高考数学全国卷选做题-不等式
高三数学不等式选讲试题答案及解析
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高考数学不等式典型综合题型 含详解
全国名校高考专题训练06不等式一、选择题1、(江苏省启东中学高三综合测试二)在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则A.11<<-aB.20<<aC.2321<<-a D.2123<<-a 答案:C2、(江苏省启东中学高三综合测试二)已知a ,b ,c ,d 均为实数,有下列命题:0,0,0)2(;0,00)1(>->->>->->ad bc bda c ab b d dc ad bc ab 则若则,若其中正确命题的个数是则若,0,,0)3(>>->-ab bda c ad bcA. 0B. 1C. 2D. 3 答案:D3、(江苏省启东中学高三综合测试二) ab>ac 是b>c 的A.充分不必要条件B. 必要不充分条件C.充要条件D.即不充分也不必要条件 答案:D4、(江苏省启东中学高三综合测试三)当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]答案:D5、(江苏省启东中学高三综合测试四)不等式xx 1log 2-≥1的解集为 ( ) A .(]1,-∞- B .[)∞+-,1 C .[)0,1- D .(]()∞+-∞-,01, 答案:C6、(江西省五校2008届高三开学联考)已知正整数b a ,满足304=+b a ,使得ba 11+取最小值时,则实数对(),b a 是( )A .(5,10)B .(6,6)C .(10,5)D .(7,2)答案:A7、(江西省五校2008届高三开学联考)设2sin1sin 2sin 222n n na =++⋅⋅⋅+ , 则对任意正整数,()m n m n > , 都成立的是A .||2n m m n a a ⋅-<B .||2n m m n a a -->C .1||2n m n a a -<D .1||2n m n a a -> 答案:C12sin(1)sin(2)sin ||||222n m n n mn n ma a ++++-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 1112111111122||||||12222212n m n n m n m ++++-<++⋅⋅⋅+==--12n < . 故应选C . 8、(陕西长安二中2008届高三第一学期第二次月考)设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab,那么( )A.ab a b a a <<B.b a a a b a << C 。
浅析高考数学新课卷中的不等式选做题
【 解析 】 本题 主要考查解不等式 、 分段 函数 、 画图像及恒成立问题等 有关计算 , 考查学生的分析问题 、 解决 问题的能力。
解: ( I ) 当a 一一 l 时, 厂 _ ( ) ={ 一1 l +l +1 l 。 由 ( ) 3 得, l z l l +l +1 3 I 。
2 0 0 7、 2 0 0 8 、 2 0 1 1 年 新
课标 , 2 0 1 0年 福 建 ,
2 0 0 9、 2 0 1 2 年 辽 宁
解含绝对值不等式及恒成立问题 均值不等式运用 三角不等式应用
柯西不等式应用 考查 内容 解含绝对值不等式
1 O 分 1 0 分 1 0 分
例( 2 0 0 9 辽宁( 2 4 ) ) 已知 f ( x ) =} 一1 j +l 3 5 一 n l 。( I ) 若n = - 1,
解不等式 f ( x ) 3; ( Ⅱ) 如果 ER , f ( x ) 2, 求 口得取值范 围。
表2 近年各省新课标数学卷( 文科 ) 不等式选做题试题统计
一
、
年
2 0 0 7、 2 0 0 8、 2 O l 0、 2 01 1
考查 内容
分值
年新课 标 , 2 0 0 9 、 2 0 1 0 、 2 0 1 1年 福 建 , 2 0 0 9 、 2 0 1 1 年 辽 宁
解含绝对值不等式
1 O 分
2 0 0 7 、 2 0 0 8 年新课标 含绝对值函数的作图及 函数图 像 间的关系 1 0 分
浅析 高 考数 学 瓿 课卷 巾髓 不等 式 选做 题
内江师 范学院数 学与信 息科 学 学院 王 毅
[ 摘
李 秀萍
高三数学不等式试题答案及解析
高三数学不等式试题答案及解析1.已知,则A.n<m<1B.1<n<m C.1<m<n D.m<n<1【答案】B【解析】函数是减函数,所以故选B2.现将一个质点随即投入区域中,则质点落在区域内的概率是【答案】【解析】略3.不等式的解集为或,则实数的取值范围.【答案】【解析】略4.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】解:当直线过点(0,-1)时,最大,故选B5.一元二次不等式的解集为,则的最小值为.【答案】【解析】由已知得,解得,又,则。
【考点】一元二次不等式的解法及基本不等式的应用。
6.设,则函数的最小值是()A.2B.C.D.3【答案】C【解析】因为,所以,令,则,由于,故知函数是减函数,因此;故选C.【考点】1.换元法;2.函数的最值.7.若变量x,y满足约束条件,则的最小值为.【答案】-6【解析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由与的交点得到,∴,故答案为:﹣6.【考点】简单线性规划.8.已知的大小关系是()A.a<c<b B.b<a<e C.c<a<b D.a<b<c【答案】D【解析】因为.所以,故D正确.【考点】指数函数,对数函数.9.设,则,,的大小关系是__________________.(用“<”连接)【答案】【解析】令,则,∴函数为增函数,∴,∴,∴,∴,又,∴.【考点】利用导数研究函数的单调性、作差比较大小.10.对一切实数x,不等式恒成立,则实数a的取值范围是()A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)【答案】B【解析】对一切实数x,不等式恒成立,等价于对任意实数,恒成立,因此有或,解得,故选B.【考点】不等式恒成立,二次函数的性质.【名师点晴】本题考查不等式恒成立问题,由于题中含有绝对值符号,因此解题的关键是换元思想,设,这样原来对一切实数恒成立,转化为对所有非负实数,不等式恒成立,也即二次函数在区间上的最小值大于或等于0,最终问题又转化为讨论二次函数在给定区间的最值问题,解题中始终贯彻了转化与化归的数学思想.11.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.12.已知实数x、y满足,如果目标函数的最小值为-1,则实数m=().A.6B.5C.4D.3【答案】B【解析】将化为,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即变小,所以当直线过点时,取得最小值,即,解得;故选B.【考点】简单的线性规划.13.已知正数满足,则的最小值为()A.2B.0C.-2D.-4【答案】D【解析】作出题设约束条件表示的可行域,如图内部(含边界),作直线,直线的纵截距是,因此向上平移直线,当过点时,取得最小值,故选D.【考点】简单的线性规划问题.14.已知,满足约束条件若的最小值为,则()A.B.C.D.【答案】B【解析】先根据约束条件画出可行域,设,将最大值转化为轴上的截距,当直线经过点时,最小,由得:,代入直线,解得故答案选【考点】线性规划.15.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求实数的取值范围.【答案】(1)(2)【解析】(1)把要解的不等式等价转化为与之等价绝对值不等式,再求出此不等式的解集,即得所求(2)当时,即由此得讨论即可得到实数的取值范围试题解析:(1)当时,不等式为当时,不等式化为,不等式不成立;当时,不等式化为,解得;当时,不等式化为,不等式必成立.综上,不等式的解集为.(2)当时,即由此得当时,的最小值为7,所以的取值范围是【考点】绝对值不等式16.已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.【答案】(1);(2).【解析】(1)分析题意可知,不等式无解等价于恒成立,参变分离后即再进一步等价为,即可求解;(2)分析函数的单调性,可知其为单调递增函数,换元令,从而可将问题等价转化为二次方程根的分布,列得关于的不等式即可求解.试题解析:(1)∵,∴无解,等价于恒成立,即恒成立,即,求得,∴;(2)∵是单调增函数,∴,即,问题等价于关于的方程有两个不相等的解,令,则问题等价于关于的二次方程在上有两个不相等的实根,即,即,得.【考点】1.恒成立问题;2.二次方程的根的分布;3.转化的数学思想.17.选修4-5:不等式选讲已知函数(1)解不等式(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式,主要是分类讨论,分类标准由绝对值的定义确定;(2)不等式对任意的恒成立,即的最小值满足,由(1)的讨论,可得.试题解析:(1),当时,由,此时无解当时,由当时,由综上,所求不等式的解集为(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为,不等式,对任意的恒成立即,解得故的取值范围为.【考点】解绝对值不等式,不等式恒成立问题,函数的最值.18.若不等式组表示的平面区域为,不等式表示的平面区域为.现随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【答案】.【解析】不等式组表示的平面区域为,不等式表示的平面区域为.的面积为,其中满足的图形面积为,所以随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【方法点晴】本题属于几何概型的问题,通常在几何概型中,事件的概率计算公式为:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量.因此本题解题思路清晰,作出图形,计算相关三角形的面积,代入上述公式便得答案.19.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】试题解析:依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处取最大值是4,在处最小值是-2,所以,所以的最大值是4,故选B.【考点】简单线性规划20.选修4-5:不等式选讲已知命题“,”是真命题,记的最大值为,命题“,”是假命题,其中.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题解析:(Ⅰ)因为“,”是真命题,所以,恒成立,又,所以恒成立,所以,.又因为,“”成立当且仅当时.因此,,于是.(Ⅱ)由(Ⅰ)得,因为“,”是假命题,所以“,”是真命题.因为(),因此,,此时,即时.即,,由绝对值的意义可知,.【考点】不等式选讲21.已知实数满足不等式组则的最小值为______.【答案】【解析】由得,则当直线在y轴上的截距最大时取得最小值,所以当直线经过A(2,3)时,z最小,即当x=2,y=3,取得最小值-4.【考点】线性规划22.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】B【解析】如图,易知直线经过定点,又知道关于的不等式组,表示的平面区域是直角三角形区域,且,所以,解得,故选B.【考点】线性规划.23.已知函数,且关于的不等式的解集为R.(1)求实数的取值范围;(2)求的最小值.【答案】(1);(2)9【解析】(1)由绝对值的性质可知,由此解不等式即可求出结果;(2)由(1),根据基本不等式的性质,即可求出结果.试题解析:解:(1)依题意,(2)时,当且仅当,即时等号成立。
2017-18全国卷高考真题 数学 不等式选修专题
2017-2018全国卷I -Ⅲ高考真题数学不等式选修专题1.(2017全国卷I,文/理.23)(10分)[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【答案解析】解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴1x =的二次函数.()211121121x x g x x x x x >⎧⎪=++-=-⎨⎪-<-⎩,,≤x≤,,当(1,)x ∈+∞时,令242x x x -++=,解得12x =()g x 在()1+∞,上单调递增,()f x 在()1+∞,上单调递减∴此时()()f x g x ≥解集为112⎛⎤- ⎝⎦,.当[]11x ∈-,时,()2g x =,()()12f x f -=≥.当()1x ∈-∞-,时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=.综上所述,()()f x g x ≥解集1⎡-⎢⎣⎦.(2)依题意得:242x ax -++≥在[]11-,恒成立.即220x ax --≤在[]11-,恒成立.则只须()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解出:11a -≤≤.故a 取值范围是[]11-,.2.(2017全国卷Ⅱ,文/理.23)(10分)[选修4-5:不等式选讲](10分)已知0a >,222ba b +==2.证明:(1)()22()4a b a b ++≥;(2)2a b +≤.【答案解析】3.(2017全国卷Ⅱ,文/理.23)(10分)[选修4—5:不等式选讲](10分)已知函数f (x )=│x +1│–│x –2│.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.【答案解析】解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.(2)不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max 333531g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.4.(2018全国卷I,文/理.23)(10分)[选修4—5:不等式选讲](10分)已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()01x ∈,时不等式()f x x >成立,求a 的取值范围.【答案解析】解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].5.(2018全国卷Ⅱ,文/理.23)(10分)[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案解析】解:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤.(2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥.由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞ .6.(2018全国卷Ⅲ,文/理.23)(10分)[选修4—5:不等式选讲](10分)设函数()211f x xx =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.【答案解析】解:(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.不等式有实数解的充要条件是_____.【答案】.【解析】记,则不等式有实数解等价于,因为,故【考点】绝对值三角不等式.4.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].5.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.6.已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x 的取值范围.【答案】≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法10.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【答案】(1)(2)a≥4【解析】(1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.∴x≥或x≤.∴不等式的解集为.注:也可用零点分段法求解.(2)∵|ax-2|+|ax-a|≥|a-2|,∴原不等式的解集为R等价于|a-2|≥2,∴a≥4或a≤0.又a>0,∴a≥4.11.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.【答案】(1)M={x|0<x<1}(2)ab+1>a+b【解析】(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.12.不等式的解集是 .【答案】【解析】由题意可得,,解得.【考点】绝对值不等式的解法.13.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.14.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.15.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.16.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法17.已知函数f(x)=|x+2|+|2x-4|(1)求f(x)<6的解集;(2)若关于的不等式f(x)≥m2-3m的解集是R,求m的取值范围【答案】(1)不等式的解是{x|0<x<};(2)【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题试题解析:(I)由题设知:当时,不等式等价与,即; 2分当时,不等式等价与,即; 4分当时,不等式等价与,即无解所以满足不等式的解是 6分(II)由图像或者分类讨论可得的最小值为4 8分则,解之得,【考点】1 绝对值不等式的解法;2 恒成立问题;3 分段函数的最值问题18.设关于的不等式的解集为,且,则实数的取值范围是 .【答案】.【解析】由题意当时,,当时,,即,由,则或,所以实数的取值范围为.【考点】绝对值不等式.19.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题20.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.21.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。
