梁的支座反力计算和内力图绘制的简便方法
结构力学二3-静定结构的内力计算
![结构力学二3-静定结构的内力计算](https://img.taocdn.com/s3/m/dcd01c7d01f69e31433294e1.png)
以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线
⊕
⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线
→
↑
利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓
梁的计算简图3
![梁的计算简图3](https://img.taocdn.com/s3/m/071ff9cae109581b6bd97f19227916888486b928.png)
1、悬臂梁:梁的一端自由, 另一端是固定支座。
返回
第 1 节 梁的计算简图
2、简支梁:梁的支座一端 是固定铰支座,另一端 是活动铰支座。
第五章 梁弯曲时内力
返回
第 1 节 梁的计算简图
3、外伸梁:梁的支座与 简支梁相同,只是梁 的一端或两端伸出在 支座之外。
第五章 梁弯曲时内力
返回
第 1 节 梁的计算简图
通用机床都具有较宽的工艺范围;数控机床的工艺范 围比传统通用机床更宽,使其具有良好的柔性;专用机 床和专门化机床则应合理地缩小工艺范围。
第 1 节 Leabharlann 的计算简图第五章 梁弯曲时内力
2.柔 性
机床的柔性,是指其适应加工对象变化的能力,包括 空间上的柔性和时间上的柔性。
所谓空间柔性也就是功能柔性。包括机床的通用性和同 一时期的机床重构能力;例如:对加工控制软件进行调 整或修改,适应多种零件的加工要求。
加工精度 指加工后零件对理想尺寸、形状、位置的符 合程度。影响加工精度的因素很多,与机床本身的几何 精度、传动精度、运动精度、定位精度和低速平稳性、 动态刚度、热变形等有关。
第 1 节 梁的计算简图
第五章 梁弯曲时内力
5.生产率和自动化程度
生产率是指在单位时间内机床加工合格产品的数量。要提 高生产率,必须缩短单个零件的加工时间、装卸时间和分 摊的准备终了时间。
2.2.3 抗振性
指抵抗受迫振动的能力(即抗振性)和抵抗自激 振动的能力(即切削稳定性)。
1、受迫振动 2、自激振动
3、影响机床振动的因素:
(1)机床的静刚度 (2)机床的阻尼特征 (3)机床系统的固有频率
第 1 节 梁的计算简图
第五章 梁弯曲时内力
材料力学第4讲-利用微分关系绘制梁内力图
![材料力学第4讲-利用微分关系绘制梁内力图](https://img.taocdn.com/s3/m/bef9e91fad02de80d5d84007.png)
在CD和DB段,剪力为负值,弯矩图
1.7 为向下倾斜的直线.
最大弯矩发生在剪力改变正、负号的 C
截面处.说明剪力图和弯矩图是正确的.
27 +
例题3-4-2 一简支梁受均布荷载作用,其集度 q=100kN/m ,如图 所示.试用简
易法作此梁的剪力图和弯矩图. 解:(1) 计算梁的支反力
FRA FRB 0.5 100 1.6 80kN
(1)梁的载荷集度函数、剪力函数和弯矩函数之间的 微分关系
(2)利用微分关系的绘制简单梁的内力图 (3)利用微分关系绘制多跨静定的内力图 (4)根据梁的内力图反推梁的荷载图 2.5 应用叠加原理绘制梁的内力图(待学习) 2.6 刚架和组合变形杆件的内力分析(待学习)
2.4 利用微分关系绘制梁的内力图
dFS ( x) q( x) dx
dM ( x) dx
FS
(
x)
(3)内力的极值点位置的判断 1)最大剪力可能发生在集中力所在截面的一侧;或
发生在剪力图有转折的截面处或杆件的端部.
2)梁上最大弯矩 Mmax可能发生在均布荷载作用区段 内FS(x) = 0 的截面上; 或发生在杆件中部弯矩发生
转折或突变处,或发生在杆件的端部。
将梁分为 AC、CD、DB 三段.
AC和DB上无荷载,CD 段有向下的
均布荷载.
