专题 图形的全等(知识讲解)数学七年级下册基础(北师大版)
初中数学北师大版七年级下册图形的全等课件
课堂总结
全等形:能够完全重合的两个图形叫作全等形. 全等三角形:能够完全重合的两个三角形叫作全等三角形. 全等三角形的性质
全等三角形的对应边相等 全等三角形的对应角相等
作业布置
课本P95 习题4.5
新课教学 全等图形的判断
判定两个图形是否全等的基本方法是把他们重叠起来,看看他们是 否能够互相重合,但在不少情况下, 无须把两个图形重叠在一起, 就知他 们是否全等. 图中共有多少对全等图形,他们分别是
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
图中共有3对全等图形,他们分别是(2)与(8)、(4)与(7)、(5)与(9)
随堂检测
4.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于 点F,求∠DFB的度数。
解:∵△ABC≌ △ADE ∴∠B=∠D,∠BAC=∠DAE ∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE ∵∠BAD+∠CAE=∠BAE-∠DAC=100°-60°=40° ∴∠BAD=20° ∵∠D+∠DFB+∠DOF=∠B+∠BAD+∠BOA=180°
第四章 三角形 4.2 图形的全等
情境引入 视察下列几组图形,你发现什么
情境引入 视察下列几组图形,你发现什么
把它们叠在一起,能够完全重合 能够完全重合的两个图形称为全等图形
新课教学 这些图形中,有些是完全一样的,如果把它们叠在一起,它们 就能重合,你能分别从图中找出这样的图形吗?
全等图形的定义: 能够完全重合的两个图形称为全等图形
北师大版七年级数学下册《图形的全等》三角形PPT优质课件
5:如图,已知ΔAEF是ΔABC绕A点顺时针旋转55° 得到的,求∠BAE,∠CAF和∠BME的度数.
6:如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
课堂小结
两个能够重合 的图形称为全等图形; 如果两个图形全等,那么它们的__形___状___大___小____ 一定都相同; 把一个图形可以划分为两个全等图形 ; 几个全等的图形拼成一个大的图案。
课后作业
习题4.5 第2、3题
∠O=65°,∠C=20°,则∠OAD=
.
3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列结 论:①AC=AF, ②∠FAB=∠EAB, ③EF=BC,
④ ∠FAC=∠EAB,其中正确结论的个数是(
)
A.1个 个
Bபைடு நூலகம்2个
C.3个
D.4
4:如图,已知ΔABD≌ΔAEC, ∠B和∠E是对 应角,AB与AE是对应边,试说明:BC=DE.
形状相同,大小不同
面积相同,形状不同
全等图形的特征是:能够完全重合,即 形状和大小完全相同。
课堂练习
1 若ΔDEF≌ΔABC, ∠A=70°,∠B=50°,点A的 对应点是点D,AB=DE,那么∠F的度数等于( ) A.50° B.60° C.50° D.以上都不对
2 如图,若ΔOAD≌ΔOBC, 且
说一说:
说说你生活中见过的全等图形的例子。
你能找出图 中有几对全 等图形?
(2)与(4 ) (3)与(6 )
观察下列各组图形是不是全等图形?为什么?
交 流 1. 讨 论 2.
不全等,大小不等
全等,大小、形状 均相同
全等,大小、形状
北师大版七年级数学下册教案:4.2图形的全等
-空间想象力的培养:全等图形的学习需要较强的空间想象力,而这一能力对部分学生来说是一个难点。
举例解释:
-针对判定方法的选择难点,可以通过对比练习,让学生在不同的题目中尝试使用不同的判定方法,并通过讨论和讲解明确每种方法的适用场景。
1.讨论主题:学生将围绕“图形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-全等图形的判定方法:掌握SSS、SAS、ASA三种判定方法,能够准确地识别和应用这些方法判断两个图形是否全等。
-全等图形的性质:了解全等图形的对应角相等、对应边相等的性质,并能够运用这些性质解决相关问题。
举例解释:
-在讲解全等图形的定义时,可以通过实际操作教具或多媒体演示,让学生直观地看到两个图形如何完全重合,强化对定义的理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,让学生直观地感受全等图形的特点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
-在全等图形性质的应用方面,可以设计一些具体的题目,如“已知三角形ABC全等于三角形DEF,求证:AB=DE,∠B=∠E”,通过这样的题目帮助学生理解性质的应用。
北师大版七年级下册数学《全等三角形》全等三角形的判定(1)讲义
12.2全等三角形的判定(1)知识点一:全等三角形的判定1、全等三角形的判定一:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SSS ) 2、这个判定方法告诉我们:当三角形的三边都确定后,其形状、大小都随之确定,这就是三角形的稳定性. 3、全等三角形的判定二:两边和他们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SAS ) 知识点二:全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等,全等三角形的周长、面积相等. 例题一:1、已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .3、如图,AD=CB ,E 、F 是AC 上两动点,且有DE=BF.(1)若E 、F 运动至如图①所示的位置,且有AF=CE ,求证:△ADE ≌△CBF.(2)若E 、F 运动至如图②所示的位置,仍有AF=CE ,那么△ADE ≌△CBF 还成立吗?为什么? (3)若E 、F 不重合,AD 和CB 平行吗?说明理由.A ’C ’B ’C ’ B ’C ’ ∠B ’D FCBAEDFCBA EC 'B 'A 'C BA C 'B 'A 'C B A练习一:1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.证明△ABC≌△FDE.3、如图,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.例题二:4、已知:如图,AB∥CD,AB=CD.