平均数与加权平均数 教学设计

合集下载

北师大版数学八年级上册《算术平均数与加权平均数》教学设计2

北师大版数学八年级上册《算术平均数与加权平均数》教学设计2

北师大版数学八年级上册《算术平均数与加权平均数》教学设计2一. 教材分析《算术平均数与加权平均数》是北师大版数学八年级上册的教学内容。

本节课的主要内容是让学生理解并掌握算术平均数和加权平均数的定义、性质和求法,能够运用它们解决实际问题。

教材通过丰富的实例,引导学生探究、发现并总结算术平均数和加权平均数的求法,培养学生的逻辑思维能力和归纳能力。

二. 学情分析学生在七年级已经学习了平均数的概念,对平均数有一定的理解。

但是,对于算术平均数和加权平均数的区别和联系,以及如何运用它们解决实际问题,可能还存在一定的困惑。

因此,在教学过程中,需要结合学生的实际情况,引导学生通过观察、操作、思考、交流等途径,自主探究并掌握算术平均数和加权平均数的定义、性质和求法。

三. 教学目标1.理解算术平均数和加权平均数的定义,掌握它们的性质和求法。

2.能够运用算术平均数和加权平均数解决实际问题。

3.培养学生的观察能力、操作能力、思考能力和归纳能力。

四. 教学重难点1.算术平均数和加权平均数的定义及其求法。

2.算术平均数和加权平均数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生观察、操作和思考,激发学生的学习兴趣。

2.引导发现法:教师引导学生发现问题,分析问题,总结规律,培养学生的归纳能力。

3.合作学习法:学生分组讨论,共同完成任务,提高学生的沟通能力和团队协作能力。

六. 教学准备1.课件:制作课件,展示算术平均数和加权平均数的定义、性质和求法。

2.实例:准备一些实际问题,用于引导学生运用算术平均数和加权平均数解决。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些与平均数相关的实际问题,引导学生回顾平均数的概念,为新课的学习做好铺垫。

2.呈现(10分钟)展示算术平均数和加权平均数的定义,引导学生通过观察、操作、思考,总结它们的性质和求法。

3.操练(10分钟)学生分组讨论,运用所学的性质和求法,解决一些实际问题。

平均数和加权平均数-人教版八年级数学下册优秀教案设计

平均数和加权平均数-人教版八年级数学下册优秀教案设计

20.1数据的集中趋势20.1.1平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究探究点一:平均数【类型一】已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()A.8B.5C.4D.3解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】已知一组数据的平均数,求新数据的平均数已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是() A.6B.8C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】 以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( )A .14岁B .14.3岁C .14.5岁D .15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】 以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( )A .87分B .87.5分C .88分D .89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】 以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】 加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。

加权平均数教案(教学设计)

加权平均数教案(教学设计)

《平均数》教学设计一、教学目标(一)知识与技能: 理解算数平均数、加权平均数的概念,并会运用公式进行计算;理解权的意义;知道权的三种表现形式。

(二)过程与方法: 通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

(三)情感态度与价值观:培养学生积极参与、主动探究的精神, 通过解决身边的实际问题,让学生初步认识数学与生活的密切联系。

二、学情分析学生在小学学习了平均数的基础知识,对平均数有了初步的了解;在上学期还学习了数据的收集和整理。

因此他们已经具备了学习平均数的知识结构和认知特点。

三、重难点【教学重点】理解算数平均数、加权平均数的概念,并会运用公式进行计算。

【教学难点】理解权的意义。

四、教学准备多媒体课件,导学案五、教学方法讲练结合六、教学过程活动1【导入】创设情景,引入新课同学们,如今我们生活在一个数字化的时代,数据无处不在,我们不仅要收集和整理数据,还要对数据进行分析和处理,今天,我们进入第20章第一节平均数的学习。

(板书课题)【设计意图】数学来源于生活,从实际生活引入课题,激发学生的学习兴趣,使学生不由自主的参与到教学活动中来。

活动2【目标】展示学习目标请学生迅速浏览学习目标。

活动3【活动】提出问题同学们会算平均数吗?(集体回答)如何计算我们班上同学的平均身高?(抽同学回答)小结:如果我们班上有n个同学,我们用x1表示第一位同学的身高,用x2表示第二位同学的同学,以此类推,则全班同学的平均身高为:。