(2)剪力图 AC段 水平直线
FSA右 FRA 80kN
CD段 向右下方的斜直线
FRA
A C
0.2 1
FS
(kN)
80
q
FRB
B
D
1.6
2
+
FSC FRA 80kN
FSD FRB 80kN
结构力学 第3章静 定梁、平面刚架受力分析
![结构力学 第3章静 定梁、平面刚架受力分析](https://img.taocdn.com/s3/m/599669cfa76e58fafbb00345.png)
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力
建筑力学李前程教材第六章习题解
![建筑力学李前程教材第六章习题解](https://img.taocdn.com/s3/m/285cea87360cba1aa811da85.png)
(x)
FA x
q
x
x 2
14.5x
qx2 2
(2m x 6m)
DB段
Fs (x) FB 3.5 (0 x 2m)
M (x) FBx (0 x 2m)
FA q 3kN m m=3kN.m FB
Ax x
2m
4m
B D
x 2m
8.5kN
Fs图
+ -
6kN
FB
a l
F,
FA
b l
F
(2) 将梁分为AC、CB 两段,
C
分析AC、CB 两段的内力图形状。
两段上不受外力作用,则有: 剪力图为水平线;弯矩图为斜直线。
(3) 计算各段内力极值
AC 段
FsA
FA
b l
F,
MA 0
FsC左 =FsCL
b FA = l F,
M CL
FA a
ab F l
建筑力学
(六) 主讲单位: 力学教研室
1
第六章 静定结构的内力计算
第一节 杆件的内力·截面法 第二节 内力方程·内力图 第三节 用叠加法作剪力图和弯矩图 第四节 静定平面刚架 第五节 静定多跨梁 第六节 三拱桥 第七节 静定平面桁架 第八节 各种结构形式及悬索的受力特点
2
第六章 静定结构的内力计算
1) 同一位置处左右侧截面上的内力分量必须具有相同的正负号。
2) 轴力以拉(效果)为正,压(效果)为负。
FN FN
FN FN
截面
符号为正
截面
符号为负
求图示斜梁的支座反力6篇
![求图示斜梁的支座反力6篇](https://img.taocdn.com/s3/m/3ef4cc66f342336c1eb91a37f111f18583d00ca0.png)
求图示斜梁的支座反力6篇以下是网友分享的关于求图示斜梁的支座反力的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇1 用截面法计算如图所示外伸梁1-1,2-2, 截面上的内力,其中:M=1Fpa2C解:1)求支座反力MB=0A(a)∑Fp⨯3a-M-FAy⨯2a=0FP⨯a-M+FBy⨯2a=0∑M=0解得:FAy校核:51=Fp(↑)FBy=Fp(↓)4451∑Fy=FAy+FBy-FP=4FP-4FP-FP=02) 用截面依次在1-1,2-2 截面处截开,取左段为研究对象; 图(b):M1∑Fy=0c-FP-FQ1=0Q1(b)FQ1=-FP1-1∑M=0Fpa+M1=0M1=-Fpa2Ay∑Fy=0FAy-FP-FQ2=0 FQ2(c)1FQ2=FP42-2pa22.悬臂梁AB,在自由端受集中力偶M作用,试绘出此梁的剪力图和弯矩图∑M=0F+M=0M2=-FpaAFQ解:1)列剪力方程和弯矩方程• 将坐标x的原点取在A端,由直接法可得3.作剪力图和弯矩图Q0≤x≤L,M(x)=mA(a)FFQ图FQ(x)= Fp左=FAY=bFp /L (0(a) FQ(x) = Fp右=- FBY =-aFp /L,(aMc(x)= Mc(Fp左)= FAY x=bFpx/L(0M(x)= MZ(Fp右) = FBY (L-x)=aFp (L-x) /L, (aFpab/L• AC段:• 在x= 0,处,M(0)=MA= 0• 在x= a处,M(a)=MC=abFp /l, • CB段:在x=a处, M(a)= MC =abFp /l, 在x=0处, M(l)=MB=0, 当aFQ图在x=a处, Mmax =M(a)= MC =abFp /LM4.简支梁受力如图所示,试作出该梁的剪力图和弯矩图。
(a)ANqFAY = FsAFscCAC:0≤x 2FQ(x)=∑FpL=5-2xM(x)=∑Mz(FpL)=5x-x2MCBMC-=6kNm,FSC-=1kNA5k NCD:2≤x≤3 FQ(x)=FpL=5-2⨯2 M(x)=Mz(FpL)=5x-4(x-1)-4=MC+=2kNm, FSC+=∑∑x5 1 24633DB:3≤x≤4FQ(x)=∑Fpr=-3M(x)=∑Mz(FpL)=-3(4-x)课程学习>> 第三章>>典型例题[例题3-2-1]作简支梁的剪力图与弯矩图。
4.4.3静定梁的内力方程及内力图
![4.4.3静定梁的内力方程及内力图](https://img.taocdn.com/s3/m/9e68900d90c69ec3d5bb75d8.png)