2017-2019年高考真题“不等式”全集(含详细解析)
2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。
高三数学基本不等式试题答案及解析
高三数学基本不等式试题答案及解析1. [2014·兰州调研]设x、y、z>0,a=x+,b=y+,c=z+,则a、b、c三数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【答案】C【解析】假设a、b、c都小于2,则a+b+c<6.而事实上a+b+c=x++y++z+≥2+2+2=6与假设矛盾,∴a,b,c中至少有一个不小于2.2.若方程有实根,则实数的取值范围是___________.[【答案】【解析】原方程可变为:,【考点】方程及重要不等式.3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出. (1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m).【答案】20【解析】利用均值不等式解决应用问题。
设矩形高为y, 由三角形相似得:.5.设A、B、C、D是半径为2的球面上的四点,且满足,的最大值是 _______ .【答案】8【解析】由已知得,,当且仅当时等号成立,因此最大值为8.【考点】球的性质.6.设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤;(2)≥1【答案】(1)见解析(2)见解析【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c.所以≥1.7.若,其中为虚数单位,则_________.【答案】【解析】,所以.【考点】复数基本运算.8.已知函数在时取得最小值,则____________.【答案】【解析】由题意得时取得最小值,所以.【考点】重要不等式.9.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式10.设均为正实数,且,则的最小值为____________.【答案】16【解析】由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.【考点】基本不等式.11.若a、b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.a+b≥2C.+>D.+≥2【答案】D【解析】对于选项A,a2+b2≥2ab,所以选项A错;对于选项B、C,虽然ab>0,只能说明a、b同号,若a、b都小于0时,选项B、C错;对选项D,∵ab>0,∴>0,>0,则+≥2.故选D.12.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值为() A.B.C.+D.+2【答案】C【解析】圆的标准方程为(x+1)2+(y-2)2=4,所以圆心坐标为(-1,2),半径为r=2.因为直线被圆截得的弦长为4,所以直线ax-by+2=0过圆心,所以-a-2b+2=0,即a+2b=2,所以+b=1,所以+=(+)(+b)=+1++≥+2=+.当且仅当=,a=b时取等号,所以+的最小值为+.故选C.13.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.14.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a+b≥2 B.>C.≥2D.a2+b2>2ab【答案】C【解析】因为ab>0,所以>0,>0,即≥2 =2,所以选C.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则的最大值为() A.B.1C.D.2【答案】B【解析】由a x=b y=3得=log3a,=log3b,所以=log3ab≤log3=log3=1.16.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取得最小值时,a=-2.17.已知函数f(x)=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.【答案】36【解析】∵x>0,a>0,∴f(x)=4x+≥2=4 ,当且仅当4x=(x>0)即x=时f(x)取得最小值,由题意得=3,∴a=36.18.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*).则当每台机器运转______年时,年平均利润最大,最大值是______万元.【答案】58【解析】由题意知每台机器运转x年的年平均利润为=18-(x+),而x>0,故≤18-=8,当且仅当x=5时,年平均利润最大,最大值为8万元.19.设,若,则的最大值为()A.2B.3C.4D.【答案】B【解析】由得,,∴,又,∴,即,当且仅当,即时取等号,所以. 故.【考点】基本不等式.20.已知当取得最小值时,直线与曲线的交点个数为【答案】2【解析】∵,∴当且仅当,即时,取得最小值8,故曲线方程为时,方程化为;当时,方程化为,当时,方程化为,当时,无意义,由圆锥曲线可作出方程和直线与的图象,由图象可知,交点的个数为2.【考点】基本不等式,直线与圆锥曲线的位置关系.21.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.【解析】先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,6分, 8分因为,所以,当且仅当,即时取等号 12分此时取得最大值,最大值为.答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.14分【考点】矩形的面积、基本不等式22.若,且,则下列不等式中,恒成立的是()A.B.C.D.【答案】C【解析】因为,则或,则排除与;由于恒成立,当且仅当时,取“=”,故错;由于,则,即,所以选.【考点】基本不等式.23.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.24.已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先令,得,再分类去绝对值解不等式;(Ⅱ)设,去绝对值得,根据原不等式解集为空集得,从而求得.试题解析:(Ⅰ)当时,不等式即为,若,则,,舍去;若,则,;若,则,.综上,不等式的解集为.(5分)(Ⅱ)设,则,,,,即的取值范围为.(10分)【考点】含绝对值不等式的解法.25.已知,且满足,则的最小值为【答案】【解析】∵,且满足,∴,=,当且仅当时,的最小值为。
2019年高考数学试题分项版—不等式(解析版)
2019年高考数学试题分项版——不等式(解析版)一、选择题1.(2019·全国Ⅲ文,11)记不等式组+ , -表示的平面区域为D .命题p :∃(x ,y )∈D,2x+y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②(p ⌝)∨q ;③p ∧(q ⌝);④(p ⌝)∧(q ⌝). 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A解析 方法一 画出可行域如图中阴影部分(含边界)所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 在y 轴上的截距.显然,当直线过点A (2,4)时,z min =2×2+4=8, 即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.方法二 取x =4,y =5,满足不等式组 + , - ,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.2.(2019·天津文,2)设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.3.(2019·天津文,3)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由|x-1|<1可得0<x<2,所以“|x-1|<1的解集”是“0<x<5的解集”的真子集.故“0<x<5”是“|x-1|<1”的必要不充分条件.4.(2019·浙江,3)若实数x,y满足约束条件-+,--,+,则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.5.(2019·浙江,5)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab ≤4时,取a =8,b =,满足ab ≤4,但a +b ≥4,所以必要性不成立,所以“a+b ≤4”是“ab ≤4”的充分不必要条件. 6.(2019·全国Ⅱ理,6)若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b |答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.7.(2019·北京理,5)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .7【思路分析】由约束条件作出可行域,令3z x y =+,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:由||11x y y -⎧⎨-⎩……作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 8.(2019·天津理,2)设变量x ,y 满足约束条件+ - ,- + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.9.(2019·天津理,3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要不充分条件.二、填空题1.(2019·全国Ⅱ文,13)若变量x,y满足约束条件+-,-,则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由+-=,+-=,解得=,=,即C点坐标为(3,0),故z max=3×3-0=9.2.(2019·北京文,10)若x,y满足,-,-+,则y-x的最小值为________,最大值为________.答案-3 1解析x,y满足的平面区域如图(阴影部分)所示.设z=y-x,则y=x+z.把z看作常数,则目标函数是可平行移动的直线,z的几何意义是直线y=x+z在y轴上的截距,通过图象可知,当直线y=x+z经过点A(2,3)时,z取得最大值,此时z max=3-2=1. 当经过点B(2,-1)时,z取得最小值,此时z min=-1-2=-3.3.(2019·天津文,10)设x∈R,使不等式3x2+x-2<0成立的x的取值范围为________.答案解析3x2+x-2<0变形为(x+1)(3x-2)<0,解得-1<x<,故使不等式成立的x的取值范围为.4.(2019·天津文,13)设x>0,y>0,x+2y=4,则的最小值为________.答案解析===2+.∵x>0,y>0且x+2y=4,∴4≥2(当且仅当x=2,y=1时取等号),∴2xy≤4,∴≥,∴2+≥2+=.5.(2019·天津理,13)设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.三、解答题1.(2019·全国Ⅰ文,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国Ⅱ文,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.(2019·全国Ⅲ文,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.4.(2019·江苏,21)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.解当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为或.5.(2019·全国Ⅰ理,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.6.(2019·全国Ⅱ理,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).7.(2019·全国Ⅲ理,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.。
2023年高考数学真题分训练 不等式选讲(含答案含解析)
