平均数和加权平均数-人教版八年级数学下册优秀教案设计

合集下载

最新人教版八年级数学下册 20.1.1 第1课时 平均数和加权平均数 优质学案

最新人教版八年级数学下册 20.1.1 第1课时 平均数和加权平均数 优质学案

第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数【学习目标】1.使学生理解数据的权和加权平均数的概念;2.使学生掌握加权平均数的计算方法.【重、难点】重点:会求加权平均数.难点:对“权”的理解.【预习作业】:1.(1)数据:4,5,6,7,8的平均数是。

(2)2、8、7、2、7、7、8、7、6的算术平均数为。

(3)一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为。

小学所学平均数的计算公式是2.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是____ ___.3. 加权平均数:(预习新知)(1)n个数据:f1个a1,f2个a2,…,f n个a n(f1+f2+…+fn=n)它的加权平均数为x(2)权反映的是二.合作探究,生成总结练一练:1.在一组数据中,2出现了3次,3出现了2次,4出现了5次,则2的权为,3的权为,4的权为;这组数据的平均数为.2.某人打靶,有1次中10环,2次中7环,3次中5环,则平均每次中靶环.3.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

已知该班平均成绩为80分,则该班有人.4.在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.5.某人打靶有a次打中x环,b次打中y环,则此人平均每次中靶环。

探讨2.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:(注:权能够反映数据的相对)练一练:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?知识点小结:本节课我们学习了……..三.达标测评,分层巩固基础训练题:1.为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)2.数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。

八年级数学下册《加权平均数》教案、教学设计

八年级数学下册《加权平均数》教案、教学设计
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求和能力水平,进行有针对性的指导和教学。同时,注重培养学生的团队合作精神,鼓励学生勇于发表自己的观点,学会倾听和尊重他人的意见,形成良好的学习氛围。
一、导入新课
1.通过回顾算术平均数的定义和计算方法,引导学生发现算术平均数在数据处理中的局限性。
(二)讲授新知
1.正式介绍加权平均数的概念,通过公式和图示,解释权重在平均数计算中的作用。
-解释:加权平均数是在考虑每个数值的重要性(权重)的基础上计算出的平均数,它更能反映数据集的真实情况。
2.通过具体案例,演示加权平均数的计算步骤,如计算水果的平均价格,让学生跟随教师一起计算,加深理解。
-强调:权重的确定要根据实际情况来决定,如销售量、价值等。
八年级数学下册《加权平均数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解加权平均数的定义,掌握加权平均数的计算方法,并能够运用其解决实际问题。
2.能够区分加权平均数与算术平均数之间的关系和联系,理解加权平均数在数学及实际生活中的重要性。
3.学会使用加权平均数对一组数据进行合理的分析、评价和预测,提高数据处理能力和解决实际问题的能力。
3.对比加权平均数与算术平均数,让学生理解两者的联系与区别,以及在何种情况下使用加权平均数更为合适。
-讨论环节:让学生举例说明何时使用加权平均数,何时使用算术平均数。
(三)学生小组讨论
1.分组讨论,每组选取一个生活中的例子,如购物小票、考试成绩等,讨论如何应用加权平均数来分析问题。
-任务:每组制定一个简单的数据分析计划,确定权重,计算加权平均数,并分享结果。
五、课堂小结
1.让学生总结加权平均数的定义、计算方法和在实际生活中的应用。

20.1.1.1平均数和加权平均数 教案 -2022-2023学年人教版八年级数学下册

20.1.1.1平均数和加权平均数 教案 -2022-2023学年人教版八年级数学下册

20.1.1.1平均数和加权平均数教案 -2022-2023学年人教版八年级数学下册一、教学目标1.理解平均数的概念;2.能够计算一组数据的平均数;3.理解加权平均数的概念;4.能够计算一组数据的加权平均数。

