正余弦定理1
余弦定理与正弦定理第1课时 高一下学期数学人教A版(2019)必修第二册
归纳小结
问题3 本节课收获了哪些知识,请你从以下几方面总结:
(1)这节课我们发现了什么新知识?我们是如何研究它的?
(2)余弦定理的变式有哪些?三角形的面积公式是什么?
(1)我们发现了余弦定理,三角形面积公式的另一种表达形式;
2 + 2 − 2
2 + 2 − 2
2 + 2 − 2
(1)求cos C;
(2)求△ABC的面积.
解答: (1)由余弦定理a2=b2+c2-2bccos A得b2+25-5b=49,
解得b=-3(舍)或b=8.
(2)由(1)得: Δ
2 + 2 − 2 49 + 64 − 25 11
∴ cos =
=
=
.
2
2×7×8
14
1
1
= sin = × 8 × 5 sin 60° = 10 3.
2
2
2
a
b
h
A
c
B
初步应用
例1 如图,有两条直线AB和CD相交成80°角,交点为O.甲、乙两人同时从点O分别沿
OA,OC方向出发,速度分别为4 km/h,4.5 km/h.3 h后两人相距多远?(精确到0.1 km)
C
Q
80°
B
O
D
3 h后两人相距16.4 km.
(详解参考教材P109例1的解析.)
= ||2 − 2 ⋅ + ||2
b
c
=a2+b2-2ab cos C,
C
同理可证:
a
B
所以c2=a2+b2-2abcos C.
a2=b2+c2-2bccos A,
正弦余弦定理应用举例1
AB AC 2 BC 2 2 AC BC cos
练习1、一艘船以32.2n mile / hr的速度向正 北航行。在A处看灯塔S在船的北偏东20o的 方向,30min后航行到B处,在B处看灯塔 在船的北偏东65o的方向,已知距离此灯塔 6.5n mile 以外的海区为航行安全区域,这 艘船可以继续沿正北方向航行吗?
答:此船可以继续沿正北方向要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
6020
(1)什么是最大仰角?
AC
a sin( )
sin180 (
)
a sin( ) sin(
)
BC
a sin
sin180 (
)
a
sin(
sin
)
计算出AC和BC后,再在⊿ABC中,应用余弦定理计 算出AB两点间的距离
6020 已知△ABC中AB=1.95m,AC=1.40m,
夹角∠CAB=66°20′,求BC. 解:由余弦定理,得
最大角度
BC 2 AB2 AC 2 2 AB AC cos A 1.952 1.402 2 1.951.40 cos 6620 3.571
距离
高度
角度
例1、设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C, 测出AC的距离是55cm,∠BAC=51o, ∠ACB =75o,求A、B两点间的距离(精确到0.1m)
6.4.3正弦定理余弦定理(第1课时)课件高一下学期数学人教A版
2ab
应用:已知三条边求角度.
变形二
a2 (b c)2 2bc(1 cos A)
b2 (a c)2 2a(c 1- cos B)
c2 (a b)2 2a(b 1- cos C)
应用:配方法的使用
想一想: 余弦定理在直角三角 形中是否
仍然成立?
cosC=
例 2 在△ABC 中,已知 a= 3,b= 2,B=45°,解此三角形.
解析 由余弦定理知 b2=a2+c2-2accos B.
∴2=3+c2-2 3·22c.即 c2- 6c+1=0.
6+ 2
6- 2
6+ 2
解得 c= 2 或 c= 2 ,当 c= 2 时,由余弦定理得
cos A=b2+2cb2c-a2=2+
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做解三角形.
在 ABC中,三个内角A、B、C的对边长分别记作a,b,c
二、余弦定理
在三角形ABC中,三个角A,B,C所对的边分别
为a,b,c,怎样用a,b和C表示c?
如图,设CB a,CA b, AB c,那么
3 2.
2.解析 ∵a∶b∶c=2∶ 6∶( 3+1), 令 a=2k,b= 6k,c=( 3+1)k(k>0). 由余弦定理的变形得,
又∵0°<B<180°, ∴B=150°.
cos
b2+c2-a2 6k2+ 3+12k2-4k2 A= 2bc = 2× 6k× 3+1k =
22.
∴A=45°.
题型二 已知两边及一角解三角形
和减去这两边与它们夹角的余弦的积的两倍.