4.4.3
梁的内力方程及 内力图
剪力图和弯矩图
剪力方程和弯矩方程
• 若以横坐标x表示横截面在梁轴线上的 位置,则各横截面上的剪力和弯矩皆可表示 为坐标x的函数,即 • Q=Q(x) • M=M(x) • 以上两函数表达了剪力和弯矩沿梁轴线 的变化规律,分别称为梁的剪力方程和弯矩 方程。
பைடு நூலகம் x=0,MA=0
x=l/2,MC=ql2/8 x=l,MB=0 弯矩图如图9.15(c)所示。 从所作的内力图可知,最大剪力发生在梁端,其值为|Qmax|=ql/2,最 大弯矩发生在剪力为零的跨截面,其值为|Mmax|=ql2/8。
【例 9.6】简支梁受集中力P作用如图9.16(a)所示,试画出梁的剪力图和弯矩 图。 【解】(1) 求支座反力 以整梁为研究对象,由平衡方程求支座反力。 ∑mB(F)= 0,-RAl+Pb=0 RA=Pb/l ∑Fy=0,RA+RB-P=0 RB=Pa/l (2) 列剪力方程和弯矩方程 梁在C截面处有集中力P作用,AC段和CB段所受的外力不同,其剪力方 程和弯矩方程也不相同,需分段列出。取梁左端A为坐标原点
剪力图和弯矩图
为了形象地表示剪力和弯矩沿梁轴的变化规律, 把剪力方程和弯矩方程用其图像表示,称为剪力图 和弯矩图。 剪力图和弯矩图的画法与轴力图、扭矩图很相 似,用平行于梁轴的横坐标x表示梁横截面的位置, 用垂直于梁轴的纵坐标表示相应截面的剪力和弯矩。
在土建工程中,习惯上将正剪力画在x轴上方, 负剪力画在x轴的下方;正弯矩画在x轴下方,负弯 矩画在x轴的上方,即把弯矩图画在梁受拉的一侧。
建筑力学第11章静定结构的内力计算
![建筑力学第11章静定结构的内力计算](https://img.taocdn.com/s3/m/1899f2701eb91a37f1115cfd.png)
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
5.2多跨静定梁的内力计算与内力图绘制(精)
![5.2多跨静定梁的内力计算与内力图绘制(精)](https://img.taocdn.com/s3/m/0f57d5384b35eefdc8d333a6.png)
5.2 多跨静定梁的内力计算与内力图绘制一、多跨静定梁的组成单跨静定梁多使用于跨度不大的情况,如门窗、楼板、屋面大梁、短跨的桥梁以及吊车梁等。
通常将若干根单跨梁用铰相连,并用若干支座与基础连接而组成的静定结构称为多跨静定梁。
如图5. 19(a)所示为房屋建筑中一木檩条的结构图,在各短梁的接头处采用斜搭接加螺栓系紧。
由于接头处不能抵抗弯矩,因而视为铰结点。
其计算简图如图5. 19(b)所示。
从几何组成上看,多跨静定梁的组成部分可分为基本部分和附属部分。
如图5. 19(b)所示,其中梁AB 部分,有三根支座链杆直接与基础(屋架)相连,不依赖其它部分构成几何不变体系,称为基本部分;对于梁的EF 和IJ 部分,因它们在竖向荷载作用下,也能独立保持平衡,故在竖向荷载作用下,可以把它们当作基本部分;而短梁CD 和GH 两部分支承在基本部分之上,需依靠基本部分才能保持其几何不变性,故称为附属部分。
为了清楚地看到梁各部分之间的依存关系和力的传递层次,可以把基本部分画在下层,把附属部分画在上层,如图5.19(c)所示,称为层次图。
BCDEFG H I(f)(g)AB CD E F GHA BCDE F GHII(a)(b)(c)(d)(e)ABCDEF GHIA B C D E F G H I JABCD EFG H IJ檩条屋架上弦图5.19二、多跨静定梁的内力计算从受力分析看,由于基本部分能独立地承受荷载而维持平衡,故当荷载作用于基本部分时,由平衡条件可知,将只有基本部分受力,附属部分不受力。
而当荷载作用于附属部分时,则不仅附属部分受力,其反力将通过铰结处传给基本部分,使基本部分同时受力。
由上述基本部分和附属部分力的传递关系可知,多跨静定梁的计算顺序应该是先计算附属部分,后计算基本部分。
计算附属部分时,应先从附属程度最高的部分算起;计算基本部分时,把计算出的附属部分的约束力反其方向,作为荷载作用于基本部分。
材料力学第3讲-绘制梁内力图的基本方法
![材料力学第3讲-绘制梁内力图的基本方法](https://img.taocdn.com/s3/m/233437c784868762caaed599.png)
m dx
②弯矩的正负号规定
(Sign convention for bending moment)
Mm
M
+
当dx 微段的弯曲下凸(即该段的下半
部受拉 )时,横截面m-m上的弯矩为正;
m
-
当dx 微段的弯曲上凸(即该段的下半 部受压)时,横截面m-m上的弯矩为负.
m
m (受压)
【例题2-3-3】图示梁的计算简图.已知 F1、F2,且 F2 > F1 ,尺寸a、b、c 和 l 亦均为已知.试求梁在E、F 点处横截面处的剪力和弯矩.