(板书)【设计意图】请学生起来回答问题,可以训练学生的胆量和语言表达能力。

活动4【概念】概念学习一一般地,如果有n个数。

那么叫做这n个数的平均数,读作“x拨” .活动5【练习】练一练1.接下来,我们就利用这个公式来求下列各组数据的平均数,时间2分钟,(抽一位同学来黑板上演示)2.对于第2个小题,有没有不同的求解过程?(请一个学生回答,教师板书)活动6【例题】例题探究一1.在平时,期中,期末成绩中,哪个成绩最重要?从哪个数据看出来的?(抽同学回答)点拔:一般来说,由于各个指标在总结果中占有不同的重要程度,因而会赋予不同的权重。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

算术平均数与加权平均数优秀教案

算术平均数与加权平均数优秀教案

3.1平均数(1)课标分析:《课程标准》要求:1、经历收集、整理、描述和分析数据的活动,了解数据处理的过程。

2、了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。

3、经理收集、整理、描述和分析数据的活动,了解数据处理的过程,能用计算器处理较为复杂的数据。

4、理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。

5、体会刻画数据离散程度的意义,会计算简单数据的方差。

6、体会统计方法的意义,发展数据分析观念,感受随机现象。

刻画一组数据的两个常用指标是集中趋势与离散程度,前者反映了数据“平均水平”的高低,后者反应了数据的波动情况,刻画数据的集中趋势常用度量有平均数、中位数、众数。

统计学习应关注学生从事统计活动进而解决实际问题的过程,在具体的统计活动中发展学生的数据分析意识。

在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。

数据分析包括:了解在现实生活中有许多问题应当先做调查研究、收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。

教材分析:在信息技术不断发展的社会里,人们常常需要对大量纷繁复杂的信息作出恰当的选择与判断。

数据是信息的重要载体,因此关于数据收集、整理与分析的统计学成为一门重要的数学分支。

在六年级学生已经经历过一些数据收集的过程,并对数据进行了初步的整理,能用适当的图表清晰地反应数据信息。

本章则是进一步学习数据的分析,进而做出判断。

在学习了数据的收集和数据的表示等统计知识的基础上,进行算术平均数和加权平均数的学习,为学习中位数、众数与极差、方差、标准差等方面的知识奠定了基础。

本节课将研究算术平均数和加权平均数的概念及其应用。

考虑到学生在小学已经初步了解了算术平均数的概念及其应用,因此,本节重点在于让学生掌握加权平均数的概念,并利用它们解决实际问题。

平均数和加权平均数电子教案

平均数和加权平均数电子教案

宰便中学课堂教学设计
在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以
评成绩,而是按照“平时成绩占40%,考试成绩占
已知一组数据的平均数,求某一个数据
7,2,a,4,
的值是(
A.8 C.4 D
解析:∵数据,a,4,6的平均数是
,解得a=8.故选
已知一组数据的平均数,求新数据的平均数
、x2、x3、x4、
一组新数据、x3+3、x4+
)
A.6
的体育锻炼时间,结果如下表所示:
小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( )
A.1414.3岁
C.14.515岁
60%
面试成绩为
A.87
作得分分别为
例确定成绩,则小王的成绩是
A.255
加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的(百分制。

