2016年上海市高中数学竞赛试题及答案
2016年各省高中数学联赛预选赛试题及详解答案(最值部分)
2016年各省高中数学联赛预选赛试及详解答案(最值部分)1、 为正数y x ,,且y x a y x +≤+,则a 的最小值为(2)解:∵0y x >, ∴y x y x +,,均为正数,所以0a >y x xy 21y x yx a y x a y x 22++=⎪⎪⎭⎫⎝⎛++≥⇔+≤+,而1xy 2xy 2y x xy 2=≤+,所以211a 2=+≥ ∴2a ≥2、 设1x 0<<,b a ,大于零的常数,x1b x a 22-+则的最小值为(()2b a +) 解:∵1x 0<< ∴0x 1>-,又b a ,大于零的常数由柯西不等式可知:()()2222b a x1x b a x 1b x a +=-++≥-+,当且仅当b a a x +=时,等号成立。
3、 已知正实数b a ,满足36b a 9=+,则b1a 1+最小值时,=ab (27) 解:∵0b a >,,由柯西不等式可知:()943616b a 913b 1a 99b 1a 12==++≥+=+,即当且仅当b 1a 93=,代入36b a 9=+计算,得⎩⎨⎧==9b 3a 时,等号成立。
∴2793ab =⨯=4、 若正数y x ,满足xy 5y 3x =+,则y 4x 3+的最小值为(5)解:∵0y x >, ∴xy 为正数∴5x39y 445x 3y 15xy y 3xy x xy 5y 3x =+⇔=+⇔=+⇔=+ 由柯西不等式可知:()5y 4x 3x3y 432x 39y 4452≥+⇔++≥+=当且仅当x 33y 42=,代入xy 5y 3x =+计算,得⎪⎩⎪⎨⎧==21y 1x 时,等号成立。
5、 z y x ,,为正数时,222z y x yz xz 4+++的最大值为(217)。
解:思路:如果分母的最小值可以化为类似常数项×()yz xz 4+的形式,那么最大值就为此常数项的倒数。
2016年全国高中数学联赛试题及答案
事实上,当 中有某条直线斜率不存在时,则可设 ,就是前面所讨论的 的情况,这时有 若 的斜率都存在,不妨设
注意这里 (否则 将与 的渐近线平行,从而 与 只有一个交点).
联立 与 的方程知, 即
这是一个二次方程式,其判别式为 .故 与 有两个不同的交点 .同样, 与 也有两个不同的交点 由弦长公式知,
又 所以 ,即 平分
四、(50分)设 是任意一个11元实数集合.令集合 求 的元素个数的最小值.
解:先证明 考虑到将 中的所有元素均变为原来的相反数时,集合 不变,故不妨设 中正数个数不少于负数个数.下面分类讨论:
情况一: 中没有负数.
设 是 中的全部元素,这里 于是
上式从小到大共有 个数,它们均是 的元素,这表明
另解:首先注意到,若 为正整数,则对任意整数 ,若 ,则 这是因为,当 时, ,这里 是一个整数,故
因此,当整数 满足 时,
容易验证,当正整数满足 时,只有当 时,等式 才成立.而 ,故当 时,满足 正整数 的个数为
二、解答题:(共3小题,共56分)
9.(16分)已知 是各项均为正数的等比数列,且 是方程
2016
一试
一、选择题:(每小题8分,共64分)
1.等比数列 的各项均为正数,且 则 的值为.
答案:6.
解:由于 且 故
另解:设等比数列的公比为 ,则 又因
而 ,从而
2.设 ,则平面点集 的面积为.
答案:7.
解:点集 如图中阴影部分所示,其面积为
3.已知复数 满足 ( 表示 的共轭复数),则 的所有可能值的积为.
用 代替 ,同理可得 于是
综上所述, 为符合条件的值.
加试
一、(40分)非负实数 和实数 满足:
上海市高中数学竞赛试题及参考答案
上海市高中数学竞赛一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则所有这些六边形的面积和是 .2.已知正整数1210,,,a a a 满足:3,1102>≤<≤ji a i j a ,则10a 的最小可能值是 .3.若17tan tan tan 6αβγ++=,4cot cot cot 5αβγ++=-,cot cot αβ17cot cot cot cot 5βγγα++=-,则()tan αβγ++= .4.已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .5.如图,∆AEF 是边长为x 的正方形ABCD 的内接三角形,已知90∠=︒AEF ,,,==>AE a EF b a b ,则=x .6.方程1233213+⋅-+=m n n m 的非负整数解(),=m n .7.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是 .(用数字作答)8.数列{}n a 定义如下:()1221211,2,,1,2,22+++===-=++n n n n na a a a a n n n .若201122012>+m a ,则正整数m 的最小值为 .E1C D 1二、解答题 9.(本题满分14分)如图,在平行四边形ABCD 中,AB x =,1BC =,对角线AC 与BD 的夹角45BOC ∠=︒,记直线AB 与CD 的距离为()h x .求()h x 的表达式,并写出x 的取值范围.10.(本题满分14分)给定实数1a >,求函数(sin )(4sin )()1sin a x x f x x++=+的最小值.11.(本题满分16分)正实数,,x y z 满足94xyz xy yz zx +++=,求证:(1)43xy yz zx ++≥; (2)2x y z ++≥.ODCBA12.(本题满分16分)给定整数(3)n ≥,记()f n 为集合{}1,2,,21n -的满足如下两个条件的子集A 的元素个数的最小值:(a ) 1,21n A A ∈-∈;(b ) A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和. (1)求(3)f 的值; (2)求证:(100)108f ≤.上海市高中数学竞赛答案1、42、923、114、(){},04-∞526、()()3,0,2,27、258、40259.解 由平行四边形对角线平方和等于四条边的平方和得2222211()(1)22OB OC AB BC x +=+=+. ①…………………(2分)在△OBC 中,由余弦定理2222cos BC OB OC OB OC BOC =+-⋅∠,所以 221OB OC OC +⋅=, ②由①,②得 2OB OC ⋅=. ③…………………(5分)所以 144s i n 2A B C D O B C S S O B O C B O C ∆==⋅⋅∠OC =⋅212x -=, 故 ()AB h x ⋅212x -=,所以 21()2x h x x-=. …………………(10分)由③可得,210x ->,故1x >.因为222OB OC OB OC +≥⋅,结合②,③可得221(1)22x +≥解得(结合1x >)11x <+.综上所述,21()2x h x x-=,11x <≤. …………………(14分)10.解 (sin )(4sin )3(1)()1sin 21sin 1sin a x x a f x x a x x++-==++++++.当713a <≤时,02≤,此时3(1)()1sin 221sin a f x x a a x-=++++≥++,且当(]()sin 11,1x =∈-时不等式等号成立,故min ()2f x a =+. …………………(6分)当73a >2>,此时“耐克”函数3(1)a y t t -=+在(0,内是递减,故此时min 3(1)5(1)()(1)2222a a f x f a -+==+++=.综上所述,min 72,1;3()5(1)7,.23a a f x a a ⎧+<≤⎪⎪=⎨+⎪>⎪⎩ …………………(14分)11.证 (1)记t =)33223xy yz zx xyz ++⎛⎫=≤ ⎪⎝⎭.…………………(4分) 于是 324993xyz xy yz zx t t =+++≤+,所以 ()()2323320t t t -++≥,而23320t t ++>,所以320t -≥,即23t ≥,从而 43x y y zz x ++≥. …………………(10分) (2)又因为2()3()x y z xy yz zx ++≥++,所以 2()4x y z ++≥,故 2x y z ++≥. …………………(16分)12.解 (1)设集合{}31,2,,21A ⊆-,且A 满足(a ),(b ).则1,7A A ∈∈.由于{}()1,,72,3,,6m m =不满足(b ),故3A >. 又 {}{}{}{}{}{}{}1,2,3,7,1,2,4,7,1,2,5,7,1,2,6,7,1,3,4,7,1,3,5,7,1,3,6,7, {}{}{}1,4,5,7,1,4,6,7,1,5,6,7都不满足 (b ),故4A >. 而集合{}1,2,4,6,7满足(a ),(b ),所以(3)5f =.…………………(6分) (2)首先证明(1)()2,3,4,f n f n n +≤+=. ①事实上,若{}1,2,,21n A ⊆-,满足(a ),(b ),且A 的元素个数为()f n .令{}1122,21n n B A++=--,由于12221n n +->-,故()2B f n =+.又111222(21),211(22)n n n n +++-=--=+-,所以,集合{}11,2,,21n B +⊆-,且B 满足(a ),(b ).从而(1)()2f n B f n +≤=+. …………………(10分)其次证明:(2)()1,3,4,f n f n n n ≤++=. ②事实上,设{}1,2,,21n A ⊆-满足(a ),(b ),且A 的元素个数为()f n .令{}222(21),2(21),,2(21),21nn n n n B A=----,由于 222(21)2(21)2(21)21n n n n n -<-<<-<-,所以{}21,2,,21n B ⊆-,且()1B f n n =++.而12(21)2(21)2(21),0,1,,1k n k n k n k n +-=-+-=-,2212(21)(21)n n n n -=-+-,从而B 满足(a ),(b ),于是(2)()1f n B f n n ≤=++. …………………(14分) 由①,②得 (21)()3f n f n n +≤++. ③ 反复利用②,③可得(100)(50)501(25)25151f f f ≤++≤+++(12)12377(6)6192f f ≤+++≤+++(3)3199108f ≤+++=. …………………(16分)。