二、教学重点1.平均数的计算;2.加权平均数的计算。

三、教学难点1.加权平均数的概念理解;2.加权平均数的计算。

四、教学过程1. 导入新知首先,我们来回顾一下平均数的概念。

平均数指的是一组数据的总和除以数据的个数。

请大家举一个例子,说明一下平均数的含义。

2. 讲解平均数的计算方法接下来,我们来讲解一下平均数的计算方法。

以一组数据为例:9,7,6,5,8。

请大家跟着我一起计算这组数据的平均数。

步骤: 1. 将这组数据相加,得到总和:9 + 7 + 6 + 5 + 8 = 35; 2. 将总和除以数据的个数,得到平均数:35 ÷ 5 = 7。

所以,这组数据的平均数为7。

3. 提问练习现在,请大家自己计算一下以下两组数据的平均数:•数据组1:10,12,15,18,20;•数据组2:6,8,9,7,10。

请将计算过程和结果写在答题卡上。

4. 讲解加权平均数的概念除了平均数,还有一种平均数叫做加权平均数。

加权平均数指的是在计算平均数时,给不同数据加上不同的权重,然后再计算平均数。

请大家举一个例子,说明一下加权平均数的含义。

5. 讲解加权平均数的计算方法接下来,我们来讲解一下加权平均数的计算方法。

以一组数据为例:8,7,6,5,9,其中权重分别为4,3,2,1,5。

请大家跟着我一起计算这组数据的加权平均数。

步骤: 1. 将每个数据与对应的权重相乘,得到加权总和:8×4 + 7×3 +6×2 + 5×1 + 9×5 = 116; 2. 将加权总和除以权重的总和,得到加权平均数:116 ÷ (4 + 3 + 2 + 1 + 5) = 116 ÷ 15 ≈ 7.73。

人教版八年级数学下册20.1.1.1平均数和加权平均数教案

人教版八年级数学下册20.1.1.1平均数和加权平均数教案

第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数和加权平均数教师备课 素材示例●情景导入 问题1:小组互助学习是我们中学课堂的一大特色,下表是八年级(2)班周冠军“阳光组”一能算出他们小组的最后成绩吗?【教学与建议】教学:用学生身边发生的事创设情境,更好地调动学生的学习兴趣,引出课题.建议:对学生展示的不同计算方法给予肯定,并借助其中一种求法导入加权平均数.●置疑导入 某校举行了一场“森林卫士”的选拔活动,选拔分为100 m 赛跑、举圆木、跨越障碍、紧急情况处理四项测试(每项满分10分).小宇、小东和小强都参加了选拔活动,他们的成绩(单位:分)如下表:问题1问题2:如果将这四项得分按3∶3∶2∶2的比例确定他们的成绩,此时谁是冠军? 问题3:如果将这四项得分按4∶3∶1∶2的比例确定他们的成绩,那么谁能拿到冠军?解:(1)小宇:(9+10+9+9)÷4=9.25;小东:(8+10+9+8)÷4=8.75;小强:(10+8+9+9)÷4=9,冠军是小宇;(2)小宇:9×3+10×3+9×2+9×23+3+2+2=9.3;小东:8×3+10×3+9×2+8×23+3+2+2=8.8;小强:10×3+8×3+9×2+9×23+3+2+2=9,冠军是小宇;(3)小宇:9×4+10×3+9×1+9×24+3+1+2=9.3;小东:8×4+3×10+9×1+2×84+3+1+2=8.7;小强:10×4+8×3+9×1+9×24+3+1+2=9.1,冠军是小宇.【教学与建议】教学:创设接近学生生活的问题情境,吸引学生的注意力,能快速进入学习情境.建议:教师要引导学生进行思考、分析,为进一步学习积累数学活动经验.◎命题角度1 求平均数一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称平均数.【例1】一组数据2,5,5,6,7的平均数是(C ) A .3 B .4 C .5 D .6【例2】一组数据2,3,4,x ,6的平均数是4,则x 是(D ) A .2 B .3 C .4 D .5 ◎命题角度2 利用加权平均数计算若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则这n 个数的加权平均数为x =x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n.【例3】某校调查了20名男生某一周参加篮球运动的次数,调查结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是(C )A.3次B.3.5次C【例4】已知一组数据4,13,24的权数之比是1∶2∶3,则这组数据的加权平均数是__17__.◎命题角度3加权平均数在实际生活中的应用数据的权反映数据的相对“重要程度”,权的形式有比例的形式、百分比的形式、频数的形式等.“权”越大,对平均数的影响就越大.【例5】5∶3∶2计算,总分变化情况是(B)A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定【例6】小青八年级上学期的数学成绩(百分制)如下表所示:(1)计算小青该学期的平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出小青该学期的总评成绩.解:(1)(88+70+98+86)÷4=85.5(分);(2)85.5×10%+90×30%+87×60%=87.75(分).高效课堂教学设计1.理解加权平均数的概念,掌握算术平均数与加权平均数的联系与区别,会求一组数据的算术平均数和加权平均数.2.能运用加权平均数解决实际问题.▲重点加权平均数的概念与运用.▲难点对“权”意义的理解.◆活动1新课导入1.回顾小学学过的平均数的概念.2.数据1,2,3,4,5的平均数是__3__.3.在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).◆活动2探究新知1.教材P 111 问题1. 提出问题:(1)已知甲、乙两名应试者的成绩,如何确定应该录取谁? (2)你能计算出甲、乙两名应试者的平均成绩吗? (3)什么叫做权?什么叫做加权平均数?(4)加权平均数和算术平均数有什么区别和联系? 学生完成并交流展示. 2.教材P 112 思考. 提出问题:(1)请按思考中的3∶3∶2∶2,分别算出甲、乙的最终成绩,并确定应该录取谁? (2)请你谈一谈权的作用. 学生完成并交流展示. ◆活动3 知识归纳1.若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则__x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n__叫做这n 个数的加权平均数.2.数据的权能够反映数据的相对“__重要程度__”.3.求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n ),那么这n 个数的平均数x =__x 1f 1+x 2f 2+…+x k f kn__也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中__f 1,f 2,…,f k __分别叫做x 1,x 2,…,x k 的权.◆活动4 例题与练习 例1 教材P 112 例1. 例2 教材P 113 例2.例3 如果一组数据3,7,2,a ,4,6的平均数是5,那么a 的值是( A ) A .8 B .5 C .4 D .3例4 某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示:解:甲的平均成绩为(87×6+90×4)÷10=88.2(分), 乙的平均成绩为(91×6+82×4)÷10=87.4(分). ∵甲的平均成绩较高, ∴甲将被录取. 练习1.教材P 113 练习第1,2题.23∶2计算,总分变化情况是( B )A .小丽增加多B .小亮增加多C .两人成绩不变化D .变化情况无法确定3.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有的捐50元或100元.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款__31.2__元.4(1)计算小青该学期的平时平均成绩;(2)如果该学期的总评成绩是根据如图所示的权重计算,请计算出小青该学期的总评成绩.解:(1)(88+70+98+86)÷4=85.5(分);(2)85.5×10%+90×30%+87×60%=87.75(分).◆活动5课堂小结1.求一组数据的平均数.2.加权平均数的理解和应用.1.作业布置(1)教材P121~122习题20.1第1,5题;(2)学生用书对应课时练习.2.教学反思。