正弦定理和余弦定理课件PPT
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦定理和余弦定理1
A
c
理论迁移
变式1 在△ABC中,已知a=20cm, b=28cm,A=300,解三角形. C b a
a c
B
A
c
B1
理论迁移
变式2 在△ABC中,已知a=10cm, b=28cm,A=300,解三角形. C b a B
A
理论迁移
变式3 在△ABC中,已知a=38cm, b=28cm,A=300,解三角形.
C b A C a b D D a B
A
B
探究一:正弦定理的形成
思考4:在任意三角形中有
a b c = = sin A sin B sin C
该连等式称为正弦定理.如何 用文字语言描述正弦定理?
在任意一个三角形中,各边和 它所对角的正弦之比相等.
探究二:正弦定理的其它证明方法
思考1:在直角三角形ABC中,
a b c = = = ? sin A sin B sin C
C
b a c B
A
探究二:正弦定理的其它证明方法
2 A
B
a C
c O
c A b D
B a O
b C D
理论迁移
例1 在△ABC中,已知A=32.00, B=81.80,a=42.9cm,解三角形. C
b A
c
a
B
理论迁移
例2 在△ABC中,已知a=14cm, b=28cm,A=300,解三角形. C b a B
探究一:正弦定理的形成
思考1:在Rt△ABC中,∠C=900,BC= a,AC=b,AB=c,那么sinA,sinB,sinC 与a,b,c之间的关系是什么?
CbA c源自a B探究一:正弦定理的形成
高考数学一轮复习---正弦定理和余弦定理(一)
高考数学一轮复习---正弦定理和余弦定理(一)一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形:(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a +b +c sin A +sin B +sin C =a sin A . 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径). 二、常用结论汇总1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C 2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2; (4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.三、考点解析考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形例.(1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形例.(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin A sin B +sin C,则角B =________.跟踪训练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B. π6C.π4D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 考点二 判定三角形的形状例、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形变式练习1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =b a =2”,那么△ABC 的形状为________. 课后作业1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos B b,则B 的大小为( ) A .30° B .45° C .60° D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =a c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( ) A .14 B .6 C.14 D.65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( ) A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B .(1)求证:a =2b cos B ;(2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.提高训练1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B 2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13 B.7 C.37 D .62.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n C c,若sin(A -B )+sin C =2sin 2B ,则a +b =________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .。
1.1 正弦定理和余弦定理 1.1[1].1 正弦定理
首页
上一页
下一页
末页
生活中的数学
学习目标
温故知新
要点探究
典例探究
演练广场
探究要点三:正弦定理的应用 1.已知两角与一边,用正弦定理,有解时,只有一解. 2.已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中, 已知 a,b 和 A 时,解的情况如下: A 为锐角 A 为钝角或直角
a b 解析:由 = ⇒sin A∶sin B=a∶b=5∶3. sin A sin B
答案:5∶3
4.在△ABC 中,已知 a=5,b=2,B=120° ,解三角形.
a b asin B 5sin 120° 5 3 解:由 = 得 sin A= = = >1, sin A sin B b 2 4 ∴角 A 不存在.故此题无解.
图1
首页
上一页
下一页
末页
生活中的数学
学习目标
温故知新
要点探究
典例探究
演练广场
因为 AB + BC + CA =0,
AB +j· 所以 j· 0=0. BC +j· CA =j· π π π 即|j|| AB |cos +|j|| BC |cos( -B)+|j|| CA |cos( +A)=0. 2 2 2 a b 所以 asin B=bsin A,即 = . sin A sin B b c a b c 同理可得: = ,即 = = . sin B sin C sin A sin B sin C 当△ABC 为钝角三角形(如图 1(2))或为直角三角形时,利用同样的方法可以证得结论, 请同学们自己证明.