求证:AD∥BC.5、如图所示,AD为△ABC的高,且AD=BD,F为AD上一点,连结BF并延长AC于E,CD=FD,求证:BE⊥AC.6、(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结论?并说明理由. FDCBEAABCED(2)如图,∠1=∠2,AB=AD ,AE=AC ,求证BC=DE. 练习二:4、已知:如图,AB =AC ,BE =CD .求证:∠B =∠C .5、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .6、已知:如图,AC ⊥BD ,BC=CE ,AC=DC ,求证:∠B+∠D=90°.第二部分:能力拓展例题:7、如图,在△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明理由.8、如图,已知CA=CB ,AD=BD ,M 、N 分别是CA、CB 的中点,求证:DM=DN.跟进练习:7、已知,如图A 、F 、C 、D 四点在一直线上,AF= CD ,AB ∥DE ,且AB= DE ,求证:(1)△ABC ≌△DEF ;(2)CBF=FEC.8、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)
专题4.10 探索三角形全等的条件(SSS 和SAS )(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).特别说明:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).特别说明:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、用“SSS”和“SAS”直接证明三角形全等➽➼证明✮✮求值1.如图,已知:AB =AC ,BD =CD ,E 为AD 上一点.(1) 求证:△ABD △△ACD ;(2) 若△BED =50°,求△CED 的度数.【答案】(1) 证明见分析 (2) 50CED ∠=︒【分析】(1)根据SSS 即可证明△ABD △△ACD ;(2)只要证明△EDB △△EDC (SAS ),即可推出△BED =△CED ,进而得到答案. (1)证明:在△ABD 和△ACD 中, AB ACBDCD AD AD ⎧⎪⎨⎪⎩===,△△ABD △△ACD (SSS );(2)解:△△ABD △△ACD ,△△ADB =△ADC ,在△EDB 和△EDC 中,DB DC BDE CDE DE DE ⎧⎪∠∠⎨⎪⎩===,△△EDB △△EDC (SAS ),△△BED =△CED ,△△BED =50°,△△CED =△BED =50°.【点拨】本题考查全等三角形的判定和性质,解题的关键是根据图形题意,熟练掌握两个三角形全等判定与性质.举一反三:【变式1】如图,点A 、M 、N 、C 在同一条直线上,AB CD =,BN DM =,AM CN =,求证:AB CD ∥.【分析】根据AB CD =,BN DM =,AM CN =,利用SSS 定理证明ABN CDM ≌,从而得到A C ∠=∠,再根据内错角相等,两直线平行,AB CD ∥得证.解:证明:∵AM CN =∴AM MN CN MN∴AN CM =在ABN 和CDM 中AB CD BN DM AN CM =⎧⎪=⎨⎪=⎩,∴()ABN CDM SSS △≌△∴A C ∠=∠∴AB CD ∥(内错角相等,两直线平行)【点拨】本题考查了三角形全等的判定方法和性质,以及平行线的判定,解题关键是掌握全等三角形的判定方法,运用全等三角形的性质证明线段和角相等.【变式2】如图,已知AB AC =,AD AE =,BD CE =,求证:312.【分析】利用SSS 可证明△ABD△△ACE ,可得△BAD=△1,△ABD=△2,根据三角形外角的性质即可得△3=△BAD+△ABD ,即可得结论.解:在△ABD 和△ACE 中,AB=AC AD=AE BD=CE ⎧⎪⎨⎪⎩,△△ABD△△ACE ,△△BAD=△1,△ABD=△2,△△3=△BAD+△ABD ,△△3=△1+△2.【点拨】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2.已知:如图,AB AC =,F ,E 分别是AB AC ,的中点,求证:ABE ACF ≌.在ABE 与△AB AC A A AE AF =⎧⎪∠=∠⎨⎪=⎩ABE △≌△【点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:ASAAAS 、、【变式1】如图,点D 在BC 上,,ADB B BAD CAE ∠=∠∠=∠.(1) 添加条件:____________(只需写出一个),使ABC ADE ≅;(2) 根据你添加的条件,写出证明过程.【答案】(1) AC AE = (2) 见分析【分析】(1)根据已知条件可得AB AD =,BAC DAE ∠=∠,结合三角形全等的判定条件添加条件即可;(2)结合(1)的条件,根据三角形全等的判定条件添加条件进行证明即可.解:(1)添加的条件是:AC AE =,故答案为AC AE =;(2)△,ADB B ∠=∠△AB AD =,△BAD CAE ∠=∠△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,又AC AE =△ABC ADE ≅【点拨】本题主要考查了三角形全等的判定,确定出三角形全等判定条件是解答本题的关键.【变式2】如图所示,DC CA ⊥,EA CA ⊥,CD AB =,CB AE =,求证:(1) BCD EAB ≌△△;(2) DB BE ⊥.【分析】(1)利用SAS 判定定理证明三角形全等即可;(2)由()≌DCB BAE SAS △△,可得∠=∠DBC BEA ,∠=∠BDC EBA ,再利用90DBC BDC ∠+∠=︒,可得90∠+∠=︒DBC EBA ,即90DBE ∠=︒,所以DB BE ⊥.解:(1)证明:△DC CA ⊥,EA CA ⊥,△90∠=∠=︒DCB BAE ,在DCB △和BAE 中,CD AB DCB BAE CB AE =⎧⎪∠=∠⎨⎪=⎩△()≌DCB BAE SAS △△. (2)证明:由(1)可知()≌DCB BAE SAS △△, △∠=∠DBC BEA ,∠=∠BDC EBA ,△90DBC BDC ∠+∠=︒,△90∠+∠=︒DBC EBA ,即90DBE ∠=︒,△DB BE ⊥.【点拨】本题考查全等三角形的判定定理及性质,垂直的定义,解题的关键是掌握全等三角形的判定定理及性质.类型二、用“SSS”和“SAS”间接证明三角形全等➽➼证明✮✮求值3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC≌≌DEF .