人教版八年级下册 20.1.1 平均数(1)加权平均数 教学设计

人教版八年级下册 20.1.1 平均数(1)加权平均数 教学设计

人教版八年级下册 20.1.1 平均数(1)加权平均数教学设计人教版八年级下册 20.1.1 平均数(1)加权平均数教学设计教学设计【课题】数据的分析平均数(1)学习目标(一)知识与技能1.回顾算术平均数的概念,会计算算术平均数2.了解加权平均数,理解权的作用和意义,会计算加权平均数(二)过程与方法1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.根据有关平均数的问题的解决,培养学生的判断能力. (三)情感、态度与价值观通过解决身边的实际问题,让学生体会数学来源于生活,培养学生学数学用数学的好习惯。

重点[来源:学#科#网]1.知道算术平均数、加权平均数的概念2.会求一组数据的算术平均数和加权平均数. 3.理解加权平均数中的“权”的意义和作用。

难点加权平均数的概念,求加权平均数.教学方法启发引导法. 教学程序一、创设情境,导入新课用投影仪播放第一张幻灯片,借插图中的数据让学生重温一下小学学过的平均数的计算方法。

二、合作交流,解读探究板书公式并投影概念:算术平均数的定义一般地,对于n个数x1,x2,…,xn,我们把1 (x1+x2+…xn)叫做这n个数的算术平均数,简n称平均数,记为x,读作“x拔”.1.对于一组数据,不同方法计算算术平均数2.思考:某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算。