图形
关系式 解的个数
①a=bsin A ②a≥b 一解
bsin A<a<b 两解
高中物理公式大全(不含选修)
2.平抛运动 ①基本公式
x v0t
v y gt
4.天体 ①基本公式 GMm F万 r2 ②各运动学量
v2 GM m v = r r m 2 r GM r3 GMm 4 2 4 2 r 3 m r T 2 r2 GM T GM 2 2 4m f r f 4 2 r 3 GM man an 2 r
2
⑤第一宇宙速度:v1 = ⑥万有引力与重力
在赤道处
GM (忽略地球自转:v1 gR ) R
GMm GMm mg : mg m 2 R R2 R2 GMm 在两极处: 2 mg R
6.卫星的追及相遇
经时间t 距离回到初始时刻的最值:2k (k 1,2,3 ) 1,2,3 ) 方向相同:1t-2t 经时间t 距离回到初始时刻最值的对立: 2k (k 0, 从距离是最值经时间t 距离再次取最值:k (k 1,2,3 ) 经时间t 距离回到初始时刻的最值:2k (k 1,2,3 ) 方向相反:1t 2t 1,2,3 ) 经时间t 距离回到初始时刻最值的对立: 2k (k 0, 从距离是最值经时间t 距离再次取最值:k (k 1,2,3 )
ma y ma y
F1 F2 F0 1 2 0
(a<g)
F合 2 F0 cos0 2.摩擦力
f滑 N < fm N (有时认为二者相等)
0 f静 f m
1
三、曲线运动 1.渡河 渡河时间: t
d d v船 sin 船 v合 sin 合 d ( 船 0 ) v船
3.电场强度与电势差间的关系
余弦定理正弦定理正弦定理高一数学系列_1
2
2
sin A sin C
同理,过点B
作与CBBiblioteka 垂直的单位向量m,可得
b sin B
c sin C
.
因 abc. 此 sin A sin B sinC
钝角三角形情形:如图示,在钝角△ABC 中,过点A 作与AC 垂直的单位向量j ,则
j与AB的夹角为A ,j与BC的夹角为 C .
2
2
B
AC CB AB j ( AC CB) j AB
53
解:由cos A 4 ,得 sin A 3 .
5
5
∴由正弦定理,得a bsin A
3
3 5
6
.
sin B
35
2
又B ,∴C 2 A,∴ sin C sin( 2 A) 4 3 3 .
3
3
3
5
∴ c b sin C
34
33 10 4
33 .
sin B
3
5
2
随01堂检测
4.在ABC中,若cos2 B a c ,试判断ABC的形状. 2 2c
解:cos2 B 1+ cos B = a c
2
2
2c
1+ cos B a c =1+ a
c
c
cos B a 即 a2 c2 b2 a
c
2ac
c
得a2 c2 b2 =2a2即a2 b2 =c2
2 3 3 2
3 2
1. 2
∵c
a,∴C
A,
∴C
30,于是B
30,∴b
c
2
3 3
.
(2)由三角形内角和定理,得 B 60.
新教材人教版高中数学必修第二册 余弦定理、正弦定理 1 第1课时 余弦定理
a2=_b_2_+__c_2-__2_b_c_c_o_s_A____
符号语言
b2=_a_2_+__c_2_-__2_a_cc_o_s_B____
c2=__a_2+__b_2_-__2_a_b_c_o_s_C___
栏目 导引
第六章 平面向量及其应用
■名师点拨 余弦定理的理解
(1)适用范围:余弦定理对任意的三角形都成立. (2)结构特征:“平方”“夹角”“余弦”. (3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余 弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.
栏目 导引
第六章 平面向量及其应用
已知在△ABC 中,a=1,b=2,C=60°,则 c=________. 解析:由余弦定理,得 c2=12+22-2×1×2×cos 60°=3,所以 c = 3. 答案: 3
栏目 导引
第六章 平面向量及其应用
已知两边及一角解三角形
(1)(2018·高考全国卷Ⅱ)在△ABC 中,cosC2= 55,BC=1, AC=5,则 AB=( )
又 A∈(0,π),所以 A=π2. 故△ABC 为直角三角形.
栏目 导引
第六章 平面向量及其应用
1.在△ABC 中,已知 a=5,b=7,c=8,则 A+C=( )
A.90°
B.120°
C.135°
D.150°
解析:选 B.cos B=a2+2ca2c-b2=252+×654×-849=12.
所以 B=60°,所以 A+C=120°.