【分析】首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC△△DEF .解:△AF=DC ,△AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩△△ABC△△DEF (SSS )举一反三: 【变式1】如图,已知:PA=PB,AC =BD ,PC =PD ,△PAD 和△PBC 全等吗?请说明理由.【分析】由AC=BD ,利用线段的和差关系可得AD=BC ,利用SSS 即可证明△PAD△△PBC.解:△AC =BD ,△AC+CD=BD+CD ,即AD =BC ,又△PA =PB ,PC =PD ,△△PAD△△PBC(SSS)【点拨】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.【变式2】如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:△F =△C .【分析】根据SSS 的方法证明△DEF△△ABC,即可得到结论.解:因为DA =EB , 所以DE =AB.在△DEF 和△ABC 中, 因为DE =AB ,DF =AC ,EF =BC ,所以△DEF△△ABC(SSS),所以△F =△C.【点拨】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.4.如图,在ABCD 中,点E 、F 在BD 上,ABE 与CDF 全等吗?若全等,写出证明过程;若不全等,请你添加一个条件使它们全等,并写出证明过程.(1) 你添加的条件是__________.(2) 证明过程: 【答案】(1) BE DF =,答案不唯一; (2) 证明见分析; 【分析】(1)根据选择的全等三角形判定方法添加合适的条件即可;(2)由四边形ABCD 是平行四边形得到AB CD ∥,AB CD =,得ABE CDF ∠=∠,再用上添加的条件,即可证明结论.(1)解:BE DF =(答案不唯一)故答案为:BE DF =(答案不唯一)(2)证明:△四边形ABCD 是平行四边形,△AB CD ∥,AB CD =,△ABE CDF ∠=∠,在ABE 和CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE CDF △≌△(SAS ).【点拨】此题考查了平行四边形的性质、全等三角形的判定等知识,熟练掌握全等三角形的判定是解题的关键.举一反三:【变式1】如图,在ABC 和ADE 中,AB AD =,AC AE =,且BAD CAE ∠=∠,求证:ABC ADE △≌△.【分析】根据BADCAE ∠=∠可得BAC DAE ∠=∠,再根据SAS 即可证明.证明:△BAD CAE ∠=∠,△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC ADE △≌△.【点拨】本题主要考查了用SAS 证明三角形全等,解题的关键是通过BAD CAE ∠=∠得出BAC DAE ∠=∠.【变式2】图,BE CF =,AC DF =,AC DF ∥.求证:ABC DEF ≌△△.【分析】首先根据BE CF =可得BC EF =,再由AC DF ∥可得ACB F ∠=∠,然后利用定理证明ABC DEF ≌即可.证明:△BE CF =,△BE EC CF EC ++=,即BC EF =,△AC DF ∥,△ACB F ∠=∠, 在ACB △和DFE △中,BC EF ACB F AC DF =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC DEF ≌.【点拨】此题主要考查了全等三角形的判定和平行线的性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.注意:AAA SSA 、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、全等的性质与“SSS”和“SAS”综合➽➼证明✮✮求值 5.已知:如图,在ABC 中,AB AC AD =,是BC 边上的中线.求证:AD BC ⊥(填空).证明:在三角形ABD ACD 和中,△()()()______________BD AB ⎧=⎪⎪=⎨⎪⎪⎩已知已知公共边,△ ≌ ( ).△ADB ∠= (全等三角形的对应角相等).△1902ADB BDC ∠∠︒==(平角的意义). △(垂直的意义).【答案】,,,,SSS DC AC AD AD ABD ACD ADC AD BC =∠⊥,△△,,【分析】证明()SSS ADB ADC ≌△△.推出ADB ADC ∠∠=,可得结论. 证明:△AD 是BC 边上的中线,△BD CD =,在三角形ABD △和ACD 中,【变式1】如图:AB AC =,BD CD =,若28B ∠=︒,求C ∠的度数.【答案】28︒ 【分析】连接AD ,利用“SSS ”证明ABD ACD △≌△,即可得到答案.解:连接AD ,在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴≌C B ∴∠=∠,28B ∠=︒,28C ∴∠=︒.【点拨】本题考查了全等三角形的判定和性质,正确作辅助线构造全等三角形是解题关键.【变式2】已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1) ABC BAD ≌.(2) AE BE =.【分析】(1)利用SSS 证明ABC BAD ≌;(2)根据全等三角形的性质得出DAB CBA ∠=∠,则OA OB =,根据等腰三角形的性质可得出结论.(1)证明:在ABC 和BAD 中,AC BD BC AD AB BA =⎧⎪=⎨⎪=⎩,△ABC BAD ≌(2)证明:△ABC BAD ≌△CBA DAB ∠=∠,△OA OB =,△OE AB ⊥,△AE BE =.【点拨】此题考查了全等三角形的判定与性质,利用SSS 证明ABC BAD ≌是解题的关键.6.如图,在ABC 中,CM 是AB 边上的中线,8AC =,12BC =,求CM 的取值范围.【答案】210CM <<【分析】倍长中线CM 至点N ,构造BNM ,易得ACM BNM ≅△△,再利用三角形的三边关系找到CN 的取值范围,进而得到CM 的取值范围.解:如图,延长CM 到点N ,使CM MN =,连接BN ,在ACM △和BNM 中,CM NM AMC BMN AM BM =⎧⎪∠=∠⎨⎪=⎩,∴ACM BNM ≅△△(SAS ),∴8AC BN ==, 在BCN △中,BC BN CN BC BN -<<+,∴128128CN -<<+,即420CN <<,∴4220CM <<,即210CM <<.