专题 35 不等式选讲 十年大数据x 全景展示年 份题号考 点考 查 内 容不等式选 讲 2011文理 24绝对值不等式的解法不等式选 讲 2023 文理 24文理 24绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法多元不等式的证明不等式选 讲 卷 12023不等式选讲 卷 2文理 24卷 1文理 24卷 2文理 24卷 1文理 24卷 2文理 24卷 1 文理 24不等式选讲 根本不等式的应用20232023不等式选讲 绝对值不等式的解法不等式选讲 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选讲 不等式选讲 分段函数的图像,绝对值不等式的解法绝对值不等式的解法,绝对值不等式的证明绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选 讲 2023 卷 2 文理 24卷 3 文理 24 不等式选 讲 不等式选讲 卷 1 文理 23不等式选 讲 2023 卷 2 文理 23不等式选讲 卷 3文理 23 绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2023卷 1文理 23不等式选讲不等式选讲卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值函数的图象,不等式恒成立参数最值问题的解法三元条件不等式的证明不等式选讲不等式选讲2023 卷1 文理23卷2 文理23 不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件最值问题的解法,三元条件不等式的证明绝对值函数的图像,绝对值不等式的解法不等式选讲卷3 文理23不等式选讲卷1 文理23不等式选讲2023 卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件不等式的证明不等式选讲大数据分析x预测高考出现频率考点2023 年预测考点120 绝对值不等式的求解23 次考4 次2023 年主要考查绝对值不等式的解法、绝对值考点121 含绝对值不等式的恒成立问题23 次考12 次不等式的证明,不等式恒成立参数取值范围问题的解法等.考点122 不等式的证明23 次考7 次十年真题分类x探求规律考点120绝对值不等式的求解f x 3x 1 2 x 11.(2023 全国Ⅰ文理22)已知函数.y f x(1)画出的图像;(2)求不等式 f x f x 1 的解集.x 1 x 3,1 x 1 ,作出图像,如下图: f x5x 1, (解析)(1)∵ 31 x 3, x3 (2)将函数的图像向左平移1个单位,可得函数f x 1的图像,如下图:f x 7 76x 3 5 x 1 1, x ,∴不等式的解集为 .由 ,解得 62.(2023 江苏 23)设 x R ,解不等式2 | x 1| | x | 4 .2 32, (答案)(思路导引)依据绝对值定义化为三个不等式组,解得结果.x 1 1 x 0 x 0或(解析) 或 , 2x 2 x 4 2x 2 x 4 2x 2 x 4222 x 1或 1 x 0或0 x 2, ,∴解集为 .33 3.(2023 全国 I 文理)已知函数 f (x ) | x 1| | 2x 3|.(I)在图中画出 y f (x ) 的图像; (II)求不等式| f (x ) | 1的解集.(解析)(1)如下图:4,x ≤ 1 x3 2, f x 1.(2) f x 3x 2, 1 x 3 24 x ,x ≥当 x ≤ 1, x 4 1,解得 x 5 或 x 3 ,∴x ≤ 1;31 3 1 3 3 2当 1 x , 3x 2 1,解得 x 1或 x,∴ 1 x 或1 x ; 2 3 3当 x ≥ , 4 x 1,解得 x 5 或 x 3 ,∴ ≤x 3或 x 5 .2 2 11 , ,, .综上, x 或1 x 3 或 x 5 , f x∴,解集为 1 1 3 5 3 31 4.(2023 全国 II 文理)设函数 f x = x x a (a 0)a(Ⅰ)证明: f x ≥2;(Ⅱ)假设 f 3 5,求a 的取值范围.11 1 (解析)(I)由a 0,有 f (x ) x x a x (x a ) a 2,∴ f (x ) ≥2.a a a1 (Ⅱ) f (3) 3 3 a .a15 21当时a >3 时, f (3) = a ,由 f (3) <5 得 3< < a; a 21 1 5当 0<a ≤3 时, f (3) = 6 a ,由 f (3) <5 得<a ≤3. a 21 5 5 21综上:a 的取值范围是(, ). 2 25.(2011 新课标文理)设函数 f (x ) x a 3x ,其中 f (x ) 3x 2的解集;a 0 .(Ⅰ)当a 1时,求不等式(Ⅱ)假设不等式 f (x ) 0的解集为 x | x f (x ) 3x 2可化为| x 1| 2,由此可得 x 3 或 x 11,求 a 的值.(解析)(Ⅰ)当a 1时, .故不等式 f (x ) 3x 2的解集为(x | x 3或 x 1).x a ( Ⅱ) 由 f (x ) 0 得 x a 3x 0 ,此不等式化为不等式组 x aa x 3x 0 或, x a 3x 0x ≥a x ≤ax |x ,由题设可得 a =1,故a 2a 即 a 或 x ≤ 4 a ,因为a 0 ,∴不等式组的解集为 . x ≤ 2 2 2 考点 121 含绝对值不等式的恒成立问题6.(2023 全国Ⅱ文理 22)已知函数 f x x 2 x 2a 1 .a (1)当a 2时,求不等式 f x 4 的解集; (2)假设 f x 4 ,求a 的取值范围.3 2 11 2 x xx ;(2) , 1 3,.(答案)(1) 或 (思路导引)(1)分别在x 3、3 x 4和 x 4三种情况下解不等式求得结果;2(2)利用绝对值三角不等式可得到 f x a 1 ,由此构造不等式求得结果. f x x 4 x 3(解析)(1)当a 2时,.3 x 当x 3时, f x 4 x 3 x 7 2x 4 ,解得: ,无解; ; ; 2f x 4 x x 3 1 4当3 x 4时, 112f x x 4 x 3 2x 7 4 当 x 4 时, x ,解得:4的解集为 3 2 112 f xx 或 x x . 综上所述: 2f x x a 2 x 2a 1 x a 2 x 2a 1 a 2 2a 1 a 1 (当且仅当 (2) 2a 1 x a 2 时取等号), a 1 2,解得:a 1或a 3, a 的取值范围为 , 1 3, . 47.(2023 全国 II 文理 23)选修 4-5:不等式选讲](10 分) f (x ) | x a | x | x 2 | (x a ). 已知 (1)当a 1时,求不等式 f (x ) 0 的解集; x ( ,1) 时, f (x ) 0a,求 的取值范围.(2)假设(解析)(1)当 a=1 时, f (x )=|x 1| x +|x 2|(x 1) .当 x 1时, f (x ) 2(x 1) 0 ;当 x 1时, f (x ) 0,∴不等式 f (x ) 0的解集为( ,1).2(2)因为 f (a )=0 ,∴a 1.当a 1, x ( ,1) 时, f (x )=(a x ) x +(2 x )(x a )=2(a x )(x 1)<0 ∴a 的取值范围是1, ) . 8.(2023 全国Ⅰ文理)已知 f (x ) | x 1| | ax 1|.(1)当a 1时,求不等式 f (x ) 1的解集;(2)假设x (0,1)时不等式 f (x ) xa成立,求 的取值范围.2, x ≤ 1,(解析)(1)当a 1时, f (x ) | x 1| | x 1|f (x ) 2x , 1 x 1, ,即2, x ≥1.1 故不等式f (x ) 1的解集为(x | x ) .2(2)当 x (0,1)时| x 1| | ax 1| x 成立等价于当 x (0,1)时| ax 1| 1成立. 假设a ≤0,则当 x (0,1)时| ax 1|≥1;2 2,假设a 0 | ax 1| 1的解集为 (0, 2. 0 x,∴ ≥1,故0 a ≤2. a aa综上, 的取值范围为9.(2023 全国Ⅱ文理)设函数 f (x ) 5 | x a | | x 2 |. (1)当a 1时,求不等式 f (x )≥0 的解集; (2)假设 f (x )≤1,求a 的取值范围.2x 4, x ≤ 1,(解析)(1)当a 1时, f (x ) 2, 1 x ≤2,2x 6, x 2.可得 f (x )≥0 的解集为(x | 2≤ x ≤3). (2) f (x )≤1等价于| x a | | x 2 |≥4.而| x a | | x 2 |≥| a 2 | ,且当 x 2时等号成立.故 f (x )≤1等价于| a 2 |≥4. 由| a 2 |≥4可得a ≤ 6或a ≥2,∴a 的取值范围是( , 6] 2, ). 10.(2023 全国Ⅲ文理)设函数 f (x ) | 2x 1| | x 1| . (1)画出 y f (x ) 的图像;(2)当x 0, )时,f(x)≤ax b,求a b的最小值.13x, x ,21f(x) x 2, ≤x 1,(解析)(1)23x, x≥1.y f(x) 的图像如下图.(2)由(1)知,y f(x) 的图像与y轴交点的纵坐标为2,且各局部所在直线斜率的最大值为3,故当且仅当a≥3且b≥2 时,f(x)≤ax b在0, ) 成立,因此a b的最小值为5.211.(2023 江苏)假设x,y,z为实数,且x 2y 2z 6,求x2 y z2 的最小值.(解析)由柯西不等式,得(x 2y 2 z 2 )(1 22 2 2 2)≥(x 2y 2z ) .2x y z 2 4 4 因为 x 2y 2z =6 ,∴ x2y 2 z 2 ≥4,当且仅当 时,不等式取等号,此时 x ,y ,z ,1 2 2 3 3 3∴ x 2 y 2 z 的最小值为 4.2 f (x ) x ax 4 , g (x ) | x 1| | x 1|.212.(2023 全国Ⅰ文理)已知函数 (1)当a 1时,求不等式 f (x )≥ g (x ) 的解集;(2)假设不等式 f (x )≥ g (x ) 的解集包含 1,1],求a 的取值范围. (解析)(1)当a 1时,不等式 f (x )≥ g (x ) 等价于 2x x | x 1| | x 1| 4 ≤0 .①当 x 1时,①式化为2x 3x 4≤0 ,无解;当 1≤x ≤1时,①式化为 x 2x 2≤0,从而 1≤x ≤1;1 17当 x 1时,①式化为 x 2x 4≤0 ,从而1 x ≤,∴ f (x )≥ g (x ) 的解集为 21 17(x | 1 x ≤). 2(2)当 x 1,1]时, g (x ) 2 ,∴ f (x )≥ g (x ) 的解集包含 1,1],等价于当 x 1,1]时 f (x )≥2 . 又 f (x ) 在 1,1]的最小值必为 f ( 1)与 f (1)之一,∴ f ( 1)≥2且 f (1)≥2,得 1≤a ≤1,∴a 的取 值范围为 1,1].13.(2023 全国Ⅲ文理)已知函数 f (x ) | x 1| | x 2 |. (1)求不等式 f (x )≥1的解集;f (x )≥x x m 的解集非空,求m 的取值范围.2(2)假设不等式 3, x 1(解析)(1) f (x ) 2x 1, 1≤x ≤2 ,3, x 2当 x 1时, f x ≥1无解;当 1≤x ≤2时,由 f x ≥1得,2x 1≥1,解得1≤ ≤2;x 当 x >2时,由 f x ≥1解得 >2. x∴ f x ≥1的解集为 x x ≥1 .x m 得m ≤ x 1 x 2 x(2)由 f x ≥ x 2 2x ,而23 5 5 x 1 x 2 x 2x ≤ x +1+ x 2 x 2x =- x - + ≤ ,2 4 4355 4且当 x 时, x 1 x 2 x 2x = ,故 m 的取值范围为 - , . 2 4 14.(2023 全国 III 文理)已知函数 f (x ) | 2x a | a (Ⅰ)当 a=2 时,求不等式 f (x )≤6 的解集;(Ⅱ)设函数 g (x ) | 2x 1| ,当 x R 时, f (x ) g (x )≥3,求 a 的取值范围. (解析)(Ⅰ)当a 2时, f (x ) | 2x 2 | 2.解不等式| 2x 2 | 2 6 ,得 1 x 3,因此 f (x ) 6的解集为(x | 1 x 3). (Ⅱ)当 x R 时, f (x ) g (x ) | 2x a | a |1 2x |1| 2x a 1 2x | a |1 a | a ,当 x 时等号成立,2∴当 x R 时, f (x ) g (x ) 3等价于|1 a | a 3. ① 当a 1时,①等价于1 a a 3 ,无解. 当a 1时,①等价于a 1 a 3 ,解得a 2 . ∴a 的取值范围是2, ) .15.(201 5 全国 I 文理)已知函数 f (x ) | x 1| 2 | x a | ,a 0. (Ⅰ)当a 1时,求不等式 f (x ) 1的解集;(Ⅱ)假设 f (x ) 的图像与 x 轴围成的三角形面积大于 6,求a 的取值范围. (解析)(Ⅰ)当a 1时,不等式 f (x ) 1化为| x 1| 2 | x 1| 1 0, 当 x ≤ 1时,不等式化为 x 4 0,无解;2 当 1 x 1时,不等式化为3x 2 0 ,解得 x 1; 3当 x ≥1时,不等式化为 x 2 0,解得1≤x 2. 2 ∴ f (x ) 1的解集为(x | x 2).3x 1 2a , x 1 (Ⅱ)有题设可得, f (x ) 3x 1 2a , 1≤ x ≤a ,∴函数 f (x ) 图象与 x 轴围成的三角形的三个顶点分别x 1 2a , x a2a 1 2 2 3, 0), B (2a 1, 0),C (a ,a 1) , (a 1) 6 ,故a 2.∴ 2 为 A ( ABC 的面积为 (a 1) 2 .有题设得 3 3 a 的取值范围为(2, ) .1 116.(2023 全国 I 文理)假设a 0,b 0 ,且 ab .a b a 3 b 3 的最小值;(Ⅰ)求 (Ⅱ)是否存在a ,b ,使得2a 3b 6?并说明理由.1 1 (解析)(I)由 ab a b 2,得ab 2 ,且当a b 2 时取等号.ab 故a ∴a 3 3 b 3 2 a 3 b 3 4 2 ,且当a b 2 时取等号.b 3 的 最小值为4 2 .(II)由(I)知,2a 3b 2 6 ab 4 3 .由于4 3 6 ,从而不存在a ,b ,使得2a 3b 6 .f (x ) | 2x 1| | 2x a |g (x ) x 3 .16.(2023 全国 I 文理)已知函数 = , = a f (x ) < g (x ) (Ⅰ)当 =-2 时,求不等式 的解集;a 1 2 a x ,求 的取值范围.f (x ) ≤g (x ) a(Ⅱ)设 >-1,且当 ∈ , )时, 2 a =f (x ) <g (x ) 化为| 2x 1| | 2x 2 | x 3 0 ,(解析)(Ⅰ)当 2时,不等式 125x , x 1 x 1,设函数 y =| 2x 1| | 2x 2 | x 3 y x 2, , = 23x 6, x 1x (0, 2) y时, <0, 其图像如下图,从图像可知,当且仅当∴原不等式解集是(x | 0 x 2) . a 1 2x f (x ) =1 a f (x ) ≤ g (x ) 化为1 a ≤x 3, (Ⅱ)当 ∈ , )时, ,不等式 2a 1 a 4 ∴ x ≥a 2 对 ∈ x , )都成立,故 ≥a 2 ,即a ≤ , 2 2 2 34 3a 1, ∴ 的取值范围为( ]. 17.(2023 新课标文理)已知函数 f (x ) | x a | | x 2 | .(Ⅰ)当a 3|时,求不等式 f (x ) 3的解集;(Ⅱ)假设 f (x ) | x 4 | 的解集包含1,2],求a 的取值范围.(解析)(1)当a 3时, f (x ) 3 x 3 x 2 3 x 2 2 x 3 x 3 x 3 x 2 33或 3 x x 2 3 或 3 x 2 x x 1或 x 4.(2)原命题 f (x ) x 4 在1, 2]上恒成立x a 2 x 4 x 在1, 2]上恒成立2 x a 2 x 在1, 2]上恒成立3 a 0.考点 122 不等式的证明18.(2023 全国Ⅲ文理 23)设a , b , c R , a b c 0 , abc 1.(1)证明:ab bc ca 0 ;(2)用max a , b , c 表示a , b , c 的最大值,证明:max a , b , c 4 .3 (答案)(1)证明见解析(2)证明见解析.(思路导引)(1)依据题设条件a b c 0,两边平方,再利用均值不等式证明即可;max (a ,b ,c ) a ,由题意得出a 0,b ,c 0 (2)思路一:不妨设 ,2 b c b 2 c 2 2bc 由a3 a 2 a ,结合根本不等式,即可得出证明. bc bc思路二:假设出a ,b ,c 中最大值,依据反证法与根本不等式推出矛盾,即可得出结论. (解析)(1)证明:0,a b c a b c 2 0. a 2 b 2 c 2 2ab 2ac 2ca 0, 即2ab 2bc 2ca a2 b 2 c 2 2ab 2bc 2ca 0, ab bc ca 0.(2)证法一:不妨设max (a ,b ,c ) a ,由a b c 0,abc 1可知,a 0,b 0,c 0 ,1 2 b c 2bc 2bc 2bc b c 2 2 a b c ,a , a 3 a 2 a , 4 bc bc bc bc当且仅当b c 时,取等号, a,即max (a ,b ,c ) 4 . 3 3 4 11 3 , a b c 3 4, 而 证法二:不妨设a b 0 c 4 ,则ab c 3 42 13 214 矛盾,∴命题得证.3 4 a b 2 ab 3 6 4 19.(2023 全国 I 文理 2 3)已知 a ,b ,c 为正数,且满足 abc=1.证明:1 1 1a ab c2 b 2 c 2 (1) (2) ; (a b ) (b c )3 3 (c a ) b 2ab ,b ab bc ca 3 24 .(解析)(1)因为a 2 2 2 c2 2bc ,c 2 a 2 2ac ,又abc 1, 1 1 1 1 ab bc ca 1 1 故有a 2 b 2 c 2 ,∴ a 2 b c 2 .2 abc a b c a b c (2)因为a , b , c 为正数且abc 1,故有(a b ) (b c ) (c a ) 3 (a b ) 3 (2 ab ) (2 bc ) (2 ac ) =24.