栏目 导引
第六章 平面向量及其应用
1.在△ABC 中,A=60°,a2=bc,则△ABC 一定是( )
A.锐角三角形
B.钝角三角形
正弦定理和余弦定理-PPT课件
22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
第一节 正弦定理和余弦定理(知识梳理)
第一节 正弦定理和余弦定理复习目标学法指导1.会证明正弦定理、余弦定理.2.理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3.能用正弦定理、余弦定理解斜三角形.4.会用正弦定理、余弦定理讨论三角形解的情形.5.了解正弦定理与三角形外接圆半径的关系.1.正弦定理和余弦定理是解三角形的基础,熟记定理内容及变形公式,在解决问题时注重数形结合.2.在给定方程的化简和变形上要注重“统一”“消元”思想的运用.统一:统一角度或边长.消元:多个角度利用A+B+C=π进行消元.一、正弦定理正弦定理内容:sin a A =sin b B =sin c C=2R(R 为△ABC 外接圆半径). 变形形式:①a=2Rsin A,b=2Rsin B,c=2Rsin C. ②sin A=2a R ,sin B=2b R ,sin C=2c R . ③a ∶b ∶c=sin A ∶sin B ∶sin C.④sin a A =sin sin a b A B ++=sin sin sin a b c A B C++++.1.概念理解(1)正弦定理主要解决两类三角形问题:①知两角和一边;②知两边和其中一边所对应的角.在第②类中要注意会出现两组解的特殊情况. (2)正弦定理中边角互化公式:a=2Rsin A 和sin A=2a R 是表达式变形中常用公式,在统一角度或统一长度上发挥作用. 2.与正弦定理有关的结论(1)三角形中:A+B+C=π,sin(A+B)=sin C, cos(A+B)=-cos C.(2)在△ABC 中,已知a,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a=bsin Absin A<a<ba ≥ba>b解的个数 一解两解一解一解二、余弦定理余弦定理内容:a 2=b 2+c 2-2bc ·cos A, b 2=a 2+c 2-2ac ·cos B, c 2=a 2+b 2-2ab ·cos C.变形形式:cos A=2222bc a bc+-,cos B=2222ac b ac+-,cos C=2222a b c ab+-.1.概念理解(1)余弦定理解决两类三角形问题:一是知两边及其夹角的三角形,二是知三边的三角形.(2)利用余弦定理来解决三角形问题时,要注意角的取值范围.通常求解三角形的内角度数时,不是解该角的正弦,而是解该角的余弦. 2.与余弦定理有关的结论 由cos A=2222b c a bc+-(设A 为最大内角)若b 2+c 2>a 2,则该三角形为锐角三角形. b 2+c 2=a 2,则该三角形为直角三角形. b 2+c 2<a 2,则该三角形为钝角三角形.1.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B 等于( A ) (A)π6 (B)π3(C)2π3 (D)5π6 解析:由正弦定理得sin Asin Bcos C+sin Csin Bcos A=12sin B, 所以sin Bsin(A+C)=12sin B. 因为sin B ≠0, 所以sin(A+C)=12,即sin B=12,所以B=π6或5π6.又因为a>b, 所以A>B, 所以B=π6.故选A.2.在△ABC 中,已知b=40,c=20,C=60°,则此三角形的解的情况是( C ) (A)有一解 (B)有两解 (C)无解(D)有解但解的个数不确定解析:由正弦定理得sin b B =sin cC,所以sin B=sin b Cc=40220>1.所以角B 不存在,即满足条件的三角形不存在.故选C. 3.在△ABC 中,A=60°则△ABC 的面积等于 .解析:=4sin B, 所以sin B=1, 所以B=90°, 所以AB=2,所以S △ABC =12×2×23=23.答案:234.(2019·临海高三检测)设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C= . 解析:由3sin A=5sin B,得3a=5b.又因为b+c=2a, 所以a=53b,c=73b,所以cos C=2222a b c ab +-=22257()()33523b b b b b +-⨯⨯=-12. 因为C ∈(0,π), 所以C=2π3. 答案:2π3考点一 利用正弦定理解三角形 [例1] (1)在△ABC 中32°,求角A,C 和边c;(2)已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若3求角A 的大小.解:(1)由正弦定理sin a A =sin bB , 得sin A=sin a B b3,所以A=60°或120°. ①当A=60°时,C=75°,由sin a A =sin c C ,得c=sin sin a C A⋅=2·sin 75°62+②当A=120°时,C=15°,c=2·sin 15°62-解:(2)由A+C=2B,A+C+B=180°得B=60°.所以由正弦定理得3=1sin A, 所以sin A=12.所以A=30°或150°. 又因为b>a, 所以B>A. 所以A=30°.利用正弦定理解三角形(1)注重条件和图形的结合;(2)知两边及一边对应的角时,要区分三角形解的情况,通常情况下先利用正弦定理求角,再利用“大边对大角”的条件排除; (3)正弦定理的变形公式.1.(2019·浙江卷)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则BD= ,cos ∠ABD= .解析:如图,易知sin C=45, cos C=35.在△BDC 中,由正弦定理可得sin BD C=sin BC BDC∠, 所以BD=sin sin BC C BDC⋅∠4352⨯122.由∠ABC=∠ABD+∠CBD=90°,可得cos ∠ABD=cos(90°-∠CBD)=sin ∠CBD=sin[π-(∠C+∠BDC)] =sin(∠C+∠BDC)=sin C ·cos ∠BDC+cos C ·sin ∠BDC=45×2+35×2=72.