2016年全国高中数学联合竞赛试题与解答(A卷)
2016 年全国高中数学联合竞赛一试(A 卷)说明:1. 评阅试卷时,请依据本评分标准.填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次给分,解答题中第 9 小题 4 分为一个档次,第 10、11 小题 5 分一个档次,不要增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,共 64 分1.设实数 a 满足 a < 9a 3-11a <| a | ,则 a 的取值范围是2.设复数 z , w 满足 | z |= 3,(z + w )(z - w ) = 7 + 4i ,其中 i 是虚数单位,z , w 分别表示 z , w 的共轭复数,则 (z + 2w )(z - 2w ) 的模为3.正实数 u , v , w 均不等于 1,若 log u vw + log v w = 5 , log v u + log w v = 3 ,则 log w u 的值为4.袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币和 3 张 1 元纸币.现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值之和大于 B 中剩下的纸币面值之和的概率为5.设 P 为一圆锥的顶点,A ,B ,C 是其底面圆周上的三点,满足∠ABC =90°,M 为 AP 的中点.若 AB =1,AC =2, AP = 2 ,则二面角 M —BC —A 的大小为6 . 设 函 数 f (x ) = sin 4 kx + cos 4kx , 其 中 k 是 一 个 正 整 数 . 若 对 任 意 实 数 a , 均 有10 10{ f (x ) | a < x < a +1} = { f (x ) | x ∈ R },则 k 的最小值为7.双曲线 C 的方程为 x 2- y 2= 1,左、右焦点分别为 F 、 F ,过点 F 作直线与双曲线 C 的右半支交于3 1 2 2点 P ,Q ,使得 ∠F 1 PQ =90°,则 ∆F 1 PQ 的内切圆半径是8.设 a 1 , a 2 , a 3 , a 4 是 1,2,…,100 中的 4 个互不相同的数,满足(a 11 + a 22 + a 32 )(a 22 + a 32 + a 42 ) = (a 1a 2 + a 2 a 3 + a 3 a 4 ) 2则这样的有序数组 (a 1 , a 2 , a 3 , a 4 ) 的个数为二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分 16 分)在 ∆ABC 中,已知 AB ∙ AC + 2BA ∙ BC = 3CA ∙ CB .求 sin C 的最大值.10.(本题满分 20 分)已知 f (x ) 是 R 上的奇函数, f (1) = 1 ,且对任意 x < 0 ,均有 f ( x x-1) = xf (x ) .求 f (1) f (1001) + f (12) f (991) + f (13) f (981) +… + f (501) f (511) 的值.11.(本题满分 20 分)如图所示,在平面直角坐标系 xOy 中,F 是 x 轴正半轴上的一个动点.以 F 为焦点, O 为顶点作抛物线 C .设 P 是第一象限内 C 上的一点,Q 是 x 轴负半轴上一点,使得 PQ 为 C 的切线,且|PQ |=2.圆 C 1 , C 2 均与直线 OP 相切于点 P ,且均与轴相切.求点 F 的坐标,使圆 C 1 与 C 2 的面积之和取到最小值.2016 年全国高中数学联合竞赛加试一、(本题满分 40 分)设实数a,a, …,a2016满足 9a> 11a2(i= 1,2,… ,2015)。
2016年全国高中数学联合竞赛试题及解答.(A卷)
2016年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2016A1、设实数a 满足a a a a <-<1193,则实数a 的取值范围为◆答案:)310,332(--∈a ★解析:由||a a <可得0<a ,原不等式可变形为1||11913-=>->aa a a a即111912<-<-a ,所以)34,910(2∈a .又0<a ,故)310,332(--∈a .2016A 2、设复数z ,w 满足3=z ,i w z w z 47))((+=-+,其中i 是虚数单位,z ,w 分别表示复数z ,w 的共轭复数,则)2)(2(w z w z -+的模为 ◆答案:65★解析:由运算性质,)(||||))((4722zw zw w z w z w z i ---=-+=+,因为2||z 与2||w 为实数,0)Re(=-zw zw ,故7||||22=-w z ,i zw zw 4-=-,又3||=z ,所以2||2=w ,从而i i zw zw w z w z w z 81889)(2||4||)2)(2(22+=+-=---=-+因此,)2)(2(w z w z -+的模为65.2016A 3、正实数u ,v ,w 均不等于1,若5l og l og =+w vw v u ,3log log =+v u w v ,则vwl og 的值为 ◆答案:54 ★解析:令a v u =log ,b w v =log ,则a u v 1log =,bv w 1log =,ab a w v v vw v u u u +=∙+=log log log log条件化为5=++b ab a ,311=+b a ,由此可得45=ab ,因此 54log log log ==∙=u v u v w w .2016A 4、袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币,现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 ◆答案:359 ★解析:一种取法符合要求,等价于从A 中取走的两张纸币的总面值a 小于从B 中取走的两张纸币的总面值b ,从而1055=+≤<b a .故只能从A 中国取走两张1元纸币,相应的取法数为323=C .又此时2=>a b ,即从B 中取走的两张纸币不能都是1元纸币,相应有182327=-C C 种取法.因此,所求的概率为3592110541832725=⨯=⨯⨯C C .2016A 5、设P 为圆锥曲线的顶点,A ,B ,C 是其地面圆周上的三点,满足090=∠ABC ,M 为线段AP 的中点。
2016年全国高中数学联赛(B卷)试题及答案
2016年全国高中数学联赛(B卷)试题及答案2016年全国高中数学联赛(B 卷)试题及答案一试一、选择题:(每小题8分,共64分) 1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24aa +的值为.答案:6. 解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,a a +>故24 6.aa +=另解:设等比数列的公比为q ,则52611.a a a q a q +=+又因()()()()()22252132********2223331111112436222,a a a a a a a q a q a q a q a q a q a qa q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而24a a+>,从而24 6.aa +=2.设{}|12A a a =-≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 答案:7.解:点集B 如图中阴影部分所示,其面积为133227.2MRSMNPQS S -=⨯-⨯⨯=正方形3.已知复数z 满足22z z z z+=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 .答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知, 222i 22i i,a b ab a b a b -+++=-比较虚、实部得220,230.a b a ab b -+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =-,进而23b a a =+=于是,满足条件的复数z 的积为3333 3.22⎛⎫⎛⎫-+--= ⎪⎪ ⎪⎪⎝⎭⎝⎭4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2-中心对称,且()()391xf xg x x +=++,则()()22f g 的值为 .答案:2016. 解:由条件知()()002,f g += ①()()22818190.f g +=++= ②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=-结合①知,()()()()22400 2.f g f g --=+= ③由②、③解得()()248,242,f g ==从而()()2248422016.f g =⨯= 另解:因为()()391x f x g x x +=++, ①所以()()2290.f g += ②因为()f x 的图像关于直线1x =对称,所以()()2.f x f x =- ③又因为()g x 的图像关于点()1,2-中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x -=-,()()1212g x g x ⎡⎤-++=-++⎣⎦,从而()()2 4.g x g x =--- ④将③、④代入①,再移项,得()()3229 5.x f x g x x ---=++ ⑤在⑤式中令0x =,得()()22 6.f g -= ⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g = 5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 . 