(b c ) (c a ) 24.3 3 3 3 3 (b c ) 3 (a c ) =3(a +b )(b +c )(a +c ) 3 ∴(a b ) 3 3 3x , y , z R ,且 x y z 1.20.(2023 全国 III 文理 23)设 (x 1) 2 (y 1) 2 (z 1)2 的最小值; (1)求 (2)假设 1(x 2) 2 (y 1) 2 (z a ) 2 成立,证明:a 3 或a 1 .3 (解析)(1)由于(x 1) (y 1) (z 1)] 2 (x 1) 2 (y 1) 2 (z 1) 2(x 1)(y 1) (y 1)(z 1) (z 1)(x 1)]2 3 (x 1) 2 (y 1) 2 (z 1) 2, 4 35 1 z 1 故由已知得(x 1) 2 (y 1) 2 (z 1) 2 ,当且仅当x= ,y=– , 时等号成立. 3 3 3 4 ∴(x 1) (2)由于(x 2) (y 1) (z a )] (x 2) (y 1) (z a ) 2(x 2)(y 1) (y 1)(z a ) (z a )(x 2)] 2 (y 1) 2 (z 1)2 的最小值为 . 322 2 23 (x 2)2 (y 1) 2 (z a ) 2 , (2 a ) 2 4 a 1 a 2a 2 故由已知(x 2) 2 2 (y 1) 2 (z a ) 2,当且仅当 x y z , , 时等号成 3 3 3 3 (2 a ) 2 立,因此(x 2) (y 1) 2 (z a )2 的最小值为. 3 (2 a ) 2 1 ,解得a 3 或a 1. 由题设知 3 321.(2023 全国Ⅱ文理)已知a 0,b 0, a3 b 2 ,证明: 34 ; (1) a b a b(2) a b 2.(解析)(1)(a b )(a 5 524.5 b 5 ) a6 2 ab 5 a 5 b b 6 (a 3 b 3 ) 2 2a 3 b 3 ab (a 4 b 4 ) 4 ab a 2 b 2 3(a b ) 2 3(a b ) 3 (a b ) 3 a 3 3a 2 b 3ab b 3 2 3ab (a b ) 2 (a b ) 2 , (2)∵ 4 4∴(a b ) 8 ,因此a b 2. 3 22.(2023 江苏)已知a ,b ,c ,d 为实数,且 a 2 b2 4 ,c 2 d 16 ,证明ac bd 8. 2(解析)证明:由柯西不等式可得:(ac bd ) 2 ≤(a 2 b 2 )(c 2 d 2 ) , 因为a 2 b 2 4,c 2 d 2 16, ∴(ac bd ) 2 ≤64 ,因此 ac bd 8.≤ 1 1 2 x ,M 为不等式 f x 2的解集.23.(2023 全国 II 文理)已知函数 f x x 2 (I)求 M ;(II)证明:当 a ,b M 时, a b 1 ab . 1 f x x x 2x 1 1 ,假设 1 x 1 (解析)(I)当 x 时, ; 2 2 2 21 1 1 1 当 ≤ x ≤ 时, f x x x 12 恒成立;2 2 2 2 1 1 当 x 时, f x 2x ,假设 f x 2, < x 1. 22 综上可得,Mx | 1 x 1., , 时,有 a (Ⅱ)当a b 1 1 2 1 b 2 1 0 ,即a 2 b 2 1 a 2 b , 2 2 b 2 2ab 1 a 2 2ab b 2 ,则 ab 1 2 a b ,即 a b ab 1 ,证毕. 2则a 24.(2023 全国 II 文理)设a ,b ,c ,d 均为正数,且a b c d ,证明: (Ⅰ)假设ab > cd ,则 a b c d ;(Ⅱ) a b c d 是| a b | | c d | 的充要条件. (解析)(Ⅰ)∵( a b ) 由题设a b c d ,ab cd 得( a b ) (ab ) (cd )2 ,即(a b ) 因为a b c d ,∴ab cd ,由(Ⅰ) 得 a b c d . ( a b ) ( c d )2 ,即a b 2 ab c d 2 cd . (a b ) 4ab (c d ) 4cd (c d )2 . 2 a b 2 ab ,( c d ) ( c d )2 ,因此 a b c d .4ab (c d ) 4cd . 2 c d 2 cd ,2 (Ⅱ)(ⅰ)假设| a b | | c d |,则 2 2 2 (ⅱ)假设 a b c d , 则 因为a +b =c +d ,∴ab >cd ,于是(a b )因此| a b | | c d |.综上 a b c d 是| a b | | c d |的充要条件.a ,b ,c 2 2 2 2 25.(2023 全国 II 文理)设 均为正数,且 a b c 1,证明:1 3ab bc ca (Ⅰ) ; a 2 b 2 c 2 (Ⅱ) 1. b c a(解析)(Ⅰ) a 2 b 2 2ab ,b 2 c 2 2bc ,c 2 a 2 2ca 得a 2 b 2 c ab bc ca ,2 由题设得 a b c2 2 2 2 1,即a bc 2ab 2bc 2ca 1, 1 ∴3 ab bc ca 1,即ab bc ca. 3a 2b 2c 2 a 2 b 2 c 2 (Ⅱ)∵ b 2a , c 2b , a 2c ,∴ (a b c ) 2(a b c ) , b c a b c aa 2b 2c 2 a 2 b 2 c 2 即 a b c ,∴ 1. b c a b c a。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.已知函数.(Ⅰ)求的解集;(Ⅱ)设函数,若对任意的都成立,求的取值范围.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)先利用根式的性质将函数的解析式化为含绝对的函数,在将具体化为,利用零点分析法化为不等式组,通过解不等式组解出的解集;(Ⅱ)利用零点分析法,通过分讨论将的解析式化为分段函数,作出函数的图像,由函数知,函数图像是恒过(3,0),斜率为的直线,由对任意的都成立知,函数的图像恒在函数的上方,作出函数的图像,观察满足的条件,求出的取值范围.试题解析:(Ⅰ)∴即∴①或②或③解得不等式①:;②:无解③:所以的解集为或. 5分(Ⅱ)即的图象恒在图象的上方图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,,∴由图可知,要使得的图象恒在图象的上方∴实数的取值范围为. 10分【考点】根式性质,含绝对不等式解法,分段函数,数形结合思想,分类整合思想2. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质3.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].4.已知关于x的不等式的解集不是空集,则a的最小值是__________。
【答案】-9【解析】解:由关于x的不等式的解集不是空集得:即a的最小值是,所以答案应填.【考点】1、绝对值不等式的性质;2、绝对值不等式的解法.5.已知函数.(1)当时,解不等式;(2)若不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)将代入函数的解析式,利用零点分段法将区间分成三段,去绝对值符号,并求出相应的不等式;(2)将问题转化为,利用双绝对值函数的最小值为,于是得到,问题转化为来求解,解出不等式即可.(1)由得,,或,或,解得:或,原不等式的解集为;(2)由不等式的性质得:,要使不等式恒成立,则,解得:或所以实数的取值范围为.【考点】1.零点分段法求解不等式;2.不等式恒成立6.已知不等式|2x-t|+t-1<0的解集为,则t=()A.0B.-1C.-2D.-3【答案】A【解析】∵|2x-t|<1-t,∴t-1<2x-t<1-t,即2t-1<2x<1,,∴t=0,选A.7.求函数y=|x-4|+|x-6|的最小值.【答案】2【解析】y=|x-4|+|x-6|≥|x-4+6-x|=2.所以函数的最小值为2.8.若不等式|3x-b|<4的解集中整数有且只有1,2,3,求实数b的取值范围.【答案】5<b<7【解析】由|3x-b|<4,得-4<3x-b<4,即<x<.因为解集中整数有且只有1,2,3,所以解得所以5<b<7.9.A.不等式的解集为B.如图,已知的两条直角边的长分别为3cm,4cm,以为直径的圆与交于点,则.C.已知圆的参数方程为(为参数)以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,则直线与圆的交点的直角坐标系为_______【答案】A.;B.;C.和【解析】A.当时,原不等式等价于,即不成立;当时,原不等式等价于,解得;当时,原不等式等价于,即恒成立,所以原不等式的解集为.B.在中,.∵以为直径的圆与交于点,∴,∴,∴,∴.C.由题设知,在直角坐标系下,直线的方程为,圆的方程为.联立方程,得或,故所求交点的直角坐标为和.【考点】1、绝对值不等式的解法;2、与圆有关的比例线段;3、直线与圆的参数方程.10. A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆的参数方程为(为参数),则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A.;B.;C.【解析】A.先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C.由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.11.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围【答案】(1) (2)【解析】(1)可以采用零点分段法或者绝对值的定义来解决该绝对值不等式,其中零点分段法即把x分为三段讨论去掉绝对值来求的该不等式的解集,而绝对值的定义,即表示在数轴上点x到-1和a的距离之和,利用数轴即可得到相应的解集(2)首先由区间的a,再根据x的范围去掉绝对值,剩下即为恒成立问题,再利用分离参数法分离x与a,求出x一边的最值即可.解得a的范围.试题解析:(1)由题得a=2,法一.利用绝对值的定义,即|x+1|即为在数轴上x与-1之间的距离,|x-2|是x与2之间的距离.故利用数轴法可以求的,综上的解集为.法二.零点分段法,分为一下三种情况当x>2时,当-1x2时,当x<-1时,综上的解集为.(2)由题得,所以且,即在区间上恒成立,所以,综上a的取值范围为.【考点】绝对值不等式恒成立问题12.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法13.已知函数,若函数的图象恒在轴上方,求实数的取值范围.【答案】【解析】因为,所以的最小值为.因为函数的图象恒在轴上方,所以因此有,解得.试题解析:解:的最小值为, 5分由题设,得,解得. 10分【考点】绝对值不等式的应用14.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1) a=2 (2) (-∞,5]【解析】(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)方法一:当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5,当且仅当-3≤x≤2时等号成立,得g(x)的最小值为5.从而,若f(x)+f(x+5)≥m对一切实数x恒成立,实数m的取值范围为(-∞,5].方法二:当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|.于是g(x)=|x-2|+|x+3|=所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m对一切实数x恒成立,实数m的取值范围为(-∞,5].15.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.16.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.【答案】2【解析】由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.17.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.18.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.19.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.20.若关于x的不等式的解集为空集,则实数a的取值范围是。
近五年全国卷理科数学不等式
12.I.全国普通高等学校招生统一考试理科数学 (23) 已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集;(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。
13.I 全国普通高等学校招生统一考试理科数学(23)已知函数a x x x f ++-=212)(,3)(+=x x g .(Ⅰ)当2-=a 时,求不等式)()(x g x f <的解集; Ⅱ)设1->a ,且当)21,2[a x -∈时,)()(x g x f ≤,求a 的取值范围. 13.II 全国普通高等学校招生统一考试理科数学(24)设a b c 、、均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ac ++≤;(Ⅱ)2221a b c b c a ++≥ 14.I 全国普通高等学校招生统一考试理科数学24.若0,0a b >>,且11ab a b+=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 14.II 全国普通高等学校招生统一考试理科数学24. 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围. 15.I 全国普通高等学校招生统一考试理科数学(24)已知函数()|1|2||,0f x x x a a =+-->.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围15.II 全国普通高等学校招生统一考试理科数学24.设a ,b ,c ,d 均为正数,且a + b = c + d ,证明:(1)若ab > cd ;则a b c d +>+;(2)a b c d +>+是||||a b c d -<-的充要条件。
(完整版)数学不等式高考真题
1.(2018•卷Ⅱ)设函数(1)当时,求不等式的解集;(2)若,求的取值范围2。
(2013•辽宁)已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.4.(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.5。
(2017•新课标Ⅰ卷)[选修4-5:不等式选讲]已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.6.(2017•新课标Ⅱ)[选修4—5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.7。
(2018•卷Ⅰ)已知(1)当时,求不等式的解集(2)若时,不等式成立,求的取值范围8.(2018•卷Ⅰ)已知f(x)=|x+1|—|ax-1|(1)当a=1时,求不等式f(x)〉1的解集(2)若x∈(0,1)时不等式f(x)〉x成立,求a的取值范围9。
(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.10。
(2014•新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.11。
不等式--历届高考真题试题