答案122722.在△ABC 中,B=60°3则AB+2BC 的最大值为 .解析:在△ABC 中,由正弦定理得sin AB C =sin BCA 3所以AB+2BC=2sin C+4sin A =2sin(120°-A)+4sin A 7ϕ),其中,tan ϕ3,又因为A ∈(0°,120°), 所以最大值为7答案7考点二 利用余弦定理解三角形[例2] 若△ABC 的内角A,B,C 所对的边a,b,c 满足(a+b)2-c 2=4,且C=60°,则ab 的值为( ) (A)433(C)1 (D)23解析:由已知得a 2+b 2-c 2+2ab=4, 由于C=60°,所以cos C=2222a b c ab+-=12, 即a 2+b 2-c 2=ab,因此ab+2ab=4,ab=43,故选A.利用余弦定理解三角形:一般地,如果式子中含有角的余弦或边的二次关系时,考虑使用余弦定理.△ABC 中,角A,B,C 的对边分别是a,b,c,已知b=c,a 2=2b 2(1-sin A),则A 等于( C )(A)3π4 (B)π3 (C)π4 (D)π6解析:在△ABC 中,由余弦定理得a 2=b 2+c 2-2bccos A, 因为b=c,所以a 2=2b 2(1-cos A), 又因为a 2=2b 2(1-sin A), 所以cos A=sin A,所以tan A=1, 因为A ∈(0,π),所以A=π4,故选C. 考点三 正、余弦定理的综合应用[例3] 设△ABC 的内角A,B,C 所对应的边分别为a,b,c, 已知()sin a bA B ++=sin sin a c AB --.(1)求角B; (2)若6,求△ABC 的面积.解:(1)因为()sin a bA B ++=sin sin a c AB --,所以a b c+=a ca b --, 所以a 2-b 2=ac-c 2, 所以cos B=2222a c b ac+-=2ac ac =12, 又因为0<B<π,所以B=π3.解:(2)由cos A=63可得sin A=33,由sin a A =sin b B可得a=2, 而sin C=sin(A+B) =sin Acos B+cos Asin B =3326+,所以△ABC 的面积S=12absin C=3322+.(1)利用正、余弦定理解三角形的关键是根据已知条件及所求结论确定三角形及所需应用的定理.(2)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就选用哪一个公式.(2017·全国Ⅰ卷)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC的面积为23sin a A .(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 解:(1)由题设得12acsin B=23sin a A ,即12csin B=3sin aA . 由正弦定理得12sin Csin B=sin 3sin A A ,故sin Bsin C=23.解:(2)由题设及(1)得cos Bcos C-sin Bsin C=-12,即cos(B+C)=- 12.所以B+C=2π3,故A=π3.由题设得12bcsin A=23sinaA,即bc=8,由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=33.故△ABC的周长为3+33.类型一利用正弦定理解三角形1.在△ABC中,角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于( A )(A)725 (B)-725(C)±725(D)2425解析:因为8b=5c,所以由正弦定理,得8sin B=5sin C.又因为C=2B,所以8sin B=5sin 2B,所以8sin B=10sin Bcos B.因为sin B≠0,所以cos B=45,所以cos C=cos 2B=2cos2B-1=725.故选A.2.在△ABC中,a,b,c分别是内角A,B,C的对边,向量p=(1,-∥q,且bcos C+ccos B=2asin A,则C等于( A )(A)30°(B)60°(C)120° (D)150°解析:因为p∥q,cos B=sin B,所以即得所以B=120°.又因为bcos C+ccos B=2asin A,所以由正弦定理得sin Bcos C+sin Ccos B=2sin2A,即sin A=sin(B+C)=2sin2A,,又由sin A≠0,得sin A=12所以A=30°,C=180°-A-B=30°.故选A.类型二利用余弦定理解三角形3.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+ cos 2A=0,a=7,c=6,则b等于( D )(A)10 (B)9 (C)8 (D)5解析:由23cos2A+cos 2A=0,得25cos2A=1,因为A为锐角,所以cos A=1.5b,又由a2=b2+c2-2bccos A,得49=b2+36-125整理得5b2-12b-65=0,解得b=-135(舍)或b=5.即b=5. 故选D.4.若锐角△ABC 的面积为,且AB=5,AC=8,则BC 等于 .解析:设内角A,B,C 所对的边分别为a,b,c.由已知及12得因为A 为锐角,所以A=60°,cos A=12.由余弦定理得a 2=b 2+c 2-2bccos A =64+25-2×40×12 =49,故a=7,即BC=7. 答案:7类型三 正弦定理和余弦定理的综合应用 5.在△ABC 中,∠B=120°∠BAC的平分线则AC 等于( D )(C)2解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB=sin AB BAD .由题意知0°<∠ADB<60°, 所以∠ADB=45°,则∠BAD=180°-∠B-∠ADB=15°, 所以∠BAC=2∠BAD=30°, 所以∠C=180°-∠BAC-∠B=30°, 所以于是由余弦定理,得AC=222cos120AB BC AB BC ︒+-⨯=()()221222222⎛⎫+-⨯⨯- ⎪⎝⎭=6.故选D.。