【点拨】本题考查了全等三角形的性质与判定以及三角形的三边关系,解决本题的关键是倍长中线构造全等三角形.举一反三:【变式1】如图,已知在ABC 与ADE 中,90BAC DAE AB AC AD AE ∠=∠=︒==,,,点C ,D ,E 三点在同一条直线上,连接BD .图中的CE BD 、有怎样的数量和位置关系?请证明你的结论.【答案】CE BD =,证明见分析【分析】根据SAS 证明ACE ABD ≌△△,即可得到CE BD =.解:CE BD =,证明:△90BAC DAE ∠=∠=︒,△BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()SAS ACE ABD ≌△CE BD =.【点拨】此题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.【变式2】如图已知AOB 和MON △都是等腰直角三角形.(1) 如图1,连接AM ,BM ,此时AM ,BN 的数量关系为___________请说明理由.(2) 若将MON △绕点O 顺时针旋转,如图2,当点N 恰好在AB 边上时,求证:222BN AN MN +=.【答案】(1) AM BN =,理由见分析(2) 见分析 【分析】(1)由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =(2)连接AM ,由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =,再求得90MAN ∠=︒,利用勾股定理即可得到222BN AN MN +=解:(1)AM BN =,理由如下:△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ON AOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =(2)如下图,连接AM ,△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,45B BAO ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ONAOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =,45B MAO ∠=∠=︒,△90MAN MAO BAO ∠=∠+∠=︒,△222AM AN MN +=,△222BN AN MN +=【点拨】本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质及勾股定理,熟练掌握全等三角形的判定和性质是解决问题的关键。
北师大版七年级数学下册图形的全等课件(共20页)
全等三角形的定义
D
A
B
C
E
F
能够完全重合的两个图形叫做全等图形
全等三角形:
全等图形的定义
能够完全重合的两个三角形叫做全等三角形
全等图形的性质
全等三角形的定义
全等三角形的元素
如图:△ABC与△DEF是全等三角形
A
对应顶点:重合的顶点
D
点A的对应顶点是___
C
点F的对应顶点是____
B
C
(D)
对应边: 重合的边
读作:△ABC全等于△DEF
全等图形的定义
全等图形的性质
全等三角形的定义
全等三角
全等三角
形的对应
例题:
如图:△≌△′ ′ ′,∠C=25°,BC=6cm,AC=4cm,
你能得出△′ ′ ′中哪些角的大小、哪些边的长度?
解:∵ △≌△′ ′ ′(已知)
∴ ∠ ′ = ∠ =25°
∠A=∠D,∠B=∠F,∠C=∠E
A
B
C
D
E
F
全等图形的定义
全等图形的性质
全等三角形的定义
全等三角形的性质
全等三角
全等三角形的表示
A
D
你能否直接从记作∆ABC≌ ∆DEF
中判断出所有的对应顶点、对应边
F
B
C E
和对应角?
“全等”用符号“≌ ”表示
图中的△ABC和△DEF全等,
记作:△ABC≌ △DEF
4.2图形的全等
下列各组图形能够完全重合吗?
(2)
(1)
(3)
平移:
A
C
旋转:
O
B
D
M
北师大版七年级下册数学《全等三角形》全等三角形的基本性质讲义
AFE全等三角形知识点一:全等形的有关概念1、全等形的定义:能够完全重合的两个图形叫做全等形.2、全等三角形:能够完全重合的两个三角形叫做全等三角形.3、对应顶点、对应边、对应角:把两个全等的三角形重合在一起,重合的顶点叫对应顶点;重合的边叫对应边,重合的角叫做对应角.(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 4、“全等”的符号:“≅”,读作“全等于”.知识点二:从运动的角度看全等三角形的生成方法1、翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素;2、旋转法:三角形沿某一点旋转一定的角度能与另一三角形重合,从而发现对应元素;3、平移法:沿某一方向平移使两个三角形重合来找对应元素. 知识点三:全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长、面积相等. 例题一:1、下列命题中,真命题的个数是( ). ①全等三角形的周长相等 ②全等三角形的对应角相等 ③全等三角形的面积相等 ④面积相等的两个三角形全等 A .4 B .3 C .2 D .1 2、如图,△ABC ≌△ADE ,其中C 和E ,B 和D 是对应点,写出其他的对应边和对应角.3、已知△ABC ≌△MNP ,∠A=48°,∠N=62°,则∠B=______°,∠C 、∠M 、∠P 的度数分别为__________, __________, __________.4、已知:如图所示,以B 为中心,将Rt △EBC 绕B 点逆时针旋转90°得到△ABD ,若∠E =35°,求∠ADB 的度数.5、如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.ABDCEDCABE EDCBA6、已知:如图,△ABC ≌△DEF ,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE . 练习一:1、如图,如果ΔABC ≌ΔDEF ,则AB 的对应边是_____,AC 的对应边是_____,∠C 的对应角是_____,∠DEF 的对应角是_____.第1题图 第2题图 第3题图2、如图,已知△ABE ≌△DCE ,AE =2 cm ,BE =1.5 cm ,∠A =25°,∠B =48°;那么DE =_____cm ,EC =_____cm ,∠C =_____°;∠D =_____°3、如图所示,ΔABC ≌ΔDCB .