2024年冀教版九年级上册教学设计第23章 23.1 平均数与加权平均数

2024年冀教版九年级上册教学设计第23章 23.1 平均数与加权平均数

课时目标1.在实际问题情境中理解算术平均数的概念和意义,会计算一组数据的算术平均数.2.在理解算术平均数意义的基础上,解决一些实际问题,发展学生的数学应用能力.学习重点理解平均数的意义,能计算一组数据的算术平均数.学习难点体会平均数在不同问题情境中的应用.课时活动设计情境引入在体操比赛中,计算某一运动员的分值时,往往在所有裁判给出的分数中,去掉一个最高分和一个最低分,然后计算余下分数的平均分,6个裁判员对某一运动员的打分数据(动作完成分)为:9.4,8.9,8.8,8.9,7.6,8.7.问题1:计算出上述问题中的一组数据的平均数.解:去掉一个最高分9.4分,去掉一个最低分7.6分,得到一组新的数据:8.9,8.8,8.9,8.7,这组数据的平均数为(8.9+8.8+8.9+8.7)÷4=8.825.问题2:一组数据的平均数有什么意义?平均数在解决实际问题中的作用有哪些?设计意图:通过身边的实例,让学生体会数学知识在生活中的广泛应用,并且导入了本节的知识内容.探究一1.重庆7月中旬一周的最高气温如下表:你能快速计算这一周的平均最高气温吗?学生先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳..解:(38+36+38+36+38+36+36)÷7=25872.为加快建设农业强国,深入实施种业振兴行动,某农科院决定寻找适合本地的优质高产小麦品种,现将一块长方形试验田分成面积相等的9块,每块100 m2,在土壤肥力、施肥、管理等都相同的条件下试种A,B两个品种的小麦,小麦产量如下表:(1)观察统计图,哪个产品小麦的产量更高些?(2)以100 m 2为单位,如何比较A,B 两个小麦品种的单位面积产量? (3)如果只考虑产量这个因素,哪个品种更适合本地种植? 学生先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同给出解题过程.解:(1)从图中可以看出B 品种小麦的产量可能比A 品种小麦的产量高.(2)由于同一品种的小麦在不同试验田上的产量有差异,要比较两个品种中哪个产量高,通常情况下是比较它们的平均产量,品种A 和品种B 在试验田上的平均产量分别为:A 品种小麦的平均产量:15×(95+93+82+90+100)=92(kg),B 品种小麦的平均产量:14×(94+100+105+85)=96(kg).(3)就试验的结果看,B 品种小麦比A 品种小麦的平均产量高,B 品种更适合本地种植.总结概念:一般地,我们把n 个数x 1,x 2,…,x n 的和与n 的比,叫做这n 个数的算术平均数,简称平均数,记作x —,读作“x 拔”,即x —=1n (x 1+⋯+x n ).平均数是一组数据的代表值,它反映了数据的“一般水平”.设计意图:通过实际问题引导学生观察统计图,从图形的直观上判断哪种小麦的产量高,培养学生的读图能力和直觉思维能力.在比较品种产量的时候,因数据存在差异并且种植面积不同,所以比较单位面积的平均产量是一个合理的方法.进而引出算术平均数的概念,并让学生感受平均数能反映数据的“一般水平”;通过实际问题的探究,让学生感受算术平均数的求法,教师在此环节可给出算术平均数的概念.探究二从一批鸭蛋中任意取出20个,分别称得质量如下:8085707585858080758585807585807585708075(1)整理数据,填写统计表.(2)小明和小亮分别是这样计算这批鸭蛋的平均数的.×(70+75+80+85)=77.5(g).小明的计算结果:14×(70×2+75×5+80×6+85×7)=79.5(g).小亮的计算结果:120你认为他们谁的计算方法正确?请和同学们交流你的看法.解:要求的是20个数据的平均数,正确的计算方法应该是用20个数的和除以数据的个数.因此,小亮的计算方法正确,这是求平均数的简便方法.总结:实际上,小亮的计算方法是正确的.由于70,75,80,85出现的频数不同,它们对平均数的影响也不同,所以,频数对平均数起着权衡轻重的作用.设计意图:学生通过例题,会整理数据,列出频数分布表,然后用简单方法计算平均数,纠正类似小明的错误算法,并且教师应强调平均数是所有数据的总和与数据个数的比值.巩固训练1.