解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为223560.C P ⨯=过所求的概率为6012.12525p == 6.在平面直角坐标系xOy 中,圆221:0C xy a +-=关于直线l 对称的圆为222:2230,C xy x ay ++-+=则直线l 的方程为 .答案:2450.x y -+=解:12,C C 的标准方程分别为 ()()2222212:1,:1 2.C x y C x y a a +=++-=-由于两圆关于直线l 对称,所以它们的半径相等.因此220,a a=->解得 2.a =故12,C C 的圆心分别是()()120,0,1,2.O O -直线l 就是线段12O O 的垂直平分线,它通过12O O 的中点1,12M ⎛⎫- ⎪⎝⎭,由此可得直线l 的方程是2450.x y -+=7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN=,则异面直线,AM BN所成角的余弦值为 .解:如图,以底面ABCD 的中心O 为坐标原点,,,AB BC OVu u u r u u u r u u u r 的方向为,,x y z 轴的正向,V DN yxOzMCBA建立空间直角坐标系.不妨设2,AB =此时高1,VO =从而()()()()1,1,0,1,1,0,1,1,0,0,0,1.A B D V ----由条件知111112,,,,,222333M N ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,因此 311442,,,,,.222333AM BN ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r设异面直线,AM BN 所成的角为θ,则111cos 112AM BN AM BNθ⋅-===⋅⨯u u u u r u u u r u u u u r u u u r8.设正整数n 满足2016n ≤,且324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭.这样的n 的个数为 .这里{}[]x x x =-,其中[]x 表示不超过x 的最大整数. 解:由于对任意整数n ,有 135113,2461224612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++≤+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭ 等号成立的充分必要条件是()1mod12n ≡-,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =-=L 共有168个.另解:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故.x x x y mt y mt y y y y y t t m m m m m m m m m m ++⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎧⎫=-=-=+-+=-=⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎩⎭⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n ⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫+++=+++⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭才成立.而201612168=⨯,故当12016n ≤≤时,满足324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭正整数n 的个数为168.二、解答题:(共3小题,共56分) 9.(16分)已知{}na 是各项均为正数的等比数列,且5051,a a 是方程 ()2100lg lg 100x x =的两个不同的解,求12100a a a L 的值.解 对50,51k =,有()2100lg lg 1002lg ,k k k a a a ==+即()2100lg lg 20.kka a --=因此,5051lg ,lg aa 是一元二次方程210020tt --=的两个不同实根,从而()505150511lg lg lg ,100a a a a =+=即1100505110.aa =由等比数列的性质知,()501501001210050511010.a a aa a ⎛⎫=== ⎪⎝⎭L 10.(20分)在ABC中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=;(2)求cos C 的最小值.解 (1)由数量积的定义及余弦定理知,222cos .2b c a AB AC cb A +-⋅==u u u r u u u r 同理得,222222,.22a cb a bc BA BC CA CB +-+-⋅=⋅=u u u r u u u r u u u r u u u r 故已知条件化为()()22222222223,b c a a c b a b c +-++-=+-即22223.ab c +=(2)由余弦定理及基本不等式,得()2222222123cos 2223636a b a b a b c C ab ab a b a b b a b a +-++-===+≥⋅等号成立当且仅当::36 5.a b c =因此cos C 的最小值211.(20分)在平面直角坐标系xOy 中,双曲线C的方程为221xy -=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.解 过点(),0a 作两条互相垂直的直线1:l x a =与2:0.l y =易知,1l 与C 交于点((22001,,1P a a Q a a ---(注意这里1a >),2l 与C交于点()()001,0,1,0,R S -由条件知20000212a PQ R S -===,解得 2.a =这意味着符合条件的a 2.下面验证2a事实上,当12,l l 中有某条直线斜率不存在时,则可设12:,:0l x a l y ==,就是前面所讨论的12,l l 的情况,这时有.PQ RS =若12,l l 的斜率都存在,不妨设((()121:2,:20,l y k x l y x k k==-≠ 注意这里1k ≠±(否则1l 将与C 的渐近线平行,从而1l与C 只有一个交点). 联立1l 与C 的方程知,(222210,x k x ---=即()2222122210,k x k x k ----=这是一个二次方程式,其判别式为2440k∆=+>.故1l与C 有两个不同的交点,P Q .同样,2l 与C 也有两个不同的交点,.R S 由弦长公式知,2222244112.11k k PQ k k k ++=+=⋅--用1k-代替k ,同理可得()()22221122.11k k RS k k --+-+=⋅=---于是.PQ RS =综上所述,2a =加试一、(40分)非负实数122016,,,x x x L 和实数122016,,,y y yL 满足:(1)221,1,2,,2016kk xy k +==L ;(2)122016y yy +++L 是奇数.求122016x xx +++L 的最小值.解:由已知条件(1)可得:1,1,1,2,,2016,kk xy k ≤≤=L 于是(注意0ix ≥)()2016201620162016201622211111120162016.kkkkk k k k k k x xy yy =====≥=-=-≥-∑∑∑∑∑ ① 不妨设112016,,0,,,0,02016,mm y yy y m +>≤≤≤L L 则201611,2016.mkk k k m ym y m ==+≤-≤-∑∑若11m kk ym =>-∑,并且201612015,kk m ym =+->-∑令 2016111,2015,mkk k k m ym a y m b ==+=-+-=-+∑∑则0,1,a b <<于是()201620161111201522016,m kkk k k k m y yy m a m b m a b ===+=+=-+--+=-+-∑∑∑由条件(2)知,20161kk y =∑是奇数,所以a b -是奇数,这与0,1a b <<矛盾. 因此必有11m kk ym =≤-∑,或者201612015,kk m ym =+-≤-∑则201620161112015.m kk k k k k m yy y ===+=-≤∑∑∑于是结合①得201611.kk x=≥∑又当122015201612201520160,1,1,0x xx x y y y y ==========L L 时满足题设条件,且使得不等式等号成立,所以122016x x x +++L 的最小值为1.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤ 证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅I 的不超过k 的正约数的集合是.A B U 若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d '=,则|d n ',d '是奇数,又2k d k '≤<,故,d A '∈从而.B A ≤ 所以.A B =故2n 的不超过k 的正约数的个数为偶数,与已知矛盾.