(1)若∠D =74°∠DBC =38°,则∠A =_____, ∠ABC =_____ (2)如果AC =DB ,请指出其他的对应边___________________;(3)如果ΔAOB ≌ΔDOC ,请指出所有的对应边___________________,对应角______________________. 4、如图,若ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_______,∠C=_______. 5、如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知∠DAE=43°,∠B=30°,求ADC ∠的大小.6、如图,已知△EAD ≌△ABC ,求证:CD+BC=AC.AB C D EFE DCBA第4题FE DCBA 7、如图,若△OAD ≌△OBC ,且∠O=65°,∠BEA=135°,求∠C 的度数. 例题二:7、如图,△ABC ≌△ADE ,若∠BAE=120°,∠BAD=40°,求∠BAC 的度数.练习二:9、如图,在△ABC 中,∠BAC=60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度数为________度.10、如图,△ABC ≌△AEF ,若∠ABC 和∠AEF 是对应角,则∠EAC 等于( ) A .∠ACB B .∠CAF C .∠BAF D .∠BAC第9题 第10题 第11题11、如图, 在平行四边形ABCD 中, 将△ABE 沿BE 翻折, 点A 落在CD 边上, 成为点F, 如果△DEF 和△BCF 的周长分别是8cm 和22cm, 那么FC 的长度为_______________.综合:如图,AB ⊥BC ,ΔABE ≌ΔECD .判断AE 与DE 的关系,并证明你的结论.例题三:F EDC BA 8、如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( ) A 、15° B 、20° C 、25°D 、30°9、如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB=( ) A 、40° B 、30° C 、20° D 、10° 练习三:12、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于( ) A 、70°B 、65°C 、50°D 、25°13、如图,将直角三角形BCA 沿BC 方向平移得到△FED , H 是线段AC 和FD 的交点.如果ED=9, BF=4, AH=3, 那么四边形FBAH 的面积是_______________.例8题图 例9题图 练习12题图 练习13题图课 后 作 业1、△ABC 和△DEF 是全等三角形,若AB=DE ,∠B=50°,∠C=70°,∠E=50°,则∠D 的度数是_____.2、△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,则AC=________.3、如图,点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180º,可以与△___________重合,这说明△AOB ≌△___________.这两个三角形的对应边是AO 与__________,OB 与__________,BA 与__________;对应角是∠AOB 与________,∠OBA 与_________, ∠BAO 与___________.4、已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .65、如图,△ABC ≌△CDA ,AC =7cm ,AB =5cm ,BC =8cm ,则AD 的长是( )A 、7cm B 、5cm C 、8cm D 、6cm6、如图所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.5EDB C′FCD ′AA 'B DAC A CD7、已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ) A 、9.5cm B 、9.5cm 或4cm C 、9cm D 、4cm 或9cm8、如图,已知△ABC ≌△DBE ,∠BDA=∠A .若∠A :∠C=5:3,则∠DBE 的度数是( ) A .100° B .80° C .60° D .120°9、如图,△ABC ≌△ADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( ) A .40° B .35° C .30° D .25°10、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个11、如图所示,已知AB =CD ,BE =DF ,△ABE ≌△CDF ,求证:AB ∥CD ,AE ∥CF.12、如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,求∠DGB 的度数.第6题图FE CBA 第9题图第10题图第8题图DCB AE。
北师大版七年级下册图形的全等课件
北师大版 七年级下册
新课导入
请同学们视察这些图片有何特征?
进入新课
这些图形中,有些是完全一样的.如果把它们 叠在一起,它们就能完全重合在一起.你能找 出完全一样的图形吗?
【归纳结论】 能够完全重合的两个图形称为全等图形.
议一议:
(1)你能说诞生活中全等图形的例子吗? (2)视察下面两组图形,它们是不是全 等图形?为什么?
【归纳结论】 全等图形的形状和大小都相同.
能够完全重合的两个三角形叫做全等三角形.
比如,在图中,△ABC与△DEF能够完全重 合,它们是全等的.其中顶点A,D重合,它们 是对应顶点;AB边与DE边重合,它们是对应 边;∠A与∠D重合,它们是对应角.△ABC与 △DEF全等,我们把它记作 “△ABC≌△DEF”.记两个三角形全等时, 通常把表示对应顶点的字母写在对应的位置 上.
2.对于两个图形,给出下列结论:①两个图 形的周长相等;②两个图形的面积相等;③ 两个图形的周长和面积都相等;④两个图形 的形状相同,面积也相同.其中能获得这两个 图形全等的结论共有( )
A.1A个 B.2个 C.3个 D.4个
3.下列图形:①两个正方形;②每边长都是 1cm的两个四边形;③每边都是2cm的两个三 角形;④半径都是1.5cm的两个圆.其中是一 对全等图形的有( )
(3)在△A′B′C′中找出E点的对应点E′,找出 线段DE的对应线段D′E′,对应线段DE与D′E′ 有什么大小关系?
【归纳结论】 全等三角形中对应线段相等.