B
l
Fx 0 , FRAx 0
MA 0 ,
FRB
Fa l
FRAxA
F B
Fy 0 ,
FRAy
F (l l
a)
FRAy
FRB
求内力——截面法
Fy 0 , MC 0 ,
FS
FRAy
F
(l l
a)
M FRAy x
FRAx A FRAy
剪力
x
1)受弯构件的内力
弯矩
①弯矩(Bending moment)) M
《材料力学》第3讲 绘制梁内力图的基本方法
土木工程学院 马守才 2020年3月
授课提纲
复习与提问:上一次课中我们学习了哪些这门课程的哪
些内容?其中比较重要的内容是什么? 新课导入:如何对梁进行内力分析?
讲授新课
2. 杆件的内力分析(本单元共有6节,分5次学习) 2.1 轴力方程与轴力图 (已学习) 2.2 扭矩方程与扭矩图 (已学习) 2.3 绘制梁内力图的基本方法 ?√
n
FS
Fi
i 1左(右)
《结构力学》第三章 静定结构内力计算(1)
![《结构力学》第三章 静定结构内力计算(1)](https://img.taocdn.com/s3/m/0209c55da6c30c2259019e77.png)
技巧:“求谁不管谁”:不考虑待求未知力,而考虑其
它未知力有什么特点,具体分为下面两种情况:
(a)其余未知力平行,在其垂直方向投影。
(b)其余未知力汇交于一点,对该点取矩。
X 0,X A 0;
1
1
MB
0,YA
l ql
l 2
0,YA
ql 2
Y
0,YA
YB
ql
0,YB
1 2
ql
step2:求指定截面内力 (1)取脱离体:从指定c截面截开梁,取左半脱离体为 研究对象,受力如图所示:
轴力、剪力 符号规定
梁、拱的弯 矩符号通常 假定使下侧 受拉为正
2、杆件任一截面上内力的计算---截面法
沿计算截面用一假想截面将构件切开,任取一侧 脱离体为研究对象,利用脱离体的静力平衡条 件,可建立三个平衡方程:
X 0,Y 0,M 0
由此就可求得杆件任一截面上的内力。
注意:
• 脱离体要与周围的约束全部断开,并用相应的约束力 代替。例如,去掉辊轴支座、铰支座、固定支座时应 分别添加一个、二个以及三个支座反力,等等。
(二)简支结构
通过一铰、一链杆或三根链杆与基础相连的结构。
(三)三铰结构
若结构体系(不含基础)有两个刚片,其与基础 的连接满足三刚片法则,则称该体系为三铰结 构。
(四)组合结构
多次运用几何不变体系的简单组成规则构成的结 构。
2、静定结构内力分析(即绘制内力图) 方法
有三种常用的绘制内力图的方法。
(2)熟记几种常见单跨梁的弯矩图,如悬臂梁、简
支梁等。特别记住简支梁在均布荷载、集中力以及集 中力偶作用下的弯矩图。
(1)
(2) (3)
梁长均为L
第一讲 内力及内力图的绘制
![第一讲 内力及内力图的绘制](https://img.taocdn.com/s3/m/ad068ef3102de2bd96058856.png)
(二) 利用截面法确定控制截面 1、梁的分段点; 2、分布载荷段内Fs = 0,的点; 3、集中力作用处; 4、集中力偶作用处。
(三)梁上无分布载荷作用, 剪力图为水平直线:——— ; 弯矩图为斜直线: 剪力为正,弯矩图右上斜直线 剪力为负,弯矩图右下斜直线
+
; 。
-
(四)梁上有向下的分布载荷作用 剪力图为右下斜直线 。
1、在中间铰处拆开, 求中间铰处的约束反力; 2、绘内力图时 看作两个独立的梁; 结论 1、中间铰只传递剪力 不传递弯矩; 2、若中间铰处没有外力偶,弯矩恒等于零
刚架内力图的画法
作刚架内力图的方法和步骤与梁相同;
但因刚架是由不同取向的杆件组成,习惯上按下列约定:
弯矩图,画在各杆的受拉一侧; 不注明正、负号。 剪力图及轴力图,可画在刚架轴线的任一侧 。
考研是一次人生的历练,是强化所学 知识的基本概念、基本理论和基本方法的 训练,重在强化所学知识的理解和掌握, 掌握获取知识和运用知识的方法,提高获 取知识和运用知识的能力、分析问题和解 决问题的能力。 复习考研如古人曰:故立志者,以学 为心也;以学者,立志为事也。复习考研 是意志的磨练、汗水的浇灌、知识的升华、 能力的提高。
x
FS +
O
qa/2
(五)危险截面位置 qa/2
x
qa/2
M -
FS max=ql
M max= ql 2 / 2
-
qa2/2
qa2/2
典型题6
利用微分关系绘制梁的内力图。
q
qa2
B
C a
q
A