从而结论成立.三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠Q GPDBA 解:连接AC ,与BD 交于点.M 由平行四边形的性质,点M 是,AC BD 的中点.因此,GM Q PODB A点G 在线段AC 上.由于90GPC GQC ∠=∠=o,所以,,,P G Q C 四点共圆,并且其外接圆是以GC 为直径的圆.由相交弦定理知 .PM MQ GM MC ⋅=⋅ ①取GC 的中点.O 注意到::2:1:3,AG GM MC =故有1,2OC GC AG == 因此,G O 关于点M 对称.于是.GM MC AM MO ⋅=⋅ ②结合①、②,有PM MQ AM MO ⋅=⋅,因此,,,A P O Q 四点共圆.又1,2OP OQ GC ==所以PAO QAO ∠=∠,即AG 平分.PAQ ∠ 四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.解:先证明17.B ≥考虑到将A 中的所有元素均变为原来的相反数时,集合B 不变,故不妨设A 中正数个数不少于负数个数.下面分类讨论:情况一:A 中没有负数.设1211a a a <<<L 是A 中的全部元素,这里120,0,a a ≥>于是1223242113111011,a a a a a a a a a a a a <<<<<<<L L 上式从小到大共有19818++=个数,它们均是B 的元素,这表明18.B ≥情况二:A 中至少有一个负数.设12,,,k b b b L 是A 中的全部非负元素,12,,,lc c c L 是A 中的全部负元素.不妨设110,l kc c b b <<<≤<<L L 其中,k l 为正整数,11k l +=,而k l ≥,故 6.k ≥于是有 111212,k k l kc b c b c b c b c b >>>>>>L L 它们是B 中的110k l +-=个元素,且非正数;又有 23242526364656,b b b b b b b b b b b b b b <<<<<< 它们是B 中的7个元素,且为正数.故10717.B ≥+= 由此可知,17.B ≥另一方面,令{}2340,1,2,2,2,2,A =±±±±±则{}236780,1,2,2,2,,2,2,2B =-±±±±±-L 是个17元集合.综上所述,B 的元素个数的最小值为17.。
2016年全国高中数学联赛试题及答案详解(B卷)
2016年全国高中数学联赛(B 卷)一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 . 2.设{}|12A a a =−≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 . 4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2−中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 . 5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .6.在平面直角坐标系xOy 中,圆221:0C x y a +−=关于直线l 对称的圆为222:2230,C x y x ay ++−+=则直线l 的方程为 .7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN =,则异面直线,AM BN 所成角的余弦值为 .8.设正整数n 满足2016n ≤,且324612n n n n+++= .这样的n 的个数为 .这里{}[]x x x =−,其中[]x 表示不超过x 的最大整数.二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程()2100lg lg 100x x = 的两个不同的解,求12100a a a 的值.10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y −=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +== ; (2)122016y y y +++ 是奇数. 求122016x x x +++ 的最小值.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.QG P DCBA2016年全国高中数学联赛(B 卷)试题及答案一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 . 答案:6.解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,a a +>故24 6.a a += 另解:设等比数列的公比为q ,则52611.a a a q a q +=+又因 ()()()()()22252132631111122223331111112436222,a a a a a a a q a q a q a q a q a q a qa q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而240a a +>,从而24 6.a a +=2.设{}|12A a a =−≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 答案:7.解:点集B 如图中阴影部分所示,其面积为 133227.2MRS MNPQ S S −=×−××=正方形3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 . 答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知, 222i 22i i,a b ab a b a b −+++=−比较虚、实部得220,230.a b a ab b −+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =−,进而b 于是,满足条件的复数z的积为33 3.22 −+−−= 4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x的图像关于点()1,2−中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 .答案:2016. 解:由条件知()()002,f g += ①()()22818190.f g +++ ②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=−结合①知, ()()()()22400 2.f g f g −−=+= ③由②、③解得()()248,242,f g ==从而()()2248422016.f g =×=另解:因为()()391x f x g x x +=++, ① 所以()()2290.f g += ②因为()f x 的图像关于直线1x =对称,所以 ()()2.f x f x =− ③又因为()g x 的图像关于点()1,2−中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x −=−,()()1212g x g x −++=−++ ,从而 ()()2 4.g x g x =−−− ④ 将③、④代入①,再移项,得 ()()3229 5.x f x g x x −−−=++ ⑤ 在⑤式中令0x =,得()()22 6.f g −= ⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g =5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为223560.C P ×=过所求的概率为6012.12525p ==6.在平面直角坐标系xOy 中,圆221:0C x y a +−=关于直线l 对称的圆为222:2230,C x y x ay ++−+=则直线l 的方程为 .答案:2450.x y −+=解:12,C C 的标准方程分别为()()2222212:1,:1 2.C x y C x y a a +=++−=−由于两圆关于直线l 对称,所以它们的半径相等.因此220,a a =−>解得 2.a =故12,C C 的圆心分别是()()120,0,1,2.O O −直线l 就是线段12O O 的垂直平分线,它通过12O O 的中点1,12M−,由此可得直线l 的方程是2450.x y −+=7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN =,则异面直线,AM BN 所成角的余弦值为 .解:如图,以底面ABCD 的中心O 为坐标原点,,,AB BC OV 的方向为,,x y z 轴的正向,建立空间直角坐标系.不妨设2,AB =此时高1,VO =从而()()()()1,1,0,1,1,0,1,1,0,0,0,1.A B D V −−−−由条件知111112,,,,,222333M N−−,因此311442,,,,,.222333AM BN ==−设异面直线,AM BN 所成的角为θ,则cos AM BN AM BNθ⋅==⋅xA8.设正整数n 满足2016n ≤,且324612n n n n+++= .这样的n 的个数为 .这里{}[]x x x =−,其中[]x 表示不超过x 的最大整数.解:由于对任意整数n ,有135113,2461224612n n n n +++≤+++=等号成立的充分必要条件是()1mod12n ≡−,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =−= 共有168个.