某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是(D)A.84B.86C.88D.902.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是(B)A.x+y 2B.mx+ny m+nC.x+y m+nD.mx+ny x+y3.下表是校女子排球队队员的年龄分布:年龄/岁 13 14 15 16 频数1452求校女子排球队队员的平均年龄. 解:x =13×1+14×4+15×5+16×21+4+5+2≈14.7(岁),所以校女子排球队队员的平均年龄为14.7岁.课堂小结1.如何求算术平均数?2.平均数有什么作用和特点?设计意图:通过问题回顾本节课所学内容,再次帮助学生巩固新知.课堂8分钟.1.教材第4页练习2,第5页习题A 组第1题,习题B 组第1,2题.2.七彩作业.第1课时 算术平均数观察与思考解题过程:A 品种小麦的平均产量:15×(95+93+82+90+100)=92(kg), B 品种小麦的平均产量:14×(94+100+105+85)=96(kg).定义:一般地,我们把n 个数x 1,x 2,…,x n 的和与n 的比,叫做这n 个数的算术平均 数,简称平均数,记作x —,读作“x 拔”,即x —=1n (x 1+⋯+x n ). 平均数是一组数据的代表值,它反映了数据的“一般水平”.教学反思第2课时加权平均数课时目标1.在具体的问题情景中,了解加权平均数的概念和意义,体会“权”的意义,能计算一组数据的加权平均数.2.会求加权平均数,并体会权的差异对结果的影响.理解算术平均数和加权平均数的联系和区别.会用组中值估计一组数据的平均数.3.在理解平均数与加权平均数的意义的基础上,解决一些实际问题,发展学生的数学应用能力.学习重点1.会求加权平均数,会用组中值估计一组数据的平均数.2.探索算术平均数和加权平均数的联系和区别.学习难点探索算术平均数和加权平均数的联系和区别.课时活动设计复习引入在上节课的学习中,我们认识了算术平均数,并知道如何去求一组数据的算术平均数,一般地,我们把n个数x1,x2,…,x n的和与n的比,叫做这个n个数的算术平(x1+…x n).均数,简称平均数,记作x,读作“x拔”,即x=1n但是有些时候算术平均数并不能完全解决问题,本节课我们将学习一种新的平均数——加权平均数,希望通过本节课的学习,同学们能够说出算术平均数和加权平均数的区别和联系.设计意图:开门点题,让学生知道本节课的学习重点.探究新知假期里,小红和小惠结伴去买菜,三次购买的西红柿价格和数量如下表:从平均价格看,谁买的西红柿要便宜些?思考小亮和小明的下列说法,你认为他俩谁说得对,为什么?小亮的说法:每次购买的单价相同,购买的总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克);小明的说法:购买的总量虽然相同,但小红花了16元,小惠花了18元,所以平均价格不一样,小红买的西红柿要便宜些.学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳.分析:因为是分三次购买,所以比较谁买的西红柿价格更便宜些,一般是比较平均价格.学生容易犯小亮那样的错误,即不考虑问题的实际意义,机械地套用平均数的公式.解:小红购买不同单价的西红柿的数量不同,所以平均价格不是三个单价的平均数.实际上,平均价格是总花费金额与购买总量的比,因此,x小红=4×1+3×2+2×31+2+3=166≈2.67(元/千克),x小惠=4×2+3×2+2×22+2+2=186=3(元/千克).从平均价格看,小红买的西红柿要便宜些.故小明说的对.总结概念已知n个数x1,x2,…,x n,若w1,w2,…,w n为一组正数,则把x1w1+x2w2+⋯+x n w nw1+w2+⋯+w n叫做n个数x1,x2,…,x n的加权平均数,w1,w2,…,w n分别叫做这n个数的权重,简称为权.设计意图:通过对实际问题进行探究,使学生经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,并认识在不同的权重下,求得的平均数一般是不同的.典例精讲例某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课外体育活动)、期中考试和期末考试成绩按比例3℃2℃5计入学期总成绩.