不等式--历届高考真题一、单选题1.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩…表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④2.(2012·全国高考真题(理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-3.(2017·全国高考真题(文))设x,y 满足约束条件{2x+3y −3≤02x −3y +3≥0y +3≥0 ,则z =2x +y 的最小值是( ) A .−15B .−9C .1D .94.(2018·天津高考真题(文))(2018年天津卷文)设变量x ,y 满足约束条件{x +y ≤5,2x −y ≤4,−x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为 A .6 B .19 C .21 D .455.(2018·全国高考真题(理))已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 6.(2018·全国高考真题(理))设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b7.(2016·北京高考真题(理))袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多8.(2017·浙江高考真题)若x,y 满足约束条件x 0{x+y-30 z 2x-2y 0x y ≥≥=+≤,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)9.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .()21log 2a b a a b b +<<+ B . ()21log 2a b a b a b <+<+ C . ()21log 2a b a a b b +<+< D . ()21log 2a ba b a b +<+<10.(2017·山东高考真题(文))已知x ,y 满足约束条件250{302x y x y -+≤+≥≤,则z =x +2y 的最大值是A .-3B .-1C .1D .311.(2017·天津高考真题(理))已知函数()23,1,{ 2, 1.x x x f x x x x-+≤=+>设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47,216⎡⎤-⎢⎥⎣⎦ B .4739,1616⎡⎤-⎢⎥⎣⎦ C.2⎡⎤-⎣⎦ D.3916⎡⎤-⎢⎥⎣⎦12.(2017·全国高考真题(文))设x ,y 满足约束条件{x +3y ≤3,x −y ≥1,y ≥0, 则z =x +y 的最大值为( )A .0B .1C .2D .313.(2015·上海高考真题(文))下列不等式中,与不等式解集相同的是( ). A .B .C .D .14.(2015·广东高考真题(文))若变量x ,y 满足约束条件22{04x y x y x +≤+≥≤,则23z x y=+的最大值为( ) A .10B .8C .5D .215.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++16.(2015·湖南高考真题(文))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A .8π9B .827πC .24(√2−1)2πD .8(√2−1)2π17.(2015·安徽高考真题(文))已知x ,y 满足约束条件0{401x y x y y -≥+-≤≥,则的最大值是( ) A .-1B .-2C .-5D .118.(2015·湖南高考真题(文))若变量x ,y 满足约束条件{x +y ≥1y −x ≤1x ≤1 ,则z =2x −y 的最小值为( )A .−1B .0C .1D .219.(2015·湖南高考真题(理))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC .31)πD .31)π20.(2015·四川高考真题(文)) 设实数x ,y 满足{2x +y ≤10x +2y ≤14x +y ≥6 ,则xy 的最大值为( ) A .252 B .492 C .12D .1421.(2015·重庆高考真题(文))若不等式组{x +y −2≤0x +2y −2≥0x −y +2m ≥0 ,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43 D .322.(2015·天津高考真题(文))设变量x,y 满足约束条件,则目标函数的最大值为( )A .7B .8C .9D .1423.(2015·天津高考真题(理))(2015天津,文2)设变量x,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0 ,则目标函数z =x +6y 的最大值为( ) A .3B .4C .18D .4024.(2015·山东高考真题(理))已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( ) A .3 B .2 C .-2D .-325.(2015·福建高考真题(理))若变量x,y 满足约束条件{x +2y ≥0,x −y ≤0,x −2y +2≥0, 则z =2x −y的最小值等于 ( ) A .−52B .−2C .−32D .226.(2014·四川高考真题(理))已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则ΔABO 与ΔAFO 面积之和的最小值是( )A .2B .3C .17√28D .√1027.(2014·全国高考真题(文))设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5-B .3C .5-或3D .5或3-28.(2014·山东高考真题(理))已知 x y ,满足约束条件10{230x y x y --≤--≥,当目标函数()0? 0z ax by a b =+>>,在约束条件下取到最小值22a b +的最小值为( )A .5B .4 CD .229.(2014·北京高考真题(理))若x ,y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( ) A .2B .2-C .12D .12-30.(2014·重庆高考真题(文))若的最小值是A.B.C.D.31.(2011·广东高考真题(文))已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4 32.(2011·湖北高考真题(文))(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个33.(2011·重庆高考真题(理))已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5 34.(2011·重庆高考真题(文))(5分)(2011•重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+B.1+C.3 D.4 35.(2013·重庆高考真题(文))关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.36.(2011·湖北高考真题(理))已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3] 37.(2011·浙江高考真题(理))设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14 B.16 C.17 D.1938.(2011·山东高考真题(文))设变量x ,y 满足约束条件,则目标函数z=2x+3y+1的最大值为( ) A .11B .10C .9D .8.539.(2012·广东高考真题(理))已知变量满足约束条件,则的最大值为( ) A .12B .11C .3D .-140.(2013·浙江高考真题(文))(2013•浙江)设a ,b ∈R ,定义运算“∧”和“∨”如下: a ∧b=a ∨b=若正数a 、b 、c 、d 满足ab≥4,c+d≤4,则( )A .a ∧b≥2,c ∧d≤2B .a ∧b≥2,c ∨d≥2C .a ∨b≥2,c ∧d≤2D .a ∨b≥2,c ∨d≥2 41.(2013·湖北高考真题(文))(2013•湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元42.(2010·安徽高考真题(文))设x,y 满足约束条件{2x +y −6≥0,x +2y −6≤0,y ≥0, 则目标函数z=x+y的最大值是A .3B .4C .6D .8 43.(2013·山东高考真题(文))设正实数满足,则当zxy取得最大值时,x +2y −z 的最大值为( ) A .0B .98C .2D .9444.(2013·山东高考真题(理))设正实数x,y,z 满足x 2−3xy +4y 2−z =0,则当取得最大值时,的最大值为( )A .0B .1C .D .345.(2013·全国高考真题(理))已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y的最小值为1,则a= A .B .C .1D .246.(2013·安徽高考真题(理))已知一元二次不等式的解集为,则的解集为( )A .B .C .{x|lg 2x >-}D .{x|lg 2x <-}47.(2010·陕西高考真题(理))“a =18”是“对任意的正数x ,2x +ax ≥1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件48.(2010·天津高考真题(文))设变量x ,y 满足约束条件{x +y ≤3,x −y ≥−1,y ≥1, 则目标函数z=4x+2y 的最大值为A .12B .10C .8D .249.(2012·江西高考真题(理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A .50,0B .30.0C .20,30D .0,5050.(2011·浙江高考真题(文))若实数x y 、满足不等式组250{2700,0x y x y x y +-≥+-≥≥≥,则34x y +的最小值是 A .13B .15C .20D .2851.(2010·重庆高考真题(理))已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3B .4C .92D .11252.(2010·重庆高考真题(文))设变量满足约束条件则的最大值为A .0B .2C .4D .653.(2010·全国高考真题(文))已知Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在Y ABCD 的内部,则z=2x-5y 的取值范围是 A .(-14,16) B .(-14,20) C .(-12,18) D .(-12,20)54.(2010·浙江高考真题(理))若实数,x y 满足不等式330{23010x y x y x my +-≥--≥-+≥,且x y +的最大值为9,则实数m =( ) A .2-B .1-C .1D .255.(2010·福建高考真题(文))若1,,{230 x x y R x y y x≥∈-+≥≥,则2z x y =+的最小值等于( )A .2B .3C .5D .956.(2008·江西高考真题(文))若01x y <<<,则 A .33y x < B .log 3log 3x y <C .44log log x y <D .1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭57.(2008·福建高考真题(理))若实数x 、y 满足10,{0,x y x -+≤>则yx的取值范围是( ) A .(0,1)B .(]0,1C .(1,+∞)D .[)1,+∞58.(2008·湖北高考真题(理))函数f (x )=的定义域为A .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)59.(2008·广东高考真题(理))若变量,x y 满足则32z x y =+的最大值是 A .90B .80C .70D .4060.(2015·四川高考真题(理))如果函数f(x)=12(m −2)x 2+(n −8)x +1(m ≥0 ,n ≥0)在区间[12,2]上单调递减,则mn 的最大值为( ) A .16B .18C .25D .81261.(2014·湖北高考真题(理))由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为( ) A .B .C .D .62.(2011·重庆高考真题(理))设m ,k 为整数,方程mx 2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( )A .﹣8B .8C .12D .1363.(2010·北京高考真题(理))设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0 表示的平面区域为D ,若指数函数y=a x 的图像上存在区域D 上的点,则a 的取值范围是 A .(1,3] B .[2,3] C .(1,2] D .[ 3,+∞]64.(2011·全国高考真题(理))下面四个条件中,使a >b 成立的充分而不必要的条件是A .a >b +1B .a >b −1C .a 2>b 2D .a 3>b 365.(2007·辽宁高考真题(理))已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,,C .(][)36-∞+∞U ,,D .[36],66.(2009·天津高考真题(理))已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a<0 B .0<a<1 C .1<a<3 D .3<a<6二、填空题67.(2019·天津高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.68.(2019·天津高考真题(理))设0,0,25x y x y >>+=最小值为______.69.(2018·浙江高考真题)若x,y 满足约束条件{x −y ≥0,2x +y ≤6,x +y ≥2, 则z =x +3y 的最小值是___________,最大值是___________.70.(2018·天津高考真题(文))已知,R a b ∈,且360a b -+=,则128ab +的最小值为_____________.71.(2018·全国高考真题(理))若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0 ,则z =3x +2y 的最大值为_____________.72.(2017·全国高考真题(理))已知实数,x y 满足0{20 0x y x y y -≥+-≤≥,则34z x y =-最小值为________.73.(2017·山东高考真题(理))已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________.74.(2017·全国高考真题(文))设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.75.(2017·天津高考真题(理))若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.76.(2017·江苏高考真题)76.(2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.77.(2017·山东高考真题(文))若直线xa +yb =1(a >0,b >0)过点(1,2),则2a+b 的最小值为______.78.(2016·全国高考真题(文))若x,y 满足约束条件{2x −y +1≥0,x −2y −1≤0,x ≤1, 则z =2x +3y −5的最小值为_________.79.(2016·全国高考真题(文))若x ,y 满足约束条件{x −y +1≥0,x +y −3≥0,x −3≤0, 则z=x−2y 的最小值为__________.80.(2016·上海高考真题(文))设a >0,b >0. 若关于x,y 的方程组{ax +y =1,x +by =1无解,则a +b 的取值范围是 .81.(2016·江苏高考真题)已知实数x,y 满足{x −2y +4≥0,2x +y −2≥0,3x −y −3≤0,则x 2+y 2的取值范围是 .82.(2016·上海高考真题(理))设若关于x,y 的方程组{ax +y =1,x +by =1无解,则的取值范围是____________.83.(2015·浙江高考真题(文))已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .84.