随堂练习
1.下列说法正确的是( )C ①用一张像纸冲洗出来的10张1寸像片是全等 形; ②我国国旗上的4颗角星是全等形; ③所有的正方形是全等形; ④全等图形的面积一定相等. A.1个 B.2个 C.3个 D.4个
北师大版初一数学下册2图形的全等
北师大版七年级数学下册3. 2图形的全等的教学设计灵璧县初级中学闫红一、教学目标:1.了解全等图形、全等多边形、全等三角形2.平移、旋转、翻折等图形基本运动对全等图形的影响3.掌握全等多边形性质与识别方法,全等三角形的性质4.简单应用全等多边形性质、全等三角形的性质解决实际问题二、教学重点:全等多边形的性质与识别方法;全等三角形的性质应用三、教学难点:平移、旋转、翻折等图形基本运动对全等图形的影响四、教学过程:(一)弓I入观察教材P92图4-21几组图形.(二)学习过程阅读课本P92-93填空:__________________ 两个图形就是全等图形.全等图形的________ 禾廿____ 者E相同.下面,我们看看图形的运动对全等图形有何影响?活动:请同学们在方格纸中任意画一个多边形,先将这个多边形沿某一方向平移一定距离(与原图形无重叠);再将原多边形绕形外一点顺时针(或逆时针)旋转一定角度(与原图形无重叠);然后将原图形沿形外某格线对称;最后将这些图形剪下来,将其叠合.你能发现什么?通过这个活动过程,说明了什么问题?说明图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?全等多边形对应边、对应角分别相等如图1,四边形ABCD与四边形EFGH全等,可记为四边形ABCD也四边形EFGH,请指出对应顶点、对应角、对应边•全等多边形的识别方法:如果两个多边形对应边、对应角分别相等,那么这两个多边形全三角形是特殊的多边形,所以,全等三角形的对应边、对应角分别相等;如果两个三角形的___________ 、__________ 分别相等,那么这两个多边形全等•例:如图2,已知将△ ABC绕其顶点A顺时针方向旋转20°后得到△ ADE .B(1)△ ABC与厶ADE的关系如何?(2)求/ BAD的度数.分析:将厶AB C绕其顶点A旋转得到厶ADE,故△ ADE是由△ ABC旋转得到的,若将△ ADE 逆时针方向旋转20°则能与△ ABC重合「,所以厶ABC与厶ADE是全「等的•由学生自主思考、分析解答•探索:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?并画出这些位置关系的代表性图形•(三)作业布置习题4.5做完。
北师大版数学七年级下册图形的全等课件(17张P)
A
D
B
C
E
F
你能找出其他的对应顶点、对应边和对应角吗?
对应点:点 A,点 D; 点 B,点 E;点 C,点 F;
对应边:AB 与 DE; AC 与 DF;BC 与 EF;
对应角:∠A 与∠D ; ∠B 与∠E ;∠C 与∠F .
全等三角形的对应边相等,对应角相等.
全等的表示方法
A
F
B
C
D
E
“全等”用符号“≌”表示,读作“全等于”.
A E
A' E'
B
D
C B'
D'
C'
做一做 下图是一个等边三角形,你能把它分成两个全等的三 角形吗?三个呢?四个呢?
用 3 个等边三角形纸 片画一画,再剪下来 试试能否重合!
针对训练
1. 如图,△ABC≌△ADE,若∠D =∠B,
∠C =∠AED,则∠DAE = ∠BAC ,
∠DAB = ∠EAC .
D
A
E
B
C
当堂小结
全等图形:能够完全重合 的两个图形叫做全等图形
图形的全等
全等三角形:能够完全重 合的两个三角形叫做全等 三角形
全等三角 形的性质
全等三角形的对应边相等 全等三角形的对应角相等
课堂练习
1. (德城区校级期末)如图,点 E 在 AC,△ABC≌△DAE,
BC = 3,DE = 7,则 CE 的长为 ( C )
(2) 视察下面三组图形,它们是不是全等图形? 为什么?与同伴进行交流.
大小不同
形状不同
√
(3) 如果两个图形全等,它们的形状和大小一定都相同 吗?
全等图形的性质:全等图形的形状和大小都相同.
北师大版七年级数学下册《图形的全等》PPT课件(3篇)
四、全等在生活中的应用(欣赏)
2、从图中找出 两对全等的图形, 与同伴进行交流。
把自己称为一个“图形艺术家”
他专门从事于木板画。在1956年举 办的艺次画展得到了许多数学家的 称赏,在他的作品中数学的原则和 思想得到了非同寻常的形象化。
图形的全等
自学要求:
1、在数学中,哪些变换不改变图形的 大小和形状? 2、什么是全等形、全等三角形、全等三 角形的对 应顶点、对应边、对应角?
(1)有公共边的,公共边 是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最长的边是对应边,最短的边是 对应边;
(5)两个全等三角形最大的角是对应角,最小的角是 对应角;
任意剪两个全等的三角形,摆一摆它们的 位置,使其符合下列图形;并指出它们的对应 顶点、对应边、对应角。
学习永远 不晚。 JinTai College
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
o
c
D
(1) ⑴ CO的对应边是 ⑵ AC的对应边
A B
(2) DO
BD
E
(3) ∠A的对应角是 ∠B ∠O的对应角 ∠E
⑶ ∠A的对应角是 ∠D
CO的对应边 BO
全等三角形对应角所对的边是对应边,对应边所 对的角是对应角。
两个全等三角形的 位置变化了,对应边、 对应角的大小有变化吗? 由此你能得到什么结论?