已知A同学数学得分为95分,物理得分为90分,那么最终A同学的综合得分是多少。

引出“权”的概念:根据实际需要,对重要程度不同的数据赋予相应的比重。

这个比重叫对应数据的权重,也叫这个数据的权。

权的含义及表现形式。

加权平均数的概念。

加权平均数的计算方法。

3.通过练习,明确权的概念:在数据1,2,2,3,4,2,3,3,6,4,1,2中,数据1的权是_____,2的权是_____,3的权是_____,4的权是_____,6的权是_____,则这个数据的平均数是_______。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

人教版数学八年级下册20.1.1加权平均数教案设计设计

人教版数学八年级下册20.1.1加权平均数教案设计设计

20.1.1 加权平均数一、教学分析(一)教学内容分析"数据的集中程度"是统计与概率领域中的重要内容,它是研究现实生活中的数据,对数据进行描述和分析的重要工具。

在刻画一组数据的集中趋势的统计量中,以平均数最为重要,其应用最为广泛。

因为,平均数是一组数据的“重心”,是度量一组数据的波动大小的基准。

例如,求方差时,就是从其中各处数据与它们的平均数的差入手的,从这个意义上讲,学习平均数是学习方差的基础。

本节内容是在学习算术平均数的基础上进一步学习加权平均数,既是对前面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材(二)教学对象分析学生在小学已经学习了平均数——算术平均数,并且知道了算术平均数的算法。

但对于初中生而言,会遇到学校招聘学生会分笔试面试成绩分配问题;学生成绩报告测中综合成绩是如何打分等问题。

以及今后面临考公务员,事业单位等笔试面试分数分配等问题。

此时简单的算数平均数已经不能处理这些问题。

因此,本章内容的学习对学生现在以及将来都会有重要的影响。

二、教学目标(一)知识与技能1.认识权、会求加权平均数,并体会权的差异对结果的影响。

2.理解算数平均数和加权平均数的区别和联系,并能利用其解决一些实际问题(二)过程与方法尝试从实际情境中处理信息,会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析的观念。

(三)情感态度与价值观通过权对结果的影响,使学生初步对“扬长避短”有所理解,体会数学与现实生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

三、教学重点对权及加权平均数统计意义的理解四、教学难点在运用加权平均数分析数据时,容易混淆数据和权,因此本节难点是对权的意义的理解,用加权平均数描述数据的集中趋势。

五、教学过程顾:算术平均数的概念已知数据:(1)2,3,5,6;(2)3,4,5,8, 10;2、算术平均数的概念:叫做这n个数的算术平均数,简称平均数。

八年级数学人教版下册20.1.1加权平均数教学设计

八年级数学人教版下册20.1.1加权平均数教学设计
2.提高练习:给出一些综合性的实际问题,让学生运用加权平均数进行解决。
-通过提高练习,培养学生分析问题和解决问题的能力,提高数学思维水平。
(五)总结归纳
1.知识回顾:引导学生回顾本节课所学的加权平均数的概念、计算方法和应用场景。
-通过回顾,巩固学生对加权平均数的理解和记忆。
2.归纳总结:教师对加权平均数进行归纳总结,强调其在实际生活中的重要作用。
2.能够根据问题情境,选择合适的平均数(简单平均数或加权平均数)作为数据的代表。
-通过对比不同情境下使用简单平均数和加权平均数的优劣,培养学生根据实际情况选择恰当统计量的能力。
3.能够运用加权平均数解决一些简单的实际问题,增强数学应用意识。
-设计与生活贴近的问题,如班级成绩的加权平均、商品价格的加权平均等,让学生在实际问题中运用加权平均数的知识。
4.在情感态度方面,部分学生对数学学习可能存在畏惧心理,教师应在教学过程中注重鼓励和激励,帮助学生树立学习数学的信心,培养他们积极向上的情感态度。
三、教学重难点和教学设想
(一)教学重难点
1.加权平均数的概念理解是本章节的重点,尤其是权重在计算过程中的作用和意义。
-通过实际问题的情境创设,让学生感受权重在平均数计算中的重要性,从而突破这一概念理解上的难点。
3.运用图表、计算器等工具,培养学生处理和解释数据的能力。
-在教学过程中,鼓励学生使用图表来直观展示数据,使用计算器进行精确计算,提高数据处理能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,增强学习数学的自信心。
-通过解决实际问题,让学生感受到数学学习的乐趣和成就感,从而激发学习数学的兴趣。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了平均数的概念和简单计算方法。在此基础上,他们对加权平均数这一概念的学习将更为顺畅。然而,由于加权平均数涉及到权重这一抽象概念,学生可能会在理解上遇到困难。因此,在教学过程中,需要关注以下几点:

人教版八年级下册20.1.1平均数加权平均数(教案)

人教版八年级下册20.1.1平均数加权平均数(教案)
人教版八年级下册20.1.1平均数加权平均数(教案)
一、教学内容
人教版八年级下册20.1.1平均数加权平均数
1.平均数的概念与性质;
2.加权平均数的定义与计算方法;
3.平均数与加权平均数在实际问题中的应用;
4.解决有关平均数和加权平均数的问题,提高解决问题的能力。
二、核心素养目标
1.让学生掌握平均数和加权平均数的概念,培养数据处理与分析的基本能力;
五、教学反思
在本次教学过程中,我发现学生们对平均数与加权平均数的概念理解较为顺利,但在具体应用到实际问题中时,部分学生还是显得有些迷茫。我想这其中的原因可能是理论联系实际还不够紧密,需要在今后的教学中加强这方面的引导。
让我印象深刻的是,在分组讨论环节,学生们积极参与,热烈讨论。他们通过探讨平均数与加权平均数在实际生活中的应用,不仅加深了对知识点的理解,还提高了团队合作能力。但同时,我也注意到有些学生在讨论中较为被动,这可能是因为他们对知识点掌握不够扎实,或者是对讨论主题不够感兴趣。针对这一点,我需要在今后的教学中关注学生的个体差异,激发他们的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数与加权平均数的基本概念。平均数是一组数据的总和除以数据个数得到的数值,它是表示数据集中趋势的重要指标。加权平均数是在计算平均数时,给不同的数据赋予不同的权重,适用于数据重要性不同的场合。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了加权平均数在计算成绩时的应用,以及它如何帮助我们解决实际问题。
2.教学难点
-加权平均数的理解:学生可能难以理解为什么有些数据需要赋予不同的权重,以及如何正确计算加权平均数。
-在实际问题中选择合适的平均数:学生在面对复杂问题时,可能会混淆使用普通平均数还是加权平均数。

人教版数学八年级下册20.1.1平均数加权平均数优秀教学案例

人教版数学八年级下册20.1.1平均数加权平均数优秀教学案例
3.教师对学生的作业进行总结,分析学生的优点和不足,提出改进措施。
在教学过程中,我将以生动的语言、丰富的教学手段,引导学生主动探究,培养学生的合作交流能力和解决问题的能力。同时,我注重根据学生的实际情况,调整教学内容和过程,使学生在愉快的氛围中学习,提高课堂效果。通过本节课的教学,希望学生能够掌握平均数和加权平均数的概念、性质和应用,提高解决实际问题的能力。
三、教学策略
(一)情景创设
1.利用生活实例,如学校运动会、家庭旅游等场景,引导学生发现平均数和加权平均数的概念,激发学生的学习兴趣。
2.通过多媒体课件,展示平均数和加权平均数在现实生活中的应用,增强学生对知识的理解。
3.创设问题情境,如“小明家和邻居家的平均身高相同,但小明家的人更矮,邻居家的人更高,这是为什么?”引导学生思考并探讨平均数的性质。
五、案例亮点
1.生活情境的引入:本节课通过生活实例的引入,使学生能够直观地感受到平均数和加权平均数在实际生活中的应用,增强了学生对知识的理解和兴趣。
2.学生主体性的发挥:在教学过程中,教师充分尊重学生的主体地位,鼓励学生发表自己的见解,引导学生主动探究,培养了学生的自主学习能力。
3.合作交流的培养:通过小组合作、讨论交流的方式,学生能够与他人共同探讨问题,分享观点,提高了学生的合作交流能力。
人教版数学八年级下册20.1.1平均数加权平均数优秀教学案例
一、案例背景
本节课是人教版数学八年级下册20.1.1“平均数与加权平均数”的内容。平均数和加权平均数是初中数学中的重要概念,它们在实际生活中有着广泛的应用。通过学习这两个概念,学生可以更好地理解数据的统计意义,提高解决实际问题的能力。
在制定教学案例时,我充分考虑了学生的学情和课程内容。针对八年级学生的认知水平,我设计了丰富的教学活动,以引导学生从生活情境中发现问题,提出问题,进而探究平均数和加权平均数的求法。在教学过程中,我注重培养学生的动手操作能力、合作交流能力和思维能力,使学生在掌握知识的同时,提高解决问题的能力。