(2015·山东高考真题(文))定义运算“⊗”:x ⊗y =x 2−y 2xy(x ,y ∈R,xy ≠0).当x >0,y >0时,x ⊗y +(2y)⊗x 的最小值是 .85.(2015·湖北高考真题(文))若变量x, y 满足约束条件{x +y ≤4,x −y ≤2,3x −y ≥0, 则3x +y 的最大值是_________.86.(2015·山东高考真题(文))若x,y 满足约束条件{y −x ≤1x +y ≤3y ≥1 ,则z =x +3y 的最大值为 .87.(2015·上海高考真题(文))若满足,则目标函数的最大值为 .88.(2015·全国高考真题(理))若x ,y 满足约束条件{x −1≥0,x −y ≤0,x +y −4≤0, 则yx 的最大值 .89.(2015·天津高考真题(文))已知a >0,b >0,ab =8,则当a 的值为 时log 2a ⋅log 2(2b)取得最大值.90.(2015·浙江高考真题(理))已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .91.(2014·四川高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 .92.(2014·陕西高考真题(文))设,且,则的最小值为______.93.(2014·全国高考真题(文))设函数113,1(){,1x e x f x x x -<=≥,则使得()2f x ≤成立的x的取值范围是_______________.94.(2014·湖北高考真题(文))某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为(1)如果不限定车型,,则最大车流量为_______辆/小时;(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加 辆/小时.95.(2014·全国高考真题(理))设x,y 满足约束条件{x −y ≥0x +2y ≤3x −2y ≤1 ,则z =x +4y 的最大值为 .96.(2014·浙江高考真题(理))当实数,x y 满足240{101x y x y x +-≤--≤≥时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .97.(2014·浙江高考真题(文))若、满足和240{101x y x y x +-≤--≤≥,则的取值范围是________.98.(2014·辽宁高考真题(文))对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使2a b +最大时,124a b c++的最小值为________. 99.(2014·湖南高考真题(理))若变量满足约束条件,且的最小值为,则100.(2011·重庆高考真题(文))(5分)(2011•重庆)若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是 .101.(2013·全国高考真题(文))若x y 、满足约束条件0,{34,34,x x y x y ≥+≥+≤则z x y =-+的最小值为 .102.(2013·广东高考真题(文))已知变量,x y 满足约束条件30{111x y x y -+≥-≤≤≥,则z x y=+的最大值是 .103.(2008·山东高考真题(理))若不等式的解集中的整数有且仅有1,2,3,则的取值范围是104.(2008·广东高考真题(理))(不等式选讲选做题)已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 。
专题04 不等式与不等关系-2023年高考数学真题题源解密(全国卷)(解析版)
2023年高考数学真题题源解密(全国卷)专题04 不等式与不等关系目录一览①2023真题展现考向一 线性规划考向二 由函数的单调性解不等式②真题考查解读③近年真题对比考向一 线性规划考向二 基本不等式及其应用考向三 比较大小④命题规律解密⑤名校模拟探源⑥易错易混速记考向一 线性规划1.(2023·全国乙卷文数第15题)若x ,y 满足约束条件312937xy x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,2.(2023·全国乙卷理数第14题)若x,y满足约束条件【答案】15【详解】作出可行域,如图,由图可知,当目标函数32 y x =-由233323x yx y-+=⎧⎨-=⎩可得33xy=⎧⎨=⎩,即所以max332315z=⨯+⨯=.故答案为:考向二由函数的单调性解不等式【命题意图】1.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2.基本不等式:0,0)2a ba b +≥≥≥(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.【考查要点】线性规划这部分内容主要是以课程学习情境为主,备考以常见的简单题型为主;基本不等式这部分内容在全国卷主要以选做题的形式出现,在2020年的新高考中为多选题,题目难度为中等难度,在备考中以中等难度题型为主训练思维的灵活性,同时注意三个正数的算数—几何平均不等式这一题型;绝对值不等式这部分内容在全国卷中通常为选做题,考查的频率较高,题目的难度为中等难度,在备考中要注意与函数知识相结合【得分要点】高频考点:线性规划中频考点:基本不等式、比较大小低频考点:利用函数单调性解不等式考向一 线性规划一、单选题1.(2022·全国乙卷理数第5题)若x ,y 满足约束条件2,24,0,x yx y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A .2-B .4C .8D .12【答案】C【详解】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.2.(2021·全国乙卷文数第5题)若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为( )A .18B .10C .6D .4【答案】C【详解】由题意,作出可行域,如图阴影部分所示,由43x y y +=⎧⎨=⎩可得点()1,3A ,转换目标函数3z x y =+为3y x z =-+,上下平移直线3y x z =-+,数形结合可得当直线过点A 时,z 取最小值,此时min 3136z =⨯+=.故选:C.考向二基本不等式及其应用[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系则C (2t,0),A (1,3),B (-t,0)()()(2222222134444241313,31t AC t t AB t t t t BD -+-+∴===-+++++==-当且仅当即考向三比较大小线性规划内容在近年的全国卷中考查的频率很高,属于基础性内容。
高考数学不等式练习题及答案解析
高考数学不等式练习题及答案解析:一、选择题1.已知定义域为 R 的函数 f (x) 满足 f (x) f (x 4) ,且当 x 2 时, f (x) 单调递增,如果 x1 x2 4 且 (x1 2)(x2 2) 0 ,则 f (x1) f (x2 ) 的值 ()A、恒大于 0 B、恒小于 0 C、可能为 0 D、可正可负2.已知函数 f (x) x x3 , x1 、 x2 、 x3 R ,且 x1 x2 0 , x2 x3 0 , x3 x1 0 ,则 f (x1 ) f (x2 ) f (x3 ) 的值()A、一定大于零B、一定小于零C、等于零D、正负都有 3.设 M x, y y x2 2bx 1 , P x, y y 2ax b, S a,bM P ,则 S 的面积是 ( )A. 1B. C. 4D. 44.设f (x) 是 (x2 1 )6 2x 展开式的中间项,若 f (x) mx 在区间 2, 2数 m 的取值范围是() 2 上恒成立,则实A. 0, B. 5 4, C. 5 4,5D. 5, 5.若不等式x2logmx0在 0,1 2 内恒成立,则实数m的取值范围是1 m1 A. 160m 1B.160m 1C.4m 1 D. 16()6.已知实数 x,y 满足 3x2+2y2=6x,则 x2+y2 的最大值是( )9 A、 2B、4C、5D、27.若 0 < a,b,c < 1,并且 a + b + c = 2,则 a 2 + b 2 + c 2 的取值范围是( )4 (A)[ 3 ,+ ∞ )4 (B)[ 3 ,2 ]4 (C)[ 3 ,2 )4 (D)( 3 ,2 )8.不等式 1 log2 x > 1 – log 2 x 的解是((A)x ≥ 2(B)x > 1) (C)1 < x < 8(D)x > 2sin cossin 29.设 a = f (2),b = f ( sin cos ),c = f ( sin cos ),其中 f ( x ) = log sin θ x, θ∈( 0, 2 ),那么( (A)a ≤ c ≤ b) (B)b ≤ c ≤ a(C)c ≤ b ≤ a(D)a ≤ b ≤ c11110.S = 1 + 2 + 3 + … + 1000000 ,则 S 的整数部分是( )(A)1997(B)1998(C)1999(D)200011n 11.设 a > b > c,n∈N,且 a b + b c ≥ a c 恒成立,则 n 的最大值为( )(A)2(B)3(C)4(D)51 12.使不等式 2 x – a > arccos x 的解是– 2 < x ≤ 1 的实数 a 的值是( ) (A)1 – 22 2 (B) 2 – 32 5 (C) 2 – 61 (D) 2 – π13.若不等式 a b m4 a2 b2 对所有正实数 a,b 都成立,则 m 的最小值是( )33A. 2 B. 2 2 C. 2 4 D. 45 xi R, xi 0(i 1,2,3,4,5)14.设 xii 11 ,则 ma xx1 x2 , x2 x3 , x3 x4, x4 x5的最小值等于()1 A. 41 B. 31 C. 61 D. 415.已知 x, y, z 满足方程 x2 ( y 2)2 (z 2)2 2 ,则 x2 y2 z2 的最大值是A.4 2B.2 3C. 3 2D. 216. 若 直 线 y kx 1 与 圆 x2 y 2 kx my 4 0 交 于 M , N 两 点 , 且 M , N 关 于 直 线kkxx y2 my 00x y 0 对称,动点 P a,b 在不等式组 y 0表示的平面区域内部及边界上运动,则w b2 a 1 的取值范围是()A.[2,) B. (,2] C.[2,2] D. (,2] [2,)17.已知x0,y0,且2 x1 y1,若x2ym22m 恒成立,则实数 m的取值范围是( )A. m 4或 m 2 B. m 2或 m 4 C. 2 m 4 D. 4 m 218.关于 x 的不等式 cos x lg(9 x2) cos x lg(9 x2) 的解集为()A. (3, 2 2) (2 2,3)(2 2, ) ( , 2 2)B.22C. (2 2, 2 2)D. (3,3)19. 已 知 满 足 条 件的点构成的平面区域的面积为 ,满足条件的点构成的平面区域的面积为 ,其中 、 分别表示不大于 、的最大整数,例如 (),, 则 与 的关系A.B.C.D.20. 已 知 满 足 条 件的点构成的平面区域的面积为 ,满足条件的点构成的平面区域的面积为 ,(其中 、 分别表示不大于 、的最大整数),则点一定在()A.直线左上方的区域内B.直线上C.直线右下方的区域内D.直线左下方的区域内0 21.根据程序设定,机器人在平面上能完成下列动作:先从原点 O 沿正东偏北(2)方向行走一段时间后,再向正北方向行走一段时间,但 的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为 10 米/分钟,设机器人行走 2 分钟时的可能落点区域为 S,则北S 可以用不等式组表示为(0 x 20 A. 0 y 20x2 y2 400 x0 y0C.)x2 y2 400 B. x y 20x y 20 x 20 y 20D.yP. (x, y)东Ox(m)0 22.根据程序设定,机器人在平面上能完成下列动作:先从原点 O 沿正东偏北(2)方向行走一段时间后,再向正北方向行走一段时间,但 的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为 10 米/分钟,设机器人行走 2 分钟时的可能落点区域为 S,则 S 的面积(单位:平方米)等于( )A. 100B. 100 200C. 400 100D. 200北yP. (x, y)东Ox(m)23.定义:若存在常数 ,使得对定义域 D 内的任意两个不同的实数 , 均有成立,则称函数在定义域 D 上满足利普希茨条件.对于函数满足利普希茨条件、则常数 k 的最小值应是A.2 B.1 C. D.24.如果直线 y=kx+1 与圆交于 M、N 两点,且 M、N 关于直线x+y=0 对称,则不等式组:表示的平面区域的面积是( )A.B.25. 给出下列四个命题:①若C.1 ;D.2②“a<2”是函数“无零点”的充分不必要条件;③若向量 p=e1+e2,其中 e1,e2 是两个单位向量,则|p|的取值范围是[0,2];④命题“若 lgx>lgy,则 x>y”的逆命题.其中正确的命题是()A.①②B.①③C.③④D.①②③26.已知点(x, y)构成的平面区域如图(阴影部分)所示, 区域内取得最大值优解有无数多个,则 m 的值为A.B.C.D.(m 为常数),在平面27. 若 A.228.2C.4B.3 D.229. 如果正数满足A、,且等号成立时B、,且等号成立时C、,且等号成立时的最大值为C.4D.5,那么 的取值唯一 的取值唯一 的取值不唯一()D、,且等号成立时的取值不唯一30. 设 变 量 ()最小值为A.9B.431.设两个向量C.3 和D.2其中为实数.若则的取值范围是()A.B.C.D.32.某厂生产甲产品每千克需用原料 和原料 分别为 ,生产乙产品每千克需用原料和原料 分别为千克,甲、乙产品每千克可获利润分别为元,月初一次性够进本月用原料 各 千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总 额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为 千克, 千克,月利润总额为 元,那么,用于求使总利润最大的数学模型中,约束条件为(A) 33.若(B) 且(C) ,则(D) 的最小值是(A)(B)3 (C)2 (D)34.若且则的最小值为( )(A)(B)35. 对任意实数 x,不等式(C)(D)恒成立,则 的取值范围是( )A.B.C.D.二、填空题36.已知函数 y f x是定义在 R 上的偶函数,当 x <0 时, f x 是单调递增的,则不等式 f x 1 > f 1 2x 的解集是_________________________. 37.已知集合 A x x2 ax x a ,集合 B x1 log2 x 1 2 ,若 A B ,则实数a 的取值范围是________________________.38.设 A {x 1 x 2}, B {x f (x) m 3},若 f (x) x2 1, A B ,则 m 的取值范围是_____39.已知 x 0, y 0 ,且 x y xy ,则 u x 4 y 的取值范围是_____________. xy02x y 2 y040.若不等式组 x y a 表示的平面区域是一个三角形及其内部,则 a 的取值范围是. 41.不等式 loga x2 2x 3 1 在 R 上恒成立,则 a 的取值范围是_________________.42. 下 列 四 个 命 题 中 : ① a b 2ab②sin2x4 sin2x4③设x, y都是正整数,若1 x9 y1 ,则 x y的最小值为12④若x2,y2,则xy 2其中所有真命题的序号是___________________.a b 1 43.已知 x, y 是正数, a, b 是正常数,且 x y , x y 的最小值为______________.44.已知 a,b, a b 成等差数列, a,b, ab 成等比数列,且 0 logm ab 1,则 m 的取值范围是______.45.已知 a2+b2+c2=1, x2+y2+z2=9, 则 ax+by+cz 的最大值为 三、解答题 46.(本小题满分 12 分)已知数列{an }和{bn }中, a1 t(t 0), a2 t 2 .当x t时, 函数 f (x) 1 3(an1an )x3(anan1 )x(n2)取得极值。
数学不等式高考真题(最新整理)
(a+b)3≤2,
∴a+b≤2,当且仅当 a=b=1 时等号成立.