高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理
§1.1 正弦定理和余弦定理1.1.1 正弦定理学习目标 1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识点一 正弦定理思考1 如图,在Rt △ABC 中,a sin A ,b sin B ,csin C分别等于什么?答案a sin A =b sin B =c sin C=c . 思考2 在一般的△ABC 中,a sin A =b sin B =csin C 还成立吗?答案 在一般的△ABC 中,a sin A =b sin B =csin C 仍然成立.梳理 在任意△ABC 中,都有a sin A =b sin B =c sin C,这就是正弦定理. 特别提醒:正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.1.对任意△ABC ,都有a sin A =b sin B =csin C.(√)2.任意给出三角形的三个元素,都能求出其余元素.(×) 3.在△ABC 中,已知a ,b ,A ,则三角形有唯一解.(×)类型一 正弦定理的证明例1 在钝角△ABC 中,证明正弦定理. 考点 正弦定理及其变形应用 题点 正弦定理的理解证明 如图,过C 作CD ⊥AB ,垂足为D ,D 是BA 延长线上一点,根据正弦函数的定义知,CD b =sin ∠CAD =sin(180°-A )=sin A ,CD a =sin B . ∴CD =b sin A =a sin B . ∴a sin A =bsin B. 同理,b sin B =csin C .故a sin A =b sin B =c sin C. 反思与感悟 (1)用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固.(2)要证a sin A =bsin B ,只需证a sin B =b sin A ,而a sin B ,b sin A 都对应CD .初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.跟踪训练1 如图,锐角△ABC 的外接圆O 半径为R ,角A ,B ,C 对应的边分别为a ,b ,c ,证明:asin A=2R .考点 正弦定理及其变形应用 题点 正弦定理的理解证明 连接BO 并延长,交外接圆于点A ′,连接A ′C , 则圆周角A ′=A .∵A ′B 为直径,长度为2R , ∴∠A ′CB =90°, ∴sin A ′=BC A ′B =a 2R ,∴sin A =a 2R ,即asin A =2R .类型二 已知两角及一边解三角形例2 在△ABC 中,已知A =30°,B =60°,a =10,解三角形. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据正弦定理,得b =a sin B sin A =10sin 60°sin 30°=10 3. 又C =180°-(30°+60°)=90°. ∴c =a sin C sin A =10sin 90°sin 30°=20.反思与感悟 (1)正弦定理实际上是三个等式:a sin A =b sin B ,b sin B =c sin C ,a sin A =csin C ,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.(2)因为三角形内角和为180°,所以已知两角一定可以求出第三个角. 跟踪训练2 在△ABC 中,已知a =18,B =60°,C =75°,求b 的值. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据三角形内角和定理,得A =180°-(B +C )=180°-(60°+75°)=45°. 根据正弦定理,得b =a sin B sin A =18sin 60°sin 45°=9 6.类型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知c =6,A =45°,a =2,解三角形. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 ∵a sin A =c sin C ,∴sin C =c sin A a =6sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. 引申探究若把本例中的条件“A =45°”改为“C =45°”,则角A 有几个值? 解 ∵a sin A =c sin C ,∴sin A =a sin C c =2·226=33.∵c =6>2=a ,∴C >A .∴A 为小于45°的锐角,且正弦值为33,这样的角A 只有一个. 反思与感悟 已知三角形两边和其中一边的对角解三角形的方法:首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边. 跟踪训练3 在△ABC 中,若a =2,b =2,A =30°,则C =________. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 105°或15°解析 由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.1. 在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin AD .a cos B =b cos A考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 C解析 由正弦定理a sin A =bsin B ,得a sin B =b sin A ,故选C.2.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 B解析 由sin A =sin C 及正弦定理,知a =c , ∴△ABC 为等腰三角形.3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6D .4考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 C解析 易知A =45°,由a sin A =b sin B 得b =a sin B sin A=8×3222=4 6. 