a (一)计算梁的支座反力 B FB a
D
qa2
D
C FC
第10章 1,2弯曲的概念及梁的计算简图
![第10章 1,2弯曲的概念及梁的计算简图](https://img.taocdn.com/s3/m/a9b245a5284ac850ad02427c.png)
[例1] 求下列图示梁的内力方程并画出内力图 ] F A L F M 解:①求支反力
FAY = F ; M = FL
B
FAY
15
F A L M
F S ( x) = FAy = F
M ( x) = FAY x − M = F ( x − L)
B
②写出内力方程
FAY
FS ( x)
x
FS(x)
M(x)
l
F S
–
M
b Me l
2 集中力偶作用处 剪力无变化。 集中力偶作用处, 剪力无变化。
⊕
a Me l
–
x
18
[例4] 例 A
q B
l
结论: ★ ★结论 1 受均布力 剪力图是斜直线, 受均布力,剪力图是斜直线, 剪力图是斜直线 弯矩图为抛物线; 弯矩图为抛物线;
F ql/2 S
⊕
–
M
ql2/8 ⊕ ql/2
§10–1.2 弯曲的概念及梁的计算简图
一、弯曲的概念
1. 弯曲(bending): 弯曲( 杆受垂直于轴线的外力或外力偶矩矢
的作用时,轴线变成了曲线,这种变形称为弯曲。 的作用时,轴线变成了曲线,这种变形称为弯曲。
2. 梁:以弯曲变形为主的 构件通常称为梁(beam) (beam)。 构件通常称为梁(beam)。
11
二、剪力方程和弯矩方程
剪力图和弯矩图
内力方程:内力与截面位置坐标( )间的函数关系式。 1. 内力方程:内力与截面位置坐标(x)间的函数关系式。
内力方程包括: 内力方程包括:
FS = FS ( x )
剪力方程 弯矩方程
M = M (x) 剪力图和弯矩图: 2. 剪力图和弯矩图: 剪力图 弯矩图
第四章 梁的内力
![第四章 梁的内力](https://img.taocdn.com/s3/m/ad850319a2161479171128c3.png)
q=2kN/m MC B
M C ( F ) 0
l ql 2 M C FB 4.5kN m 2 8
l/4 FSC
FSC
l/2
FB
图4.11
三、用直接法求剪力、弯矩 F=5kN
直接法:梁任一横
截面上的剪力在数 值上等于该截面一
(a)
q=2kN/m
F=5kN
A C l/4 FA l/4
F
A
B
x
例题:作悬臂梁的剪
x
l FS
x
力图和弯矩图。
解:建立坐标系,将坐 标原点取在梁的左端, 写出梁的剪力方程和弯 矩方程 :
FS图
F
FS (x) F
x
(0 x l) (0 x l)
M(x) Fx
M
M图
x 0时,M(0) 0 x l时, M(l) Fl
FRA
A
x
q
FRB
例题:作如图简支梁
的剪力图和弯矩图。
解:先求两个支反力
FRA FRB ql 2
B
l
FRA
A
q
M(x) FS (x)
建立坐标系,梁的剪力
x
方程和弯矩方程为:
ql FS (x) FRA qx qx (0 x l) 2 x qlx qx 2 M(x) FRA x qx (0 x l) 2 2 2
FRA
A
x
q
FRB
由弯矩方程得弯矩图为一 条二次抛物线。
B
l
x 0,
M 0
ql 2
x =l ,
解:1、求截面C的剪力和弯矩
梁的内力图-剪力图和弯矩_OK
![梁的内力图-剪力图和弯矩_OK](https://img.taocdn.com/s3/m/f27990374028915f814dc23d.png)
2021/9/10
2
2021/9/10
返回 3
返回
2. 直梁在简单荷载作用下的内力图特征 直梁在简单荷载作用下的内力图特征见表4-2。
2021/9/10
4
返回
3. 梁内力图的规律 (1) 无荷载区:剪力图为零线,弯矩图为水平直线;剪力图为 水平直线,弯矩图为斜直线。 (2) 集中力作用处:剪力图突变,突变的绝对值等于集中力的 大小,突变的方向与集中力方向相同;弯矩图折成尖角,尖角 方向与集中力方向相同。 (3) 集中力偶作用处:剪力图无变化;弯矩图突变,突变的绝 对值等于力偶矩的大小,突变的方向为顺时针力偶向下降,逆 时针力偶向上升。 (4) 均布荷载区:当均布荷载作用方向向下时,剪力图为下倾 斜直线,变化的绝对值等于均布荷载的合力;弯矩图为向下凸 的抛物线。 (5) 剪力与弯矩的关系:当剪力图为正时,弯矩图斜向右下方; 当剪力图为负时,弯矩图斜向右上方;剪力为零的截面,弯矩 有极值;梁后控制截面弯矩等于前控制截面弯矩加上前后截面 间剪力图的“面积”。