另解:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m = 这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故.x x x y mt y mt y y y y y t t m m m m m m m m m m ++=−=−=+−+=−= 因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n+++=+++容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n+++=才成立.而201612168=×,故当12016n ≤≤时,满足324612n n n n+++= 正整数n 的个数为168.二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程 ()2100lg lg 100x x = 的两个不同的解,求12100a a a 的值.解 对50,51k =,有()2100lg lg 1002lg ,k k k a a a ==+即()2100lg lg 20.k k a a −−=因此,5051lg ,lg a a 是一元二次方程210020t t −−=的两个不同实根,从而 ()505150511lg lg lg ,100a a a a =+=即1100505110.a a =由等比数列的性质知,()5015010012100505110a a a a a===10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.解 (1)由数量积的定义及余弦定理知,222cos .2b c a AB ACcb A +−⋅== 同理得,222222,.22a cb a bc BA BC CA CB +−+−⋅=⋅= 故已知条件化为 ()()22222222223,b c a a c b a b c +−++−=+− 即22223.a b c +=(2)由余弦定理及基本不等式,得 ()2222222123cos 2236a b a b a b c C ab ab a b b a +−++−===+≥等号成立当且仅当::a b c =因此cos C11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y −=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.解 过点(),0a 作两条互相垂直的直线1:l x a =与2:0.l y =易知,1l 与C交于点((00,,P a Q a (注意这里1a >),2l 与C 交于点()()001,0,1,0,R S −由条件知00002P Q R S ==,解得a = 这意味着符合条件的a下面验证a =符合条件.事实上,当12,l l 中有某条直线斜率不存在时,则可设12:,:0l x a l y ==,就是前面所讨论的12,l l 的情况,这时有.PQ RS =若12,l l 的斜率都存在,不妨设((()121:,:0,l y k x l y x k k==−≠注意这里1k ≠±(否则1l 将与C 的渐近线平行,从而1l 与C 只有一个交点). 联立1l 与C的方程知,(22210,x kx −−−=即()22221210,k xx k −−−−=这是一个二次方程式,其判别式为2440k ∆=+>.故1l 与C 有两个不同的交点,P Q .同样,2l 与C 也有两个不同的交点,.R S 由弦长公式知,2212.1k PQ k +=⋅−用1k −代替k ,同理可得()()22221122.11k k RS k k −−+−+=⋅=−−−于是.PQ RS = 综上所述,a =为符合条件的值.加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +== ; (2)122016y y y +++ 是奇数.求122016x x x +++ 的最小值.解:由已知条件(1)可得:1,1,1,2,,2016,k k x y k ≤≤= 于是(注意0i x ≥)()2016201620162016201622211111120162016.k kkk k k k k k k x xy y y =====≥=−=−≥−∑∑∑∑∑ ①不妨设112016,,0,,,0,02016,m m y y y y m +>≤≤≤ 则201611,2016.mkk k k m ym y m ==+≤−≤−∑∑若11m k k y m =>−∑,并且201612015,k k m y m =+−>−∑令 2016111,2015,mk k k k m y m a y m b ==+=−+−=−+∑∑则0,1,a b <<于是()201620161111201522016,m kkk k k k m y yy m a m b m a b ===+=+=−+−−+=−+−∑∑∑由条件(2)知,20161k k y =∑是奇数,所以a b −是奇数,这与0,1a b <<矛盾.因此必有11m k k y m =≤−∑,或者201612015,k k m y m =+−≤−∑则201620161112015.m kk k k k k m yy y ===+=−≤∑∑∑于是结合①得201611.k k x =≥∑又当122015201612201520160,1,1,0x x x x y y y y ========== 时满足题设条件,且使得不等式等号成立,所以122016x x x +++ 的最小值为1.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅ 的不超过k 的正约数的集合是.A B若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d ′=,则|d n ′,d ′是奇数,又2kd k ′≤<,故,d A ′∈从而.B A ≤ 所以.A B =故2n 的不超过k 的正约数的个数为偶数,与已知矛盾.从而结论成立. 三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠解:连接AC ,与BD 交于点.M 由平行四边形的性质,点M 是,AC BD 的中点.因此,点G 在线段AC 上.由于90GPC GQC ∠=∠= ,所以,,,P G Q C 四点共圆,并且其外接圆是以GC 为直径的圆.由相交弦定理知QG P DCBA.PM MQ GM MC ⋅=⋅ ①取GC 的中点.O 注意到::2:1:3,AG GM MC =故有1,2OCGC AG == 因此,G O 关于点M 对称.于是.GM MC AM MO ⋅=⋅ ②结合①、②,有PM MQ AM MO ⋅=⋅,因此,,,A P O Q 四点共圆. 又1,2OP OQ GC ==所以PAO QAO ∠=∠,即AG 平分.PAQ ∠ 四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.解:先证明17.B ≥考虑到将A 中的所有元素均变为原来的相反数时,集合B 不变,故不妨设A 中正数个数不少于负数个数.下面分类讨论:情况一:A 中没有负数.设1211a a a <<< 是A 中的全部元素,这里120,0,a a ≥>于是 1223242113111011,a a a a a a a a a a a a <<<<<<<上式从小到大共有19818++=个数,它们均是B 的元素,这表明18.B ≥情况二:A 中至少有一个负数.设12,,,k b b b 是A 中的全部非负元素,12,,,l c c c 是A 中的全部负元素.不妨设 110,l k c c b b <<<≤<<其中,k l 为正整数,11k l +=,而k l ≥,故 6.k ≥于是有 111212,k k l k c b c b c b c b c b >>>>>> 它们是B 中的110k l +−=个元素,且非正数;又有 23242526364656,b b b b b b b b b b b b b b <<<<<< 它们是B 中的7个元素,且为正数.故10717.B ≥+=由此可知,17.B ≥ 另一方面,令{}2340,1,2,2,2,2,A =±±±±±则{}236780,1,2,2,2,,2,2,2B =−±±±±±− 是个17元集合.综上所述,B 的元素个数的最小值为17.。
2016年全国高中数学联赛试题及答案详解(B卷)
C2 : x2 + y2 + 2x − 2ay + 3 =0, 则直线 l 的方程为
.
答案: 2x − 4 y + 5 =0. 解: C1,C2 的标准方程分别为
C1 : x2 + y2 = 1,C2 : ( x + 1)2 + ( y − a)2 = a2 − 2.
由于两圆关于直线 l 对称,所以它们的半径相等.因此 a = a2 − 2 > 0, 解得 a = 2. 故 C1,C2
a2 − b2 + 2abi + 2a + 2bi =a − bi, 比较虚、实部得 a2 − b2 +=a 0, 2ab + = 3b 0. 又由 z ≠ z 知 b ≠ 0 ,从而有
2a + 3 =0, 即 a = − 3 ,进而 b =± a2 + a =± 3 .
2
2
于是,满足条件的复数
z
的积为
11.(20 分)在平面直角坐标系 xOy 中,双曲线 C 的方程为 x2 − y2 = 1 .求符合以下要
求的所有大于1的实数 a :过点 (a, 0) 任意作两条互相垂直的直线 l1 与 l2 ,若 l1 与双曲线 C 交
于 P,Q 两点, l2 与 C 交于 R, S 两点,则总有 PQ = RS 成立.
的两个不同的解,求 a1a2 a100 的值.
10.(20 分)在 ABC 中,已知 AB ⋅ AC + 2BA ⋅ BC = 3CA ⋅ CB. (1)将 BC,CA, AB 的长分别记为 a,b, c ,证明: a2 + 2b2 = 3c2 ; (2)求 cos C 的最小值.