4.在△ABC 中,a =3,b =2,B =π4,则A =________.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 π3或2π3解析 由正弦定理,得sin A =a sin Bb=3×222=32, 又A ∈(0,π),a >b ,∴A >B ,∴A =π3或2π3.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 2 5解析 由正弦定理,得c =a sin Csin A=2a =2 5.1. 正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0). 2. 正弦定理的应用范围(1)已知两角和任一边,求其他两边和其余一角. (2)已知两边和其中一边的对角,求另一边和其余两角.3. 已知三角形两边和其中一边的对角解三角形的方法 (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求唯一锐角.(3)如果已知的角为小边所对的角,则不能判断另一边所对的角为锐角,这时由正弦值可求得两个角,要分类讨论.一、选择题1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 A解析 根据正弦定理,得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由题意有a sin A =b =bsin B,则sin B =1,又B ∈(0,π),故角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( )A .30°B .45°C .60°D .90° 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由正弦定理知sin A a =sin Cc ,∴sin C c =cos Cc,∴cos C =sin C ,∴tan C =1, 又∵C ∈(0°,180°),∴C =45°,故选B.4.在△ABC 中,若A =105°,B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 ∵A =105°,B =45°,∴C =30°. 由正弦定理,得c =b sin C sin B =22sin 30°sin 45°=2.5.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223 B.223 C .-63 D.63考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 D解析 由正弦定理,得15sin 60°=10sin B ,∴sin B =10sin 60°15=10×3215=33. ∵a >b ,∴A >B ,又∵A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-⎝⎛⎭⎫332=63. 6.在△ABC 中,已知A =π3,a =3,b =1,则c 的值为( )A .1B .2 C.3-1 D. 3 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 B解析 由正弦定理a sin A =bsin B,可得3sinπ3=1sin B ,∴sin B =12,由a >b ,得A >B ,∴B ∈⎝⎛⎭⎫0,π3,∴B =π6. 故C =π2,由勾股定理得c =2.7.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.31010 考点 用正弦定理解三角形 题点 正弦定理解三角形综合 答案 D解析 如图,设BC 边上的高为AD ,不妨令AD =1.由B =π4,知BD =1.又AD =13BC =BD ,∴DC =2,AC =12+22= 5.由正弦定理知,sin ∠BAC =sin B ·BC AC =225·3=31010.8.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.32考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.二、填空题9.在△ABC 中,若C =2B ,则cb的取值范围为________.考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 (1,2)解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =_____.考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,又a =1,由正弦定理得b =a sin B sin A =2113.11.锐角三角形的内角分别是A ,B ,C ,并且A >B .则下列三个不等式中成立的是______. ①sin A >sin B ; ②cos A <cos B ;③sin A +sin B >cos A +cos B . 考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 ①②③解析 A >B ⇔a >b ⇔sin A >sin B ,故①成立. 函数y =cos x 在区间[0,π]上是减函数, ∵A >B ,∴cos A <cos B ,故②成立. 在锐角三角形中,∵A +B >π2,∴0<π2-B <A <π2,函数y =sin x 在区间⎣⎡⎦⎤0,π2上是增函数, 则有sin A >sin ⎝⎛⎭⎫π2-B ,即sin A >cos B , 同理sin B >cos A ,故③成立.三、解答题12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =10,A =45°,C =30°,求a ,b 和B .