【解析】【分析】(Ⅰ)由柯西不等式即可证明,
(Ⅱ)由 a3+b3=2 转化为
(a + 3(a
b)3−2 + b)
=ab,再由均值不等式可得:
(a + 3(a
b)3−2 + b)
=ab≤(
a
+ 2#43;b)3≤2,问题得以证明.
2
上单调递减,∴此时 f(x)≥g(x)的解集为(1, 17−1 ];
2
当 x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.
当 x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且 g(﹣1)=f(﹣1)=2.
综上所述,f(x)≥g(x)的解集为[﹣1,
17−1 2
];
(2)(2)依题意得:﹣x2+ax+4≥2 在[﹣1,1]恒成立,即 x2﹣ax﹣2≤0 在[﹣1,1]恒成立,则只需 {(−112)−2a−a⋅(−11−)2−2≤≤0 0
2.【答案】(1)解:当 a=2 时,f(x)≥4﹣|x﹣4|可化为|x﹣2|+|x﹣4|≥4,
当 x≤2 时,得﹣2x+6≥4,解得 x≤1; 当 2<x<4 时,得 2≥4,无解;
当 x≥4 时,得 2x﹣6≥4,解得 x≥5; 故不等式的解集为{x|x≥5 或 x≤1}
(2)解:设 h(x)=f(2x+a)﹣2f(x),则 h(x)=
,解得﹣1≤a≤1,
故 a 的取值范围是[﹣1,1].
6 / 16
2x,x > 1 【解析】【分析】(1.)当 a=1 时,f(x)=﹣x2+x+4,g(x)=|x+1|+|x﹣1|= {2,−1 ≤ x ≤ 1 ,分 x>1、x∈[﹣1,1]、x∈(﹣∞,﹣1)三
高三数学不等式试题答案及解析
高三数学不等式试题答案及解析1.已知实数满足,则的取值范围是( )A.B.C.D.【答案】C【解析】即,由,,,所以,即,当且仅当时取等号,综上所述,的取值范围是.故答案选【考点】基本不等式.2.(本小题满分10分)(选修4—5,:不等式选讲)(Ⅰ)证明柯西不等式:;(Ⅱ)若且,用柯西不等式求+的最大值.【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)利用做差法,即可证明结果;(Ⅱ)由柯西不等式可得,又即可求出结果.试题解析:解:(Ⅰ)证明:∴(Ⅱ)由柯西不等式可得∵∴∴【考点】1.不等式的性质;2.柯西不等式.3.(本小题满分10分)选修4-5:不等式选讲设实数,满足.(1)若,求的取值范围;(2)求最小值.【答案】(1);(2)【解析】第一问根据题中的等量关系式,不等式可以化为,从而求得的取值范围是,第二问将代入上式,得到利用三角不等式求得其最小值为.试题解析:(1)由得,即,所以可化为,即,解得,所以的取值范围是(2)代入,当且仅当,时,等号成立(或)的最小值为【考点】解绝对值不等式,三角不等式求最值.4.设实数满足则的最大值为.【答案】4【解析】不等式组表示的平面区域如图三角形及其内部,且A(4,0).目标函数可看作直线在y轴上的截距的-2倍,显然当截距越小时,z越大.易知,当直线过点A时,z最大,且最大值为4-2×0=4.【考点】线性规划求最值.5.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.6.下列结论:①函数有最大值;②函数有最大值10;③若,则.正确的序号是A.①B.①③C.②③D.①②③【答案】B【解析】对于①;对于②因为,所以;对于③因为,所以.故应选.【考点】1、基本不等式的应用.【方法点睛】本题主要考查了运用基本不等式求其最值,属中档题.其解题的一般方法有两大类:其一是针对和为定值,求其积的最大值问题,如选项①;其二是针对积为定值,和有最小值问题,如选项②、③.在运用基本不等式求最值的过程中,应注意其适用的条件:一正二定三相等,特别应注意等号成立的条件,并检验其是否能够取得到,尤其针对多次运算基本不等式时应验证等号是否能够同时取得.7.选修4-5:不等式选讲.设函数;(Ⅰ)当a=1时,解不等式.(Ⅱ)证明:.【答案】(Ⅰ)当a=1时,不等式的解集为;(Ⅱ)证明过程详见解析.【解析】(Ⅰ)解绝对值不等式的思路是运用零点分段法去绝对值,然后求解每一种情况的解集,最后对几种情况的解集求并集即可;(Ⅱ)求得,,然后利用绝对值不等式缩小为,最后运用均值不等式即可证明.试题解析:(Ⅰ)解:当a=1时,由,得,当时,得,解得,∴;当时,得2≥4不成立,∴不等式无解;当时,由,解得,∴.综上所述,当a=1时,不等式的解集为.(Ⅱ)证明:∵∴.【考点】①解绝对值不等式;②证明不等式.8.选修4-5:不等式选讲已知函数(1)解不等式;(2)若函数的图象恒在函数的图象的上方,求实数的取值范围.【答案】(1);(2)【解析】(1)运用分类讨论的思想方法,去绝对值,即可得到不等式组,即可得到所求解集;(2)由题意可得不等式恒成立,由绝对值不等式的性质,可得右边函数的最大值,进而得到的范围.试题解析:(1)不等式化为,所以不等式的解集为(2)由于函数的图象恒在函数的图象的上方即不等式恒成立令由,得所以实数的取值范围【考点】1.函数的性质及应用;2.绝对值不等式的解法及应用.9.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B.C.D.【答案】C【解析】由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.【考点】简单线性规划.10.已知函数,不等式的解集为.(Ⅰ)求实数的值;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)或【解析】(Ⅰ)问题转化为,从而得到且,基础即可;(Ⅱ)问题转化为恒成立,根据绝对值的意义解出的范围即可.试题解析:解:(1)∵,∴不等式,即,∴,而不等式的解集为,∴且,解得:;(2)关于的不等式恒成立关于的不等式恒成立恒成立恒成立,由或,解得:或.【考点】1.绝对值不等式的解法;2.分段函数的应用.11.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【答案】B【解析】在平面直角坐标系中作出不等式组所表示的平面区域,利用线性规划知识可得,在处,无最大值.【考点】线性规划.12.设变量满足约束条件,则目标函数的最小值为______.【答案】【解析】画出变量满足的约束条件所表示的可行域,如图所示,可求得可行域内点,则目标函数经过点是取得最小值,此时最小值为.【考点】线性规划求最值.13.已知函数.(1)求不等式的解集;(2)若关于x的不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】(1)通过讨论的取值范围,即可求出每个不等式的解集,取并集即可;(2)不等式等价于,转化为绝对值三角不等式求解出函数的最小值,列出关于的不等式组,即可求解的取值范围.试题解析:(1)原不等式等价于:解得,不等式的解集为.(2)不等式因为,所以的最小值为4.于是,所以【考点】绝对值不等式的求解;函数的恒成立问题.14.设对任意恒成立,其中是整数,则的取值的集合为________.【答案】【解析】当时,直线单调递增且过定点,而抛物线的开口向上,不等式在不恒成立,故,此时,否则不合题设,所以欲使不等式在恒成立(当且仅当,即时才能满足),注意到是整数,所以当或时,成立,故或,答案应填:.【考点】1、一次函数、二次函数的图象和性质;2、不等式恒成立的转化与化归;3、分类整合的思想、推理证明的思想和意识.【易错点晴】本题借助不等式恒成立考查的是分类整合的数学思想和函数的图象与性质,属于较难的问题.解题时一定要充分借助一次函数、二次函数的图象,并对参数进行合理的分类,从而将问题进行分析和转化.解题过程中还运用了题设中为整数这一条件,并以此为基点建立关于的等式求出了参数的值.解本题的关键是如何理解题设中“对任意不等式恒成立”,并能建立与此等价的关于的等式.15.若变量满足约束条件,则的最小值是()A.3B.1C.-3D.不存在【答案】B【解析】作出不等式组对应的平面区域如图(阴影部分),由得,平移直线,由图象可知当直线,过点时,直线的截距最大,此时最小,由,解得,即,代入目标函数,得,即目标函数的最小值为,故选B.【考点】简单的线性规划.16.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.17.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.18.设均为正数,且,则的最小值为()A.16B.15C.10D.9【答案】D【解析】因为均为正数,且,所以,整理可得:,由基本不等式可得,整理可得,解得或(舍去),所以,当且仅当时取等号,故的最小值为,故选D.【考点】基本不等式.【方法点睛】本题主要考查了利用基本不等式求最值,属于中档题.本题解答的关键是根据条件中整理得到,根据基本不等式,把上述关系转化为关于的一元二次不等式,通过解不等式得到的范围,再利用不等式的性质变形得到的范围,得其最小值.19.选修4-5:不等式选讲已知为非零实数,且,.(1)求证:;(2)求实数的取值范围.【答案】(1)证明见解析;(2).【解析】(1)根据柯西不等式可证得,整理即得所证的不等式;(2)根据(1)的结论可得,解不等式求得或,再根据已知条件和不等式的性质可得,取交集即得实数的取值范围.试题解析:(1)证明:由柯西不等式得,即,所以.(2)解:由已知得:,.所以,即,解得或.又,,所以,即实数的取值范围是.【考点】不等式的证明与解法.20.设函数.(1)当时,求函数的定义域;(2)当时,证明:.【答案】(1);(2)【解析】(1)当时,,由;原不等式等价于或或,即可解除不等式的解;(2)当时,即,所以,所以,即可证明结果.试题解析:解:(1)当时,,由原不等式等价于或或则不等式的解集为(2)当时,即,所以,所以,即.【考点】1.绝对值不等式;2.不等式证明.21.已知满足约束条件,若目标函数的最大值为1,则m的值是()A.B.1C.2D. 5【答案】B.【解析】如下图所示,画出不等式组所表示的区域,作直线:,,则可知当,时,,故选B.【考点】本题主要考查线性规划.22.已知函数.(I)解关于的不等式;(II)若关于的不等式恒成立,求实数的取值范围.【答案】(I)或;(II)或.【解析】(I)化简可得,根据绝对值不等式解的基本模型可得或,由不等式的性质即可求得的范围;(II)要使不等式恒成立,则,按照,分别讨论得到,构造关于的不等式,即可求得实数的取值范围.试题解析:(I),或(II)当时,作出图象可知的最小值为,则此时;当时,,作出图象可知的最小值为,则此时综上:或【考点】绝对值不等式的解法与分段和函数的最值和恒成立问题.23.选修4-5: 不等式选讲设函数.(1)求不等式的解集;(2)求函数的最小值.【答案】(1);(2).【解析】(1)根据绝对值的代数意义,去掉函数中的绝对值符号,求解不等式;(2)画出函数函数的图象,根据图象求得函数的最小值.试题解析:(1)①由解得;②解得;③解得;综上可知不等式的解集为(2)可知则【考点】绝对值的代数意义;分类讨论思想.24.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.25.已知实数满足,且最大值是最小值的倍,则.【答案】【解析】由数形结合得,直线经过点时,有最小值,经过点时,有最大值,所以.【考点】线性规划.26.在直角坐标系中,曲线的参数方程为为参数.以点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)将曲线和直线化为直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的最大值.【答案】(Ⅰ) ,;(Ⅱ) .【解析】(Ⅰ)利用同角三角基本关系关系消参可得的直角坐标方程;利用两角和的正弦公式和极坐标与直角坐标的转化公式可得的直角坐标方程;(Ⅱ)用参数法设出点的坐标,代入点到直线的距离公式,可得距离的最大值.试题解析:(Ⅰ)解:由得,∴曲线的直角坐标方程为.由,得化简得,,∴∴直线的直角坐标方程为.(Ⅱ)解:由于点是曲线上的点,则可设点的坐标为,点到直线的距离为当时,.∴点到直线的距离的最大值为.【考点】极坐标与普通方程的转化;参数方程与普通方程的转化;点到直线的距离.27.若变量满足约束条件,则的最大值是()A.B.0C.D.【答案】C【解析】作出不等式组满足的平面区域,如图所示,由图知,当目标函数经过点时取得最大值,即,故选C.【考点】简单的线性规划问题.28.选修4-5:不等式选讲已知,不等式的解集为。