甲、乙两名同学的各项成绩如下:分别计算甲、乙的学期总成绩.解:三项成绩按3℃2℃5的比例确定,就是分别用3,2,5作为三项成绩的权,用加权平均数作为学期总成绩.=89(分).甲的学期总成绩为95×3+90×2+85×53+2+5=87(分).乙的学期总成绩为80×3+95×2+88×53+2+5问题拓展:改变三项成绩权的比,得到的学期总成绩会变化吗?(学生自主探究、合作交流)解:根据分配的权重不同,算得的学期总成绩可能不同.设计意图:通过例题的教学,使得学生会计算一组数据的加权平均数,并会用加权平均数解决具体的实际问题.教师提出问题:在解决上面的例题中,思考:问题1:算术平均数和加权平均数的区别与联系?解:算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.问题2:按照算术平均数和加权平均数的计算方法分别求平均数,对排名次序有影响吗?解:有.问题3:你认为哪种平均数进行排名更合理些?解:加权平均数.本块内容可安排学生讨论环节.设计意图:通过讨论,加深学生对算术平均数和加权平均数的认识,从而理解算术平均数是各权重相同时的加权平均数.让学生体会“权”对平均数的影响,并认识在不同的权重下,求得的平均数一般是不同的.典例精讲例1某电视节目主持人大赛要进行专业素质、综合素质、外语水平和临场应变能力四项测试,各项测试均采用10分制,两名选手的各项测试成绩如下表所示:(1)如果按四项测试成绩的算术平均数排名次,名次是怎样的?(2)如果规定按专业素质、综合素质、外语水平和临场应变能力四项测试的成绩各占60%,20%,10%,10%计算总成绩,名次有什么变化?解:(1)甲、乙各项成绩的算术平均数分别为:x 甲=9.0+8.5+7.5+8.84=8.45(分),x 乙=8.0+9.2+8.4+9.04=8.65(分).比较算术平均数,乙排名第一,甲排名第二. (2)甲、乙的加权平均成绩分别为:x甲=9.0×0.6+8.5×0.2+7.5×0.1+8.8×0.1=8.73(分),x=8.0×0.6+9.2×0.2+8.4×0.1+9.0×0.1=8.38(分).乙比较加权平均数,则甲排名第一,乙排名第二.例2从某学校九年级男生中,任意选出100人,分别测量他们的体重.将数据进行分组整理,结果如下表:计算这100名男生的平均体重.分析:对于分组数据,可以用组中值(分组两个端点数的平均数)作为这组数据的一个代表值,把各组的频数看做对应组中值的权,按加权平均计算平均数的近似值.解:五组数据的组中值分别为47,53,59,65,71.加权平均数为1×(47×9+53×21+59×34+65×23+71×13)=59.6.100所以这100名男生的平均体重约为59.6 kg.设计意图:通过完成例1实际问题,再次体会当各数据的重要程度不同时,一般采用加权平均数作为一组数据的代表值;通过例2,让学生能够解决原数据缺失的一组数据的解决办法——对每组数据选择一个代表值,即“组中值”来近似地估计数据的总体情况.巩固训练1.射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.2.某灯泡厂为了测量一批灯泡的使用寿命,从中随机抽查了50只灯泡,它们的使用寿命如下表所示.这批灯泡的平均使用寿命是多少?使用寿命x /h 600≤x <1 000 1 000≤x <1 400 1 400≤x <1 800 1 800≤x <2 200 2 200≤x <2 600 灯泡数量/只51012176解:据上表得各小组的组中值,于是 x =800×5+1200×10+1600×12+2000×17+2400×650=1672(h),即样本平均数为1 672.因此,可以估计这批灯泡的平均使用寿命大约是1 672 h.课堂8分钟.1.教材第8页练习第2题,第8页习题A 组第1,3题,第9页习题B 组第1题,第11页习题A 组第2题.2.七彩作业.第2课时 加权平均数定义:已知n 个数x 1,x 2,…,x n ,若w 1,w 2,…,w n 为一组正数,则把x 1w 1+x 2w 2+⋯+x n w nw 1+w 2+⋯+w n叫做n 个数x 1,x 2,…,x n 的加权平均数,w 1,w 2,…,w n 分别叫做这n 个数的权重,简称为权. 例1:例2:教学反思。

