯====-⨯-∑∑, 5 1.2340.08a y b x =-=-⨯=. ∴回归直线方程为1.230.08y x =+. (2)当10x =时, 1.23100.0812.38y =⨯+=万元. 即估计用10年时,维修费约为12.38万元.21.解:(1))4ln 4()(3/b a x a x x f ++=,0)1(='f ,∴04=+b a ,又c f --=3)1(,∴3,12-==b a ;(2)x x x f ln 48)(3/=()0>x∴由0)(/=x f 得1=x ,当10<<x 时,0)(/<x f ,)(x f 单调递减; 当1>x 时,0)(/>x f ,)(x f 单调递增;∴)(x f 单调递减区间为)1,0(,单调递增区间为),1(+∞ (3)由(2)可知,1=x 时,)(x f 取极小值也是最小值c f --=3)1(, 依题意,只需0232≥+--c c ,解得23≥c 或1-≤c 选做题22.解:(1)证明:过点P 作两圆公切线PN 交AB 于N ,由切线长定理得NB NA NP ==,∴PAB ∆为直角三角形(2)EC AC ⊥证明:∵AE AP AC AB ⋅=⋅, ∴ACAEAP AB =,又EAC PAB ∠=∠, ∴PAB ∆∽CAE ∆∴,900=∠=∠APB ECA 即EC AC ⊥.22.解:(1)当1a =时,原不等式可变为|3||7|10x x ++->,可得其解集为{|3,7}.x x x <->或(2)因|3||7|3(7)|10x x x x ++-≥+--=|对任意x R ∈都成立. ∴lg(|3||7|)lg101x x ++-≥=对任何x R ∈都成立.∵lg(|3||7|)x x a ++->解集为R .∴1a <。