高考数学全国卷选做题之不等式
选做题专题-不等式10文/理设函数f(x)=241x -+(Ⅰ)画出函数y=f(x)的图像;(Ⅱ)若不等式f(x)≤ax 的解集非空,求a 的取值范围.11文/理设函数()||3f x x a x =-+,其中0a >.(I )当a=1时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.11理Ⅱ从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10p e<<12文/理已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。
13文/理Ⅰ已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.13文/理Ⅱ设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13; (2)2221a b c b c a++≥.14文/理Ⅰ若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.14文/理Ⅱ设函数()f x =1(0)x x a a a++-> (Ⅰ)证明:()f x ≥2; (Ⅱ)若()35f <,求a 的取值范围.(24)(本小题满分10分)选修4—5:不等式选讲 调研考已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立.(Ⅰ)求实数m 的值;(Ⅱ)若,1αβ≥,()()4f f αβ+=,求证:413αβ+≥.(24)(本小题满分10分)选修4-5:不等式选讲 一模设函数()f x x x =+--.(Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.24.(本小题满分10分)选修4-5:不等式选讲 省考 设函数()5f x x a x =-+.(1)当1a =-时,求不等式()53f x x ≤+的解集;(2)若1x ≥-时有()0f x ≥,求a 的取值范围.10文/理(Ⅰ)由于()x f ={25,23, 2.x x x x -+<2.-≥则函数()x y f =的图像如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
(Ⅱ)(ⅰ)若 a b c d ,则 (a b)2 (c d )2 .即 (a b)2 4ab (c d )2 4cd .因 为 a b c d ,所以 ab cd ,由(Ⅰ)得 a b c d . ( ⅱ ) 若 a b c d , 则 ( a b)2 ( c d )2 , 即 a b 2 ab c d 2 cd .因为 a b c d ,所以 ab cd ,于是 (a b)2 (a b)2 4ab (c d )2 4cd (c d )2 .因此 a b c d ,综上, a b c d 是 a b c d 的充要条件. 2016 全国卷Ⅰ ⑴ 如图所示:
当 a>3 时,f(3)=a+1/a,由 f(3)<5 得 3<a<
当 0<a≤3 时,f(3)=6-a+ ,f(3)<5 得 <a≤3 综上所诉,a 的取值范围为
(
)
2015 全国卷Ⅰ
( 1 ) 解 析 : ( I ) 当 a 1时 , 不 等 式 f (x) 1可 化 为 x 1 2 x 1 1, 等 价 于
2 x a 2 x 在[1, 2] 上恒成立 3 a 0
7
2013 全国卷Ⅰ
(1)当 a=-2 时,不等式 f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.
设函数 y=|2x-1|+|2x-2|-x-3,
5x,
x
1 2
,
则 y= x 2, 1 x 1, 其图像如图所示.从图像可知,当且仅当 x∈(0,2)时,y<
x |x a
2
由题设可得 a = 1,故 a 2
2
2012 全国卷
(1)当 a 3 时, f (x) 3 x 3 x 2 3
3
x
x
2
2
x
3
或
3
2 x
x x
3 2
3
或
x
3
x
3 x2
3
x 1或 x 4
(2)原命题 f (x) x 4 在[1, 2] 上恒成立 x a 2 x 4 x 在[1, 2] 上恒成立
x
x 1 1 2x
2
1
或
x
1 x 1 2x
1 2
1
或
x
1
x 1 2x
2
1
,解得
2 3
x
2
.
x 1 2a, x 1
(2)由题设可得, f (x) 3x 1 2a, 1 x a , 所以函数 f (x) 的图像与 x 轴围成
x 1 2a, x a
的三角形的三个顶点分别为 A(2a 1, 0) , B(2a 1, 0) , C(a, a+1) ,所以△ABC 的面
5
2016 全国卷Ⅱ 已知函数 f(x)= ∣x- 1 ∣+∣x+ 1 ∣,M 为不等式 f(x) <2 的解
2
2
集.
(I)求 M;
(II)证明:当 a,b∈M 时,∣a+b∣<∣1+ab∣。
6
2010 全国卷
2x5,x
(Ⅰ)由于 fx = 2 x3,x2. 则函数 y fx 的图像如图所示。
2
3x 6, x 1.
0.
所以原不等式的解集是{x|0<x<2}.
(2)当
x∈
a 2
,
1 2
时,f(x)=1+a.
不等式 f(x)≤g(x)化为 1+a≤x+3.
所以
x≥a-2
对
x∈
a 2
,
1 2
都成立.
故 a ≥a-2,即 a 4 .
2
3
从而
a
的取值范围是
1,
4 3
.
2013 全国卷Ⅱ
x 4 ,x ≤ 1
⑵
f
x
3x
2 ,1
x
3 2
4
x
,x
≥
3 2
f x 1
当 x ≤1, x 4 1 ,解得 x 5 或 x 3
∴ x ≤ 1
当 1 x 3 , 3x 2 1,解得 x 1或 x 1
2
3
∴1 x 1 或1 x 3
3
2
当 x ≥ 3 , 4 x 1 ,解得 x 5 或 x 3
3
积为 2 (a 1)2 .由题设得 2 (a 1)2 >6,解得 a 2 .所以 a 的取值范围为(2,+∞).
3
3
2015 全国卷Ⅱ
【 解 析 】( Ⅰ ) 因 为 ( a b)2 a b 2 ab , ( c d )2 c d 2 cd , 由 题 设
a b c d , ab cd ,得 ( a b)2 ( c d )2 .因此 a b c d .
3
2014 全国卷Ⅱ 设函数 f x = x 1 x a (a 0)
a
(Ⅰ)证明: f x ≥2
(Ⅱ)若 f 3 5 ,求 a 的取值范围.
2015 全国卷Ⅰ 已知函数 =|x+1|-2|x-a|,a>0. (Ⅰ)当 a=1 时,求不等式 f(x)>1 的解集; (Ⅱ)若 f(x)的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围
1
2012 全国卷已知函数 f(x) = |x + a| + |x-2|. (Ⅰ)当 a =-3 时,求不等式 f(x)≥3 的解集; (Ⅱ)若 f(x)≤|x-4|的解集包含[1,2],求 a 的取值范围。
2013 全国卷Ⅰ 已知函数 f (x) =| 2x 1| | 2x a | , g(x) = x 3 . (Ⅰ)当 a =-2 时,求不等式 f (x) < g(x) 的解集; (Ⅱ)设 a >-1,且当 x ∈[ a , 1 )时, f (x) ≤ g(x) ,求 a 的取值范围.
4
2015 全国卷Ⅱ 设 a,b,c, d 均为正数,且 a b c d .证明: (1)若 ab cd ,则 a b > c d ; (2) a b > c d 是 a b c d 的充要条件.
2016 全国卷Ⅰ已知函数 f(x)= ∣x+1∣-∣2x-3∣. (I)在答题卡第(24)题图中画出 y= f(x)的图像; (II)求不等式∣f(x)∣﹥1 的解集。
2010——2016《不等式》高考真题 2010 全国卷 设函数 f(x)= 2x 4 1
(Ⅰ)画 出函数 y=f(x)的图像; (Ⅱ)若不等式 f(x)≤ax 的解集非空,求 a 的取值范围.
2011 全国卷 设函数 f (x) | x a | 3x ,其中 a 0 . (I)当 a=1 时,求不等式 f (x) 3x 2 的解集. (II)若不等式 f (x) 0 的解集为{x| x 1} ,求 a 的值.
解:(1)由 a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
得 a2+b2+c2≥ab+bc+ca.
由题设得(a+b+c)2=1,即 a2+b2+c2+2ab+2bc+2ca=1.
所以 3(ab+bc+ca)≤1,即 ab+bc+ca≤ 1 .
3
(2)因为 a2 b 2a , b2 c 2b , c2 a 2c ,
b
c
a
故 a2 b2 c2 (a b c) ≥2(a+b+c),
bca
即 a2 b2 c2 ≥a+b+c.
bca
所以 a2 b2 c2 ≥1.
bca
2014 全国卷Ⅰ
(Ⅰ) 由 ab 1 1 2 ,得 ab 2 ,且当 a b 2 时等号成立,
a b ab
8
故 a3 b3 3 a3b3 4 2 , 且 当 a b 2 时 等 号 成 立 , ∴ a3 b3 的 最 小 值 为 4 2 ………5 分 ( Ⅱ ) 由 (Ⅰ) 知 : 2a 3b 2 6 ab 4 3 , 由 于 4 3 > 6 , 从 而 不 存 在 a,b , 使 得 2a 3b 6 .…10 分 2014 全国卷Ⅱ (Ⅰ)由 a>0,有 f(x)=|x+1/a|+|x-a|≥|x+1/a-(x-a)|=1/a+a≥2. 所以 f(x)≥2. (Ⅱ)f(x)=|3+1/a|+|3-a|.
由此可得 x 3 或 x 1。
故不等式 f (x) 3x 2 的解集为{x | x 3 或 x 1} 。
( Ⅱ) 由 f (x) 0 得 x a 3x 0
此不等式化为不等式组
x x
a a
3x
0
或
x a
a x
3x
0
x a
即
x
a 4
x a
或
x
a 2
因为 a 0,所以不等式组的解集为
……5 分
(Ⅱ)由函数 y fx 与函数 y ax 的图像可知,当且仅当 a 2 时,函数 y fx 与
函数 y ax 的图像有交点。故不等式 fx ax 的解集非空时,a 的取值范围为
,
2
1 2
,
。
……10 分
2011 全国卷
(Ⅰ)当 a 1时, f (x) 3x 2 可化为| x 1| 2 。
22
2
2013 全国卷Ⅱ 设 a,b,c 均为正数,且 a+b+c=1,证明:
(1)ab+bc+ac≤ 1 ;
3
(2) a2 b2 c2 1.
bca
2014 全国卷Ⅰ
若 a 0,b 0, 且 1 1 ab
ab
(I)求 a3 b3 的最小值;
(II)是否存在 a,b ,使得 2a 3b 6 ?并说明理由.
2
∴3≤x1 或1 x 3 或 x 5
3
∴
f
x