通过观察本例 可以发现:因为该外伸梁结构的几何 形状、受到的竖向荷载均左右相同,具有对称性, 所以弯矩图在对称位置的弯矩数值和符号相等,具 有对称性(工程上把这种对称称为正对称),剪力 图在对称位置的剪力数值相等、符号相反,也具有 对称性(工程上把这种对称称为反对称)。土木工 程中对称结构使用非常广泛,一方面对称美符合人 们的审美要求,另一方面结构受力合理,不仅可以 简化计算,而且也可以简化设计计算和提高施工的 效率。
15
2021/9/10
5
返回
记住:梁的两端无集中力偶作用,弯矩必为零。这 种通过对特定梁的内力图的讨论,探究内力图的一 般规律,并用该规律简捷绘制梁的内力图的方法, 是工作中分析问题、解决问题的一种常用方法。
支护结构反力计算方法123
![支护结构反力计算方法123](https://img.taocdn.com/s3/m/c93ee784a0116c175f0e48e8.png)
② 再对C支点进行弯矩分配 MCg ' = MCg + MCDC = (-11) + 96.8 = 86.8 kN⋅m 与其相应的分配弯矩和传递弯矩分别为: MCBµ = 0.391×86.8 = -33.9 kN⋅m, MCDµ = 0.609×86.8 = -52.7 kN⋅m MDCC = (1/2)×(-52.7) = -26.4 kN⋅m 此时,C点达到了基本平衡,D点又有了新的不平衡弯 矩 MDg ' = MDCC = -26.4 kN⋅m,不过已经小于原先的不 平衡弯矩。按照完全相同的步骤,继续依次在结点C和 D消去不平衡弯矩,则不平衡弯矩将越来越小。经过若 干次同样的计算以后,到传递力矩小到可以忽略不计 时,便可停止进行。此时,挡土桩墙已非常接近其真 实平衡状态。
RF = 388kN
(八)复核488型钢的强度
进口SM50及488×30的截面系数Wx = 2910cm3,[σ] = 200MPa,计算最大弯矩为485kN⋅m,H型钢中心距为 1.1m,因此: Mmax = 485×1.1=533.5kN⋅m, σmax = Mmax / Wx = 183.3MPa < [σ] = 200MPa 强度满足要求
悬臂段为5m,但施工时必须多挖50cm深才能作锚杆, 因此须按5.5m悬臂计算。图3-39为桩顶变形计算简图。
(11q1 4q2 )l 4 fA 120 EI
=16.4mm 图3-39 桩顶变形计算简图 因H型钢桩中心距为1.1m ,故须乘1.1 ,同时考虑土体变 形乘以3,桩顶变形为 16.4×1.1×3 = 54mm
(Kp – Ka) = 19(11.8 – 0.33) = 217.9kN/m3
y eaH 150 .6 0.69m γ( K P K a ) 217 .9
材料力学中基本变形下内力求解的简便方法
![材料力学中基本变形下内力求解的简便方法](https://img.taocdn.com/s3/m/56e38a32b6360b4c2e3f5727a5e9856a56122612.png)
[收稿时间]2020-04-12[基金项目]天津市普通高等学校本科教学质量与教学改革研究计划(B201079206)、天津城建大学教育教学改革与研究(JG-1401)、天津市企业科技特派员(19JCTPJC47400)和天津市自然科学基金(18JCQNJC77900)资助项目。
[作者简介]尚伟(1983-),男,河北唐山人,博士,副教授,主要研究方向:实验固体力学。
[摘要]文章结合土木类专业和材料力学课程的特点,探索材料力学中基本变形下内力求解的简便方法。
在研究构件的强度和刚度等问题时,均与内力这个因素有关,经常需要知道构件在已知外力作用下某一截面上的内力值。
文章在截面法的基础上总结出了轴向拉压、扭转和弯曲基本变形形式下构件内力求解的简便方法。
内力与外力有关,等于外力或外力矩的代数和,而外力和外力矩符号的确定是关键。
此方法的优点是将外力和外力矩的符号与变形联系起来,更加方便记忆和应用,实现了将材料力学中的理论转化为解决工程问题的工具。