2016年上海市高中数学竞赛试题及标准答案
2016年上海市高中数学竞赛试题及答案一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分)1.已知函数()2f x ax bx c =++(0a ≠,,,a b c 均为常数),函数()1f x 的图象与函数()f x 的图象关于y 轴对称,函数()2f x 的图象与函数()1f x 的图象关于直线1y =对称,则函数()2f x 的解析式为 .答案:()22 2.f x ax bx c =-+-+解 在函数()y f x =的表达式中用x -代替x ,得()21f x ax bx c =-+,在函数()1y f x =的表达式中用2y -代替y ,得()22 2.f x ax bx c =-+-+2.复数z 满足1z =,2223w z z=-在复平面上对应的动点W 所表示曲线的普通方程是 .答案:221.25y x += 解 设,z a bi w x yi =+=+,则221a b +=,()()()()()()()()()222222222222333210.a bi x yi a bi a bi a bi a bi a bi a bi a bi ab abi -+=+-=+-++-=+--=-+从而22,10x a b y ab =-=,于是()22222224 1.25y x a b a b +=-+= 3.关于x 的方程arctan 2arctan 26x xπ--=的解是 .答案:2log x = 解 因为()()tan arctan 2tan arctan 2221xx x x --⋅=⋅=,所以arctan 2arctan 22x x π-+=,解得arctan 2,arctan 236xx ππ-==,则22log x x ==4.红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6,则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能. 答案:48.解 四颗骰子乘积等于36,共有四种情形:(1)两个1,两个6,这种情形共246C =种可能; (2)两个2,两个3,这种情形共246C =种可能;(3)两个3,一个1,一个4,这种情形共214212C C =种可能; (4),1,2,3,6各一个,这种情形共4424A =种可能.综上,共有66122448+++=种可能. 5.已知函数()()()()1cos ,202xf x xg x a a π==-≠,若存在[]12,0,1x x ∈,使()()12f x g x =成立,则实数a 的取值范围为 .答案;13,00,.22⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦解 易知[]0,1x ∈时,()[]1,1.f x ∈-只需求a 的取值范围,使得()g x 能取到[]1,1-中的值.(1)当0a >时,()g x 单调递增,因为()12g x >-,故只需()01g ≤,解得30.2a <≤ (2)当0a <时,()g x 单调递减,因为()12g x <-,故只需()01g ≥-,解得10.2a -≤<6.如图,有16间小三角形的房间,甲、乙两人被随机地分别安置在不同的小三角形房间,那么他们在不相邻(指没有公共边)房间的概率是 (用分数表示).答案:17.20解法一 如图1,将小三角形房间分为三类:与第一类(红色)房间相邻的房子恰有一间,与第二类(绿色)房间相邻的房间恰有两间,与第三类(白色)房间相邻的房间恰有三间,从而满足条件的安置方法共有()()()316261637164204⨯-+⨯-+⨯-=种.从而所求概率为20417.161520=⨯。
2016年全国高中数学联赛试题及答案详解(B卷)
2016年全国高中数学联赛(B 卷)一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 . 2.设{}|12A a a =−≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 . 4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2−中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 . 5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .6.在平面直角坐标系xOy 中,圆221:0C x y a +−=关于直线l 对称的圆为222:2230,C x y x ay ++−+=则直线l 的方程为 .7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN =,则异面直线,AM BN 所成角的余弦值为 .8.设正整数n 满足2016n ≤,且324612n n n n+++= .这样的n 的个数为 .这里{}[]x x x =−,其中[]x 表示不超过x 的最大整数.二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程()2100lg lg 100x x = 的两个不同的解,求12100a a a 的值.10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y −=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +== ; (2)122016y y y +++ 是奇数. 求122016x x x +++ 的最小值.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.QG P DCBA2016年全国高中数学联赛(B 卷)试题及答案一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 . 答案:6.解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,a a +>故24 6.a a += 另解:设等比数列的公比为q ,则52611.a a a q a q +=+又因 ()()()()()22252132631111122223331111112436222,a a a a a a a q a q a q a q a q a q a qa q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而240a a +>,从而24 6.a a +=2.设{}|12A a a =−≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 答案:7.解:点集B 如图中阴影部分所示,其面积为 133227.2MRS MNPQ S S −=×−××=正方形3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 . 答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知, 222i 22i i,a b ab a b a b −+++=−比较虚、实部得220,230.a b a ab b −+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =−,进而b 于是,满足条件的复数z的积为33 3.22 −+−−= 4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x的图像关于点()1,2−中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 .答案:2016. 解:由条件知()()002,f g += ①()()22818190.f g +++ ②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=−结合①知, ()()()()22400 2.f g f g −−=+= ③由②、③解得()()248,242,f g ==从而()()2248422016.f g =×=另解:因为()()391x f x g x x +=++, ① 所以()()2290.f g += ②因为()f x 的图像关于直线1x =对称,所以 ()()2.f x f x =− ③又因为()g x 的图像关于点()1,2−中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x −=−,()()1212g x g x −++=−++ ,从而 ()()2 4.g x g x =−−− ④ 将③、④代入①,再移项,得 ()()3229 5.x f x g x x −−−=++ ⑤ 在⑤式中令0x =,得()()22 6.f g −= ⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g =5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为223560.C P ×=过所求的概率为6012.12525p ==6.在平面直角坐标系xOy 中,圆221:0C x y a +−=关于直线l 对称的圆为222:2230,C x y x ay ++−+=则直线l 的方程为 .答案:2450.x y −+=解:12,C C 的标准方程分别为()()2222212:1,:1 2.C x y C x y a a +=++−=−由于两圆关于直线l 对称,所以它们的半径相等.因此220,a a =−>解得 2.a =故12,C C 的圆心分别是()()120,0,1,2.O O −直线l 就是线段12O O 的垂直平分线,它通过12O O 的中点1,12M−,由此可得直线l 的方程是2450.x y −+=7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN =,则异面直线,AM BN 所成角的余弦值为 .解:如图,以底面ABCD 的中心O 为坐标原点,,,AB BC OV 的方向为,,x y z 轴的正向,建立空间直角坐标系.