20.1.1平均数与加权平均数教学设计

20.1.1平均数与加权平均数教学设计

20.1.1 平均数-加权平均数、教学目标知识与技能1、认识权、会求加权平均数,并体会权的差异对结果的影响。

2、理解算数平均数和加权平均数的区别和联系,并能利用其解决一些实际问题。

过程与方法尝试从实际情境中处理信息,在观察、猜想、说明过程中体会数学思考过程的层次性和表述的严谨性; 培养学生观察问题、分析问题、解决问题的能力;培养学生认真、耐心、细致的学习态度和学习习惯.情感态度与价值观通过权对结果的影响,使学生初步对“扬长避短”有所理解,体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

在探索过程中形成实事求是的态度和勇于探索的精神.二、教学重点和难点重点:1.理解权和加权平均数的概念,会求一组数据的加权平均数. 2.体会权的差异对结果的影响,认识到权的重要性。

3. 探索算数平均数和加权平均数的区别于联系。

难点:1. 体会权的差异对结果的影响,认识到权的重要性。

2.探索算数平均数和加权平均数的区别于联系。

三、学情分析学生在小学已经学习了算术平均数,并且知道了算术平均数的算法。

但对于初中生而言,已经会遇到学校招聘学生会分笔试面试成绩配比问题;学生成绩报告测中综合成绩是如何打分等问题。

以及今后面临考公务员,事业单位等笔试面试分数配比等问题。

此时简单的算数平均数已经不能处理这些问题。

因此,本章内容的学习对学生现在以及将来都会有重要的影响。

四、教学方法与教学手段1、教法选择:设疑、活动、交流、引导、归纳、拓展2、学法指导:观察思考探究,体验知识的生成过程;比较、发现、归纳。

3、教学手段:利用多媒体为媒介,为学生提供生动的实验背景,以学生为主体,探索、发现知识,教师总结点评。

五、教学过程1 •情境创设某学校招聘一名语文教师,对甲、乙两名候选人进行了三项素质测试,她们的各项测试成绩如下表所示:根据实际需要,学校将课堂教学、普通话、和粉笔字三项测试得分按 6 3 :的比例确定各人的测试成绩,此时谁将被录用?小结:在实际生活中,一组数据中各个数据的重要程度并不总是相同的,有时有些数据比其他数据更重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平均数与加权平均数教学设计
教学目标
知识与技能
在实际情境中理解平均数的概念和意义,会计算一组数据的算术平均数;
过程与方法
初步经历数据的收集、加工整理的过程,能利用平均数、加权平均数解决一些实际问题,发展数学应用能力;
情感态度价值观
体会数学知识与现实生活的紧密联系,增强数学应用意识。

教学重难点
重点:平均数的概念和意义及其应用。

难点:能利用平均数解决一些实际问题。

教学方法
小组讨论
教学用具
多媒体
第一课时
“平均成绩”“平均年龄”“平均收入”“平均产量”……。

打开报纸,翻开书本,“平均”一词随处可见。

你知道平均的含义是什么吗?在实际问题中,怎样求平均数呢?
(一)观察与思考
将一块试验田分成面积相等的8块,每块100m2,在地力、肥料、管理等相同的条件下试种两个不同品种的小麦,产量如下表:
1.从图26—1的两幅统计图中,能看出哪个品种小麦的产量更高些吗?
2.用什么数代表A ,B 两个小麦品种的单位面积(以100m 2
为单位面积)的产量较合适? 3.如果只考虑产量这个因素,哪个品种更适合本地种植?
由于同一品种的小麦在四块试验田上的产量有差异,要比较两个品种中哪个产量高,通常情况下是比较它们的平均产量。

品种A 和品种B 在四块试验田上的平均产量分别为
1
(95858290)88(kg)4+++= 1
(85100105110)100(kg)4+++=
由此可知,品种B 比品种A 的平均产量高,品种B 更适合本地种植。

注:
1.通过观察比较,品种B 的产量更高。

2.用小麦的平均产量代表较合适。

3.品种B 。

一般地,我们把n 个数x1,x2,…,xn 的和与n 的比叫做这n 个数的算术平均数(mean),简称平均数,记作“x ”,读作“x 拔”。


12n 1
x (x x ...x )n =
+++
95,85,82,90与其平均数88的差分别为7,-3,-6,2,它们的和为0。

85,100,
105,110与其平均数100的差分别为-15,0,5,10,它们的和也为0。

由此可以看出,平均数是将各数据之间的差异相互抵消的结果,它反映了数据的“一般水平”。

注:一组数据中的每个数据与这组数据平均数的差的和为0。


12n 12n x x)+(x x)+...+(x x)x x ...x )nx nx nx=0---+++-=- ( =(
(二)做一做
某年级20名学生在一次数学竞赛中的成绩如下:(单位:分)
80 85 70 75 70 75 80 80 75 85
75 80 75 70 80 75 85 70 80 75
(1)整理数据,填写统计表:
(2)求这20名学生的平均分数。

小明根据“做一做”第(1)题统计的结果,这样计算平均数:
1
x(704757+806853)77(
=⨯+⨯⨯+⨯=分)
20
这样计算合理吗?请和同学交流你的看法。

注:目的是使学生学会对数据进行整理,会用简便方法计算平均数。

(1)
(2)77分。

小明的计算方法合理。

实际上,这是求平均数的简便算法。

(三)练习
用举手示意的方法调查你们班全体同学的年龄(周岁),将结果填在下面的表格内,并用计算器计算平均年龄。

(四)小结
引导学生总结本节的主要知识点。

(五)板书设计。

相关文档
最新文档