叫做全等三角形。
两个全等三角形重合时, 互相重合的顶点叫 对应顶点 互相重合的边叫做 对应边 互相重合的角叫做 对应角 对应顶点: 点A与点A′.点B与B′.点C与点C′ 对应边: AB与A′B′.AC与A′C′.CB与C′B′ 对应角: ∠A与∠A′.∠B与∠B′.∠C与∠C′
图形的全等北师大数学七年级下册PPT课件
大小 相同
全等图形的形状和大小都相同
探究新知
归纳总结 全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
巩固练习 下面哪些图形是全等图形?
大小、形状 完全相同
(1)
(2)
(3)
(4)
(5) (9)
(6)
(7)
(8)
(10)
长边, ∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,
AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:因为 △ABC≌△AED,(已知)
A
所以∠E= ∠B= 35°,(全等三角形对应角相等)
BC
DE
∠ADE=∠ACB=180°-25°-35°=120 °, (全等三角形对应角相等)
(11)
(12)
探究新知
知识点 2 全等三角形的定义及性质
能够完全重合的两个三角形叫做全等三角形.例如,图中 △ABC 与△DEF 能够完全重合,它们是全等的.其中,顶点 A ,D 重合,它们是对应顶点; AB 边与DE 边重合,它们是对应 边; ∠ A 与∠ D 重合,它们是对应角.
探究新知
思考:把一个三角形平移、旋转、翻折,变换前后的两个三角
观察下面两组图形:形状与大小有什么特点?
(1)
探究新知 (2)
探究新知 问题1:观察思考:每组中的两个图形有什么特点?
①
②
③
问题2:观察思考:每组中的两个图形有什么特点?
④
⑤
这些图形中,有些是完全一样的,如果把它们叠在一起,它们就能重合.
能够完全重合的两个图形称为全等图形 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4.7 图形的全等(知识讲解)【学习目标】1、从图形重合中理解图形全等的对应边、对应角的关系;2.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素;3.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.特别说明:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.特别说明:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.特别说明:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、图形的全等➽➼全等图形的识别1.下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.故选:B.【点拨】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.举一反三:【变式1】下列各组中的两个图形属于全等图形的是()A.B.C.D.【答案】D【分析】根据全等图形的概念判断即可.解:A、两个图形不能完全重合,不是全等图形,故本选项不符合题意;B、两个图形能够完全重合,不是全等图形,故本选项不符合题意;C、两个图形不能完全重合,不是全等图形,故本选项不符合题意;D、两个图形能完全重合,是全等图形,故本选项符合题意;故选:D.【点拨】本题考查的是全等图形的概念,掌握能够完全重合的两个图形叫做全等形是解题的关键.【变式2】下列图标中,不是由全等图形组合成的是()A.B.C.D.【答案】C【分析】根据全等图形的概念分析即可.解:A 、该图像是由三个全等的图形构成,故该选项不符合题意;B 、该图像是由五个全等的图形构成,故该选项不符合题意;C 、该图像不是由全等图形构成,故该选项符合题意;D 、该图像是由两个全等的图形构成,故该选项不符合题意;故选:C .【点拨】本题考查了全等图形,熟练掌握能够完全重合的两个图形是全等图形是解题的关键.类型二、全等三角形概念➽➼全等图形的识别 2.如图,在ABC 中,AD BC ⊥于点D ,=BD CD .完成下面说明B C ∠=∠的理由的过程.解:AD BC ⊥(已知),ADB ∴∠=___________Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC ___________.BD CD =(___________)∴点B 与点___________重合,ABD ∴与ACD ___________,ABD ∴___________ACD (全等三角形的定义), B C ∴∠=∠(___________). 【答案】ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质【分析】根据全等三角形的定义,即可得到答案.解:AD BC ⊥(已知),ADB ∴∠=ADC ∠Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC 重合.BD CD =(已知)∴点B 与点C 重合,ABD ∴与ACD 重合,ABD ∴≌ACD (全等三角形的定义), B C ∴∠=∠(全等三角形的性质).故答案为:ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质.【点拨】本题主要考查证明三角形全等,掌握全等三角形的定义:能够完全重合的三角形叫做全等三角形,是关键.举一反三:【变式1】如下图,AOC 与BOD 全等.用符号“≌”表示这两个三角形全等.已知A ∠与B ∠是对应角,写出其余的对应角和各对对应边.【答案】AOC BOD △△≌.对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠; 对应边是;OA 与OB ,OC 与OD ,AC 与BD .【分析】根据全等三角形的表示法以及全等三角形的性质即可得到答案.解: AOC BOD △△≌. 因为A ∠与B ∠是对应角,所以其余的对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠;对应边是;OA 与OB ,OC 与OD ,AC 与BD .【点拨】本题主要考查全等三角形的表示法和性质,准确找到全等三角形的对应角和对应边是关键.【变式2】如图,若ADE BCE ≌△△,1∠与2∠是对应角,AD 与BC 是对应边,写出其他的对应边及对应角.【答案】AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【分析】根据全等三角形对应边和对应角的定义即可判断.解:因为ADE BCE ≌△△,所以AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【点拨】本题主要考查全等三角形的对应边和对应角,比较基础,熟练掌握全等三角形对应边和对应角的定义是解题关键.类型三、全等三角形的性质➽➼求边✮✮求角✮✮周长✮✮面积3.