不妨设2,AB =此时高1,VO =从而()()()()1,1,0,1,1,0,1,1,0,0,0,1.A B D V −−−−由条件知111112,,,,,222333M N−−,因此311442,,,,,.222333AM BN ==−设异面直线,AM BN 所成的角为θ,则cos AM BN AM BNθ⋅==⋅xA8.设正整数n 满足2016n ≤,且324612n n n n+++= .这样的n 的个数为 .这里{}[]x x x =−,其中[]x 表示不超过x 的最大整数.解:由于对任意整数n ,有135113,2461224612n n n n +++≤+++=等号成立的充分必要条件是()1mod12n ≡−,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =−= 共有168个.另解:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m = 这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故.x x x y mt y mt y y y y y t t m m m m m m m m m m ++=−=−=+−+=−= 因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n+++=+++容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n+++=才成立.而201612168=×,故当12016n ≤≤时,满足324612n n n n+++= 正整数n 的个数为168.二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程 ()2100lg lg 100x x = 的两个不同的解,求12100a a a 的值.解 对50,51k =,有()2100lg lg 1002lg ,k k k a a a ==+即()2100lg lg 20.k k a a −−=因此,5051lg ,lg a a 是一元二次方程210020t t −−=的两个不同实根,从而 ()505150511lg lg lg ,100a a a a =+=即1100505110.a a =由等比数列的性质知,()5015010012100505110a a a a a===10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.解 (1)由数量积的定义及余弦定理知,222cos .2b c a AB ACcb A +−⋅== 同理得,222222,.22a cb a bc BA BC CA CB +−+−⋅=⋅= 故已知条件化为 ()()22222222223,b c a a c b a b c +−++−=+− 即22223.a b c +=(2)由余弦定理及基本不等式,得 ()2222222123cos 2236a b a b a b c C ab ab a b b a +−++−===+≥等号成立当且仅当::a b c =因此cos C11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y −=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.解 过点(),0a 作两条互相垂直的直线1:l x a =与2:0.l y =易知,1l 与C交于点((00,,P a Q a (注意这里1a >),2l 与C 交于点()()001,0,1,0,R S −由条件知00002P Q R S ==,解得a = 这意味着符合条件的a下面验证a =符合条件.事实上,当12,l l 中有某条直线斜率不存在时,则可设12:,:0l x a l y ==,就是前面所讨论的12,l l 的情况,这时有.PQ RS =若12,l l 的斜率都存在,不妨设((()121:,:0,l y k x l y x k k==−≠注意这里1k ≠±(否则1l 将与C 的渐近线平行,从而1l 与C 只有一个交点). 联立1l 与C的方程知,(22210,x kx −−−=即()22221210,k xx k −−−−=这是一个二次方程式,其判别式为2440k ∆=+>.故1l 与C 有两个不同的交点,P Q .同样,2l 与C 也有两个不同的交点,.R S 由弦长公式知,2212.1k PQ k +=⋅−用1k −代替k ,同理可得()()22221122.11k k RS k k −−+−+=⋅=−−−于是.PQ RS = 综上所述,a =为符合条件的值.加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +== ; (2)122016y y y +++ 是奇数.求122016x x x +++ 的最小值.解:由已知条件(1)可得:1,1,1,2,,2016,k k x y k ≤≤= 于是(注意0i x ≥)()2016201620162016201622211111120162016.k kkk k k k k k k x xy y y =====≥=−=−≥−∑∑∑∑∑ ①不妨设112016,,0,,,0,02016,m m y y y y m +>≤≤≤ 则201611,2016.mkk k k m ym y m ==+≤−≤−∑∑若11m k k y m =>−∑,并且201612015,k k m y m =+−>−∑令 2016111,2015,mk k k k m y m a y m b ==+=−+−=−+∑∑则0,1,a b <<于是()201620161111201522016,m kkk k k k m y yy m a m b m a b ===+=+=−+−−+=−+−∑∑∑由条件(2)知,20161k k y =∑是奇数,所以a b −是奇数,这与0,1a b <<矛盾.因此必有11m k k y m =≤−∑,或者201612015,k k m y m =+−≤−∑则201620161112015.m kk k k k k m yy y ===+=−≤∑∑∑于是结合①得201611.k k x =≥∑又当122015201612201520160,1,1,0x x x x y y y y ========== 时满足题设条件,且使得不等式等号成立,所以122016x x x +++ 的最小值为1.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅ 的不超过k 的正约数的集合是.A B若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d ′=,则|d n ′,d ′是奇数,又2kd k ′≤<,故,d A ′∈从而.B A ≤ 所以.A B =故2n 的不超过k 的正约数的个数为偶数,与已知矛盾.从而结论成立. 三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠解:连接AC ,与BD 交于点.M 由平行四边形的性质,点M 是,AC BD 的中点.因此,点G 在线段AC 上.由于90GPC GQC ∠=∠= ,所以,,,P G Q C 四点共圆,并且其外接圆是以GC 为直径的圆.由相交弦定理知QG P DCBA.PM MQ GM MC ⋅=⋅ ①取GC 的中点.O 注意到::2:1:3,AG GM MC =故有1,2OCGC AG == 因此,G O 关于点M 对称.于是.GM MC AM MO ⋅=⋅ ②结合①、②,有PM MQ AM MO ⋅=⋅,因此,,,A P O Q 四点共圆. 又1,2OP OQ GC ==所以PAO QAO ∠=∠,即AG 平分.PAQ ∠ 四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.解:先证明17.B ≥考虑到将A 中的所有元素均变为原来的相反数时,集合B 不变,故不妨设A 中正数个数不少于负数个数.下面分类讨论:情况一:A 中没有负数.设1211a a a <<< 是A 中的全部元素,这里120,0,a a ≥>于是 1223242113111011,a a a a a a a a a a a a <<<<<<<上式从小到大共有19818++=个数,它们均是B 的元素,这表明18.B ≥情况二:A 中至少有一个负数.设12,,,k b b b 是A 中的全部非负元素,12,,,l c c c 是A 中的全部负元素.不妨设 110,l k c c b b <<<≤<<其中,k l 为正整数,11k l +=,而k l ≥,故 6.k ≥于是有 111212,k k l k c b c b c b c b c b >>>>>> 它们是B 中的110k l +−=个元素,且非正数;又有 23242526364656,b b b b b b b b b b b b b b <<<<<< 它们是B 中的7个元素,且为正数.故10717.B ≥+=由此可知,17.B ≥ 另一方面,令{}2340,1,2,2,2,2,A =±±±±±则{}236780,1,2,2,2,,2,2,2B =−±±±±±− 是个17元集合.综上所述,B 的元素个数的最小值为17.。
2016年高中数学联赛试题答案
2
2
3. 正实数 u , v, w 均不等于 1,若 log u vw log v w 5 , log v u log w v 3 ,则 . log w u 的值为 4 答案: . 5 解:令 log u v a, log v w b ,则 1 1 log v u , log w v , log u vw log u v log u v log v w a ab , a b 1 1 5 条 件 化 为 a ab b 5, 3 , 由 此 可 得 ab . 因 此 a b 4 1 4 log w u log w v log v u . ab 5 4. 袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币 和 3 张 1 元纸币.现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值