[关键词]土木类专业;材料力学;基本变形;内力;截面法[中图分类号]O341;G642[文献标识码]A [文章编号]2095-3437(2021)06-0083-04University Education材料力学是土木工程等专业的学科基础课,它以高等数学、理论力学、大学物理等课程为基础,同时又为结构力学以及一系列专业课打下重要基础。
材料力学课程的基本任务是将工程结构中的简单构件简化为杆件,并对杆中的应力、变形以及稳定性进行计算分析,保证结构能承受预定的载荷,选择适当的材料、截面形状和尺寸,设计出既安全又经济的结构构件。
课程目标为利用材料力学的常用分析方法,研究杆件四种基本变形及其受力变形的基本规律,建立工程相关力学问题的基础知识和知识结构,为后续课程打下重要基础。
通过学习杆件强度、刚度、稳定性等基本知识,掌握简单超静定、应力状态、强度理论、组合变形及压杆稳定等复杂工程问题的分析方法,培养学生分析问题与解决问题的能力。
画刚架内力图的简便方法+辅导课(8-1)
![画刚架内力图的简便方法+辅导课(8-1)](https://img.taocdn.com/s3/m/018d1a2d0066f5335a812152.png)
绘制刚架的内力图的简便方法 绘制刚架的内力图的简便方法 1、求出水平支座反力(直观确定); 求出水平支座反力(直观确定); 水平支座反力 2、由公式法求部分杆端弯矩,由区段叠 公式法求部分杆端弯矩, 弯矩 加法画弯矩图 画弯矩图; 加法画弯矩图; 3、由M图画V图(dM(x)/dx=V(x) ); 图画V 4、由V图画N图(取刚结点为研究对象)。 图画N 刚结点为研究对象)。
40 kN D B 20 kN/m C 4m
20
B
80kN
20
A 2m
2m
N图(kN) 图
0
NBD
MBA=160kN.m(右拉 右拉) 右拉
NBA
10kN
练习题:作出图示两跨静定刚架的弯矩图。 练习题:作出图示两跨静定刚架的弯矩图。 两跨静定刚架的弯矩图
8 D 4 4 E F 4 G 4
A
B
C
画刚架内力图的简便方法 简便方法+ 画刚架内力图的简便方法+辅导课
教学 讲练结合 方法 熟练掌握静定平面刚架内力图绘制方法 教学 熟练掌握静定平面刚架内力图绘制方法 目的 内力图绘制的简便方法 教学 内力图绘制的简便方法 重点 )、V(x) q(x)间的 V(x)与 间的微分关系 教学 M(x)、V(x)与q(x)间的微分关系 难点
判断内容(画弯矩图的技巧) 判断内容(画弯矩图的技巧) 技巧
1.熟练掌握M V q之间的微分关系 微分关系; 1.熟练掌握M—V—q之间的微分关系; 熟练掌握 铰结点、自由端处无外力偶作用 则杆端弯矩为零, 作用, 2、铰结点、自由端处无外力偶作用,则杆端弯矩为零, 否则杆端弯矩与外力偶矩相等, 使杆同侧受拉 同侧受拉; 否则杆端弯矩与外力偶矩相等,且使杆同侧受拉; 铰链中心弯矩为零 弯矩为零; 中间铰链不影响弯矩、 3、①铰链中心弯矩为零;②中间铰链不影响弯矩、剪力 与荷载集度间的微积分关系。 与荷载集度间的微积分关系。 有两杆交汇的刚结点 若结点上无外力偶作用, 刚结点, 4、有两杆交汇的刚结点,若结点上无外力偶作用,则两 杆弯矩必大小相等且同侧受拉(外侧或内侧); 杆弯矩必大小相等且同侧受拉(外侧或内侧); 若有外力偶作用, 5、若有外力偶作用,则两杆端弯矩之代数和等于此外力 偶数值,且方向相反; 偶数值,且方向相反; 结构上的悬臂部分以及简支部分 含任何两铰直杆), 悬臂部分以及简支部分( 6、结构上的悬臂部分以及简支部分(含任何两铰直杆), 其弯矩图可直接画出 直接画出; 其弯矩图可直接画出; 外力与杆轴重合时不产生弯矩,与杆轴平行时弯矩为 7、外力与杆轴重合时不产生弯矩,与杆轴平行时弯矩为 常数; 常数; 利用结构对称性 对称性。 8、利用结构对称性。
梁的支座反力计算和内力图绘制的简便方法
![梁的支座反力计算和内力图绘制的简便方法](https://img.taocdn.com/s3/m/bf5b0952650e52ea5518986d.png)
梁的支座反力计算和内力图绘制的简便方法1 计算支座反力的简便方法(1)悬臂梁的支座反力在竖向荷载作用下,悬臂梁的固定端支座反力值就是加在梁上所有竖向荷载的代数和,其方向与荷载方向相反。
固定端的反力偶的值等于竖向荷载对固定端的力矩、其方向与竖向荷载对固定端的力矩方向相反。
(2)简支梁和外伸梁的支座反力①对称荷载作用下的简支梁,支座反力可用一句话表示:“对称荷载对半分”,即两支座各承担荷载的一半。