如图,ABC DEC ≌△△,点A 和点D 是对应点,点B 和点E 是对应点,过点A 作AF CD ⊥,垂足为点F .(1) BAC ∠=______,B ∠=______,AB =______;(2) 若65BCE ∠=︒,完善求CAF ∠度数的解题过程.∴ABC DEC ≌△△, ∴ACB =∠______,∴BCE ACE ACD ACE ,∴______.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴______,∴90AFC ∠=︒,∴CAF ∠=______︒. 【答案】(1) D ∠,E ∠,DE (2) DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【分析】(1)由ABC DEC ≌△△,即可得到对应角和对应边相等(2)由ABC DEC ≌△△,得到BCE ACD ∠=∠,且AF CD ⊥,即可求得25CAF ∠=︒ (1)解:∴ABC DEC ≌△△,∴BAC D ∠=∠,B E ∠=∠,AB DE =;故答案为:D ∠,E ∠,DE(2)∴ABC DEC ≌△△,∴ACB DCE ∠=∠,∴BCE ACE ACD ACE ,∴BCE ACD ∠=∠.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴AF CD ⊥,∴90AFC ∠=︒,∴25CAF ∠=︒.故答案为:DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【点拨】本题考查了全等三角形的性质及直角三角形的性质,熟练掌握全等三角形的性质是解决问题的关键举一反三:【变式1】如图,AB 与CD 相交于点E ,连接AD AC BC 、、,若,28ABC ADE BAC ∠=︒△≌△,求B ∠的度数.【答案】48︒ 是ADE 的一个外角,AEC DAE -∠48=︒.【点拨】本题考查了全等三角形的性质,以上知识是解题的关键.】如图,已知ABC △(1) 若6DE =,4BC =,求线段AE 的长;(2) 已知35D ∠=︒,60C ∠=︒,求AFD ∠的度数.【答案】(1) 2AE = (2) 130AFD ∠=︒【分析】(1)根据全等三角形的性质得到6AB DE ==,4BE BC ==,结合图形计算,得到答案;(2)根据全等三角形的性质得到60DBE C ∠=∠=︒,35A D ∠=∠=︒,根据三角形内角和定理求出ABC ∠,计算即可.(1)解:∴ABC DEB △△≌,6DE =,4BC =, ∴6AB DE ==,4BE BC ==, ∴642AE AB BE =-=-=;(2)∴ABC DEB △△≌,35D ∠=︒,60C ∠=︒, ∴60DBE C ∠=∠=︒,35A D ∠=∠=︒,ABC DEB ∠=∠,∴18085ABC A C ∠=︒-∠-∠=︒,∴85DEB ∠=︒,∴95AED ∠=︒,∴3595130AFD A AED ∠=∠+∠=︒+︒=︒.【点拨】本题考查了全等三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握全等三角形的性质是解题的关键.4.如图,已知ABC DEB ≌,点E 在AB 上,AC 与BD 交于点F ,8AB =,5BC =,65C =︒∠,20D ∠=︒.(1) 求AE 的长度;(2) 求AED ∠的度数.【答案】(1) 3AE = (2) 85AED ∠=︒【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可. 解:(1)∴ABC DEB ≅,∴3BE BC ==,∴633AE AB BE =-=-=,(2)∴ABC DEB ≅,∴25A D ∠=∠=︒,55DBE C ∠=∠=︒,∴255580AED DBE D ∠=∠+∠=︒+︒=︒.【点拨】本题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等即可.举一反三:【变式1】如图,已知△ABC ∴∴DEF ,AF =5cm .(1)求CD 的长.(2)AB 与DE 平行吗?为什么?解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF ( ),∴AC ﹣FC =DF ﹣FC (等式性质) 即 =∴AF =5cm∴ =5cm(2)∴∴ABC ∴∴DEF (已知)∴∴A = ( )∴AB ( )【答案】(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ∴∴DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ∴∴DEF ,可以得到∴A =∴D ,从而可以得到AB 与DE 平行. 解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∴AF =5cm∴CD =5cm ;(2)∴∴ABC ∴∴DEF (已知)∴∴A =∴D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点拨】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2】如图,B ,C ,D 三点在同一条直线上,90,,5B D ABC CDE AB ︒∠=∠=∆≅∆=,12,13BC CE ==.(1) 求ABC 的周长.(2) 求ACE △的面积.,然后计算ABC 的周长;,再证明ACE ∠=)ABC ∆≅13AC CE ==ABC 的周长)ABC CDE ∆≅∆13,AC CE ∴==90D ∠=︒,CED ∴∠+∠ACB ∴∠+∠ACE ∴∠=ACE ∴的面积【点拨】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.熟练掌握知识点是解题的关键.类型四、全等图形➽➼应用5.沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【分析】根据全等图形的定义:对应边都相等,对应角都相等的图形进行构造即可.解:如图所示(任意两种方法,正确即可):【点拨】本题考查全等图形的定义,熟练掌握相关概念是解题的关键.举一反三:【变式1】试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.【答案】见分析(第一个图答案不唯一)【分析】根据全等图形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.解:第一个图形分割有如下几种:第二个图形的分割如下:【点拨】本题主要考查了学生的动手操作能力和学生的空间想象能力,牢记全等图形的定义是解题的重点.【变式2】沿着图中的虚线,请将如图的图形分割成四个全等的图形.【答案】见分析【分析】直接利用图形总面积得出每一部分的面积,进而求出答案.解:共有3412⨯=个小正方形,∴被分成四个全等的图形后每个图形有1243÷=,∴如图所示:,【点拨】本题主要考查了应用设计图作图,正确求出每部分面积是解题关键.s。