M 为 AP 的中点.若 AB 1, AC 2, AP 2 ,则二面角 M BC A 的大小 为 . 2 答案: arctan . 3 解:由 ABC 90 知, AC 为底面圆的直径. 设 底 面 中 心 为 O , 则 PO 平 面 ABC . 易 知 1 AO AC 1 ,进而 PO AP 2 AO 2 1 . 2 设 H 为 M 在底面上的射影,则 H 为 AO 的中 点.在底面中作 HK BC 于点 K ,则由三垂线定理 知 MK BC ,从而 MKH 为二面角 M BC A 的平面角. 3 1 HK HC 3 因 MH AH ,结合 HK 与 AB 平行知, ,即 HK , 4 2 AB AC 4 MH 2 2 这样 tan MKH .故二面角 M BC A 的大小为 arctan . 3 HK 3 kx kx 6. 设函数 f ( x) sin 4 cos 4 ,其中 k 是一个正整数.若对任意实数 a , 10 10 均有 f ( x) a x a 1 f ( x) x R ,则 k 的最小值为 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市高中数学竞赛试题及答案一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分)1.已知函数()2f x ax bx c =++(0a ≠,,,a b c 均为常数),函数()1f x 的图象与函数()f x 的图象关于y 轴对称,函数()2f x 的图象与函数()1f x 的图象关于直线1y =对称,则函数()2f x 的解析式为 .答案:()22 2.f x ax bx c =-+-+解 在函数()y f x =的表达式中用x -代替x ,得()21f x ax bx c =-+,在函数()1y f x =的表达式中用2y -代替y ,得()22 2.f x ax bx c =-+-+2.复数z 满足1z =,2223w z z=-在复平面上对应的动点W 所表示曲线的普通方程是 .答案:221.25y x += 解 设,z a bi w x yi =+=+,则221a b +=,()()()()()()()()()222222222222333210.a bi x yi a bi a bi a bi a bi a bi a bi a bi ab abi -+=+-=+-++-=+--=-+从而22,10x a b y ab =-=,于是()22222224 1.25y x a b a b +=-+= 3.关于x 的方程arctan 2arctan 26x xπ--=的解是 .答案:2log x = 解 因为()()tan arctan 2tan arctan 2221xx x x --⋅=⋅=,所以arctan 2arctan 22x x π-+=,解得arctan 2,arctan 236xx ππ-==,则22log x x ==4.红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6,则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能. 答案:48.解 四颗骰子乘积等于36,共有四种情形:(1)两个1,两个6,这种情形共246C =种可能; (2)两个2,两个3,这种情形共246C =种可能;(3)两个3,一个1,一个4,这种情形共214212C C =种可能; (4),1,2,3,6各一个,这种情形共4424A =种可能.综上,共有66122448+++=种可能. 5.已知函数()()()()1cos ,202xf x xg x a a π==-≠,若存在[]12,0,1x x ∈,使()()12f x g x =成立,则实数a 的取值范围为 .答案;13,00,.22⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦U 解 易知[]0,1x ∈时,()[]1,1.f x ∈-只需求a 的取值范围,使得()g x 能取到[]1,1-中的值.(1)当0a >时,()g x 单调递增,因为()12g x >-,故只需()01g ≤,解得30.2a <≤ (2)当0a <时,()g x 单调递减,因为()12g x <-,故只需()01g ≥-,解得10.2a -≤<6.如图,有16间小三角形的房间,甲、乙两人被随机地分别安置在不同的小三角形房间,那么他们在不相邻(指没有公共边)房间的概率是 (用分数表示).答案:17.20解法一 如图1,将小三角形房间分为三类:与第一类(红色)房间相邻的房子恰有一间,与第二类(绿色)房间相邻的房间恰有两间,与第三类(白色)房间相邻的房间恰有三间,从而满足条件的安置方法共有()()()316261637164204⨯-+⨯-+⨯-=种.从而所求概率为20417.161520=⨯解法二 我们从反面考虑问题,如图2,每一对相邻房间对应着一条黄色的邻边,故所求概率为18231711.16152020⨯-=-=⨯7.在空间,四个不共线的向量,,,OA OB OC OD u u u r u u u r u u u r u u u r,它们两两的夹角都是α,则α的大小是. 答案:1arccos .3π-解 如图,ABCD 为正四面体,角α即为AOD ∠,设,E M 分别为BC 和AD 的中点,则,AE DE OA OD ==,则中心O 在EM 上,从而O 为△ADE 的垂心,11sin sin cos .33EH ODE EAH DOH AE ∠=∠==⇒∠= 所以,1arccos .3απ=-8.已知330,0,1b a b α>>+=,则a b +的取值范围为 .答案:(.解 注意到()204a b ab +<≤,及()()()()2332213,a b a b a ab b a b a b ab ⎡⎤=+=+-+=++-⎣⎦我们有()()33114a b a b +≤<+,所以1a b <+≤ 二、解答题(本题满分60分,每小题15分)9.如图,已知五边形11111A B C D E 内接于边长为1的正五边形ABCDE .求证:五边形11111A B C D E 中至少有一条边的长度不小于cos .5π证 设1111111111,,,,,,,,,E A AA A B BB B C CC C D DD D E EE 的长分别为12121,,,,,a ab bc 21212,,,,,cd de e 则()()()()()()()()()()12121212121221212121 5.a ab bc cd de e a e a b b c c d d e +++++++++=+++++++++=由平均数原理,1212121212,,,,a a b b c c d d e e +++++中必有一个大于1,不妨设121a a +≥,则2110.a a ≥-≥此时()()22222111212111122111212322cos121cos 5522221cos 21cos 21cos 1555211221cos 1cos 5225121cos cos .255A E a a a a a a a a a a a a πππππππππ=+-≥+-+-⎛⎫⎛⎫⎛⎫=-----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=--++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫≥+= ⎪⎝⎭所以,11cos.5A E π≥命题得证.10.设,p q 和r 是素数,且|1,|1,|1p qr q rp r pq ---,求pqr 的所有可能的值.解 由题设可得()()()|111pqr qr rp pq ---,因为()()()()2221111,qr rp pq p q r pqr p q r pq qr rp ---=-+++++-所以,| 1.pqr pq qr rp ++-于是11111pq qr rp pqr p q r pqr++-=++-为正整数.记1111k p q r pqr =++-,注意到,,2p q r ≥,则32k <从而 1.k = 由对称性,不妨设.p q r ≤≤ 若3p ≥,则1111k p q r<++≤,矛盾,故 2.p = 若3q >,则5q ≥,12125k =+<,矛盾. 若2q =,则11111224k r r ⎛⎫=++-> ⎪⎝⎭,也矛盾.故 3.q = 最后,由11111236r r=++-,得 5.r = 综上,30.pqr =11.已知数列{}n a 满足递推关系()*11123n n n a a n N +=-+∈,求所有1a 的值,使{}n a 为单调数列,即{}n a 为递增数列或递减数列.解 由11123n n n a a +=-+得,1113332n n n n a a +++=-+,令3n n n b a =,则 1136363,2525n n n n b b b b ++⎛⎫=-+⇒-=-- ⎪⎝⎭从而,11663,552n n b b -⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭则1111111116633335522121535212221.25352n n n n n n n n n nb a a a a T -----⎡⎤⎛⎫⎛⎫==+--⎢⎥⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+-=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若125a ≠,注意到213-<,则当2/31521log 25n a ⎛⎫>+-⎪⎝⎭时,T 与125a -同号,但112n -⎛⎫- ⎪⎝⎭正负交替,从而n a 正负交替,{}n a 不为单调数列.当125a =时,12153n n a -⎛⎫= ⎪⎝⎭为递减数列.综上,当且仅当125a =时,{}n a 为单调数列. 12.已知等边三角形ABC 的边长为5,延长BA 至点P ,使得9AP =,D 是线段BC 上一点(包括端点).直线AD 与△BPC 的外接圆交于,E F 两点,其中.EA ED < (1)设BD x =,试将EA DF -表示为关于x 的函数()f x ; (2)求()f x 的最小值.解 (1)设,,u EA v AD w DF ===,则().f x u w =- 在△ABD 中,由余弦定理,得v == 在△PBC 的外接圆中运用相交弦定理,得()()()5945,5.u v w u v w x x +=⨯=+=-两式相减,得()2545,v u w x x -=-+故())2254505.x x f x u w x v -+=-==≤≤(2)设0t =≥,则()222020t f x t t t +===+≥=当且仅当20t t=时等号成立,此时t ==解得x =所以,当52x =()f x 取到最小值。