②偏向荷载作用下的简支梁,可以用这样一句话求支座反力即:“偏向荷载成反比”。
梁一端的支座反力等于荷载的作用点到另一支座的距离和梁跨长度的比值再乘以荷载的大小。
③力偶荷载作用下的简支梁。
根据力偶的性质,力偶只能用力偶平衡。
因此,两支座反力必须组成一个转向与力偶荷载转向相反的力偶。
这两个支座反力方向相反,大小相等,其值等于力偶荷载与梁跨长度之比。
这种计算方法可以归结为这样两句话:力偶荷载反向转,大小等于偶跨比。
④外伸荷载作用下的简支外伸梁的支座反力求解,可以假想将远离外伸荷载的支座解除,使梁成为一个以另一支座为支点的杠杆、利用杠杆原理求出被解除支座的反力,而充当支点的支座反力值是荷载和被解除支座的反力之和,方向与二者相反。
所谓“外伸荷载选支点,杠杆原理求反力”。
⑤复杂荷载作用下的简支梁和外伸梁支座反力的求解,只不过是先将复杂荷载分别分解成各个简单荷载单独作用的情形,分别求出各简单荷载单独作用下引起的支座反力,然后求各支座反力的代数和,即求出应求的反力简单地说即为:“荷载分解,反力合成”。
2 绘制内力图的简便方法用截面法列内力方程求各截面内力很繁琐,特别是不连续荷载作用的梁必须分段来列方程,计算量很大,同时很容易搞错。
但是,我们在做题时不难发现,荷载种类不同‘作用情况不同,剪力和弯矩的变化是有一定规律的,利用这些规律可使计算工作量大大减少。
对于剪力图,变化规律是这样的:无荷载作用区段是水平线,均布线荷载作用区段是斜直线,力偶荷载对图形无影响,集中荷载作用点有突变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁的支座反力计算和内
力图绘制的简便方法本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
梁的支座反力计算和内力图绘制的简便方法1计算支座反力的简便方法
(1)悬臂梁的支座反力
在竖向荷载作用下,悬臂梁的固定端支座反力值就是加在梁上所有竖向荷载的代数和,其方向与荷载方向相反。
固定端的反力偶的值等于竖向荷载对固定端的力矩、其方向与竖向荷载对固定端的力矩方向相反。
(2)简支梁和外伸梁的支座反力
①对称荷载作用下的简支梁,支座反力可用一句话表示:“对称荷载对半分”,即两支座各承担荷载的一半。
②偏向荷载作用下的简支梁,可以用这样一句话求支座反力即:“偏向荷载成反比”。
梁一端的支座反力等于荷载的作用点到另一支座的距离和梁跨长度的比值再乘以荷载的大小。
③力偶荷载作用下的简支梁。
根据力偶的性质,力偶只能用力偶平衡。
因此,两支座反力必须组成一个转向与力偶荷载转向相反的力偶。
这两个支座反力方向相反,大小相等,其值等于力偶荷载与梁跨长度之比。
这种计算方法可以归结为这样两句话:力偶荷载反向转,大小等于偶跨比。
④外伸荷载作用下的简支外伸梁的支座反力求解,可以假想将远离外伸荷载的支座解除,使梁成为一个以另一支座为支点的杠杆、利用杠杆原理求出被解除支座的反力,而充当支点的支座反力值是荷载和被解除支座的反力之和,方向与二者相反。
所谓“外伸荷载选支点,杠杆原理求反力”。
⑤复杂荷载作用下的简支梁和外伸梁支座反力的求解,只不过是先将复杂荷载分别分解成各个简单荷载单独作用的情形,分别求出各简单荷载单独作用下引起的支座反力,然后求各支座反力的代数和,即求出应求的反力简单地说即为:“荷载分解,反力合成”。
2绘制内力图的简便方法
用截面法列内力方程求各截面内力很繁琐,特别是不连续荷载作用的梁必须分段来列方程,计算量很大,同时很容易搞错。
但是,我们在做题时不难发现,荷载种类不同‘作用情况不同,剪力和弯矩的变化是有一定规律的,利用这些规律可使计算工作量大大减少。
对于剪力图,变化规律是这样的:无荷载作用区段是水平线,均布线荷载作用区段是斜直线,力偶荷载对图形无影响,集中荷载作用点有突变。
对于弯矩图,变化规律是这样的:无荷载作用区段斜直线,均布荷载作用区段是抛物线,力偶荷载作用点处有突变,集中荷载作用点处有尖点。
利用上述规律绘制内力图的基本步骤:
(1)求支座反力。
(2)根据荷载和支座反力绘剪力图。
(3)根据各段剪力图的面积求出梁各特征点的弯矩值,确定极值,连接各点绘出弯矩图。
以上方法在掌握熟练之后。
计算过程可不必在纸面上出现,直接画出内力图,并标出内力值。
作完图后,再用剪力图和弯矩图变化规律去检查符合之则正确。
2。