考点 用正弦定理解三角形题点 已知两角及一边解三角形解 ∵a sin A =c sin C, ∴a =c sin A sin C =10sin 45°sin 30°=10 2. B =180°-(A +C )=180°-(45°+30°)=105°.又∵b sin B =c sin C, ∴b =c sin B sin C =10sin 105°sin 30°=20sin 75° =20×6+24=5(6+2). 13.在△ABC 中,A =60°,a =43,b =42,求B .考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 由正弦定理a sin A =b sin B ,得sin B =22, ∵a >b ,∴A >B .∴B 只有一解,∴B =45°.四、探究与拓展14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =x ,b =2,B =45°.若△ABC 有两解,则x 的取值范围是( )A .(2,+∞)B .(0,2)C .(2,22)D .(2,2)考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形答案 C解析 因为△ABC 有两解,所以a sin B <b <a ,即x sin 45°<2<x ,所以2<x <22,故选C.15.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°;(2)a =23,b =6,A =30°.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103,∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A ,∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32, 又∵B ∈(0°,180°),∴B =60°或B =120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=2 3. ∴当B =60°时,C =90°,c =43;当B =120°时,C =30°,c =2 3.。
三角形正玄余玄正切定理公式
三角形正玄余玄正切定理公式
三角形的正弦、余弦和正切定理公式如下:
1. 正弦定理:在任意三角形ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。
则有:
a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。
2. 余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形则有:
a²=b²+c²-2bc·cosA;
b²=a²+c²-2ac·cosB;
c²=a²+b²-2ab·cosC。
也可表示为:
cosC=(a²+b²-c²)/2ab;
cosB=(a²+c²-b²)/2ac;
cosA=(c²+b²-a²)/2bc。
3. 正切定理:在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
对于边长为a,b和c而相应角为A,B
和C的三角形,有:
(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];
(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];
(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。
以上信息仅供参考,如果您还有疑问,建议咨询数学领域专业人士或查阅数学书籍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
首页
A
b
ha
aC
退出
理科数学·第五章
四、三角形中常见的一些基本关系式
(1)A B C ________
(2) sin(B C) __s_in_A___,cos(B C) _c_o_s_A___
(3)
sin(
B
2
C
)
_c_o_s_A2___,c os (B
2
C
)
_s_in_A2____
(4)边角不等关系:
A B a b sin A sin B
5.7 正弦定理和余弦定理
目录
首页
退出
④斜三角形的解法理:科数学·第五章
已知条件
一边和两角 (ASA)
两边和夹角 (SAS)
三边(SSS)
定理选用
一般解法
正弦定理
由A+B+C=180˚,求出另一角,再用正弦定理 求出两边。
用余弦定理求第三边,再用余弦定理求出一
c2 a2 b2 2ab cos C
三、三角形的面积公式:cos
C
a2
2ac b2 2ab
c2
SABC
1 2
chc
SABC
1 2
absin C
1 2
bc sin
A
1 2
ac sin
B
c
S 1 r(a b c)(r为三角形的内切圆半径)
2
B
5.7 正弦定理和余弦定理
余弦定理 角,再由A+B+C=180˚得出第三角。
用余弦定理求出两角,再由A+B+C=180˚
余弦定理 得出第三角。
两边和其中一 边的对角(SSA)
正弦定理
用正弦定理求出另一对角,再由A+B+C=180˚ ,得出第三角,然后用正弦定理求出第三边 。
5.7 正弦定理和余弦定理
目录
首页
退出
(sin A a ) 2R
(sin B b ) 2R
(sin C c ) 2R
5.7 正弦定理和余弦定理
目录
首页
退出
二、余弦定理及其推论:
理科数学·第五章
b2 c2
a2
cos A
a2 b2 c2 2bc cos A 推论 b2 a2 c2 2ac cos B
2bc cos B a2 c2 b2
理科数学·第五章
第七节 正弦定理和余弦定理
5.7 正弦定理和余弦定理
目录
首页
退出
C
理科数学·第五章
b
一、正弦定理及其变形:
A
2R a
c
a
b
c
2R
B’
B
(R为三角形外接圆半径)
sin A sin B sin C
变 形
a : b : c sin A: sin B : sin C
a 2R sin A b 2R sin B c 2R sin C