最新人教版八年级数学下册20.1.1第1课时平均数和加权平均数word导学案教学设计

最新人教版八年级数学下册20.1.1第1课时平均数和加权平均数word导学案教学设计

第二十章数据的分析(2)数据的能够反映数据的相对重要程度!三、自学自测要点归纳: 一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则 叫做这n 个数的加权平均数.例1 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:探究点2:加权平均数的其他形式 知识要点:在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n )那么这n 个数的算术平均数 也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权.例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数). 1.在2017年中山大学数科院的研究生入学考试中,两名考生在笔试、面试中的成绩(百2.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?2.下列各组数中,能构成直角三角形的是( )A.4,5,6B.1,1,2C.6,8,11D.5,12,23 3.下列各式是最简二次根式的是( ) A.9 B.7 C.20 D.0.3 4.下列运算正确的是( ) A.5-3=2 B.149=213C.8-2=2D.2(25)-=2-5 5.方程|4x -8|+x y m --=0,当y>0时,m 的取值范围是( ) A.0<m <1 B.m ≥2 C.m ≤2 D.m <26.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( ) A.8 B.10 C.27 D.10或277.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形8.能判定四边形ABCD 为平行四边形的题设是( ) A.AB ∥CD ,AD=BC B.AB=CD ,AD=BC C.∠A=∠B ,∠C=∠D D.AB=AD ,CB=CD9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD 时,它是正方形第9题图 第10题图 第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4) S △AOB =S 四边形DEOF 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.43a b +126b a b +-+可以合并,则ab = .12.若直角三角形的两直角边长为a、b,且满足269a a-++|b-4|=0,则该直角三角形的斜边长为.13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=258π,S2=2π,则S3= .14.四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,△ABC在正方形网格中,若小方格边长为1,则△ABC的形状是.16.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.三、解答题(共66分)19.(8分)计算下列各题:(1)48-18-13-0.5;(2)(23)2015·3)2016-2×|-32|-(3)0.20.(8分)如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.21.(8分)已知9+11与9-11的小数部分分别为a,b,试求ab-3a+4b-7的值.22.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.八年级数学下期末综合检测卷一、选择题(每小题3分,共30分)1. ) A.1个 B.2个 C.3个 D.4个2.x 的取值范围为( ) A.x ≥4 B.x ≠3 C.x ≥4或x ≠3 D.x ≥4且x ≠33.下列计算正确的是( )=22 D.-154.在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,则点C 到AB 的距离是( )A.365 B.1225 C.945.平行四边形ABCD 中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm ,AC ∶BD=4∶3,则菱形的面积是()A.12 cm2B.24 cm2C.48 cm2D.96 cm2第6题图第8题图第10题图7.若方程组的解是.则直线y=-2x+b与y=x-a的交点坐标是()A.(-1,3)B.(1,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,410.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.54B.52C.53D.65二、填空题(每小题3分,共24分)11.当x= 时,二次根式x+1有最小值,最小值为.12.已知a,b,c是△ABC的三边长,且满足关系式222c a b--+|a-b|=0,则△ABC的形状为.13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为.第14题图第16题图第18题图15.在数据-1,0,3,5,8中插入一个数据x,使得该组数据的中位数为3,则x的值为.16.如图,□ABCD中,E、F分别在CD和BC的延长线上,∠ECF=60°,AE∥BD,EF ⊥BC,EF=23,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF,②∠AEB=75°,③BE+DF=EF,④S正方形ABCD=3其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)2-3|-212-⎛⎫-⎪⎝⎭18(2)先化简,再求值:a ba+÷(-a-22ab ba+),其中a=3+1,b=3-1.20.(8分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10 cm,AB=8 cm.求EF的长.21.(9分)已知一次函数的图象经过点A(2,2)和点B(-2,-4).(1)求直线AB的解析式;(2)求图象与x轴的交点C的坐标;(3)如果点M(a,-12)和点N(-4,b)在直线AB上,求a,b的值.22.(9分)(湖北黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.(10分)(山东德州中考)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?24.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(12分)如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B 两点,且△ABO的面积为12.(1)求k的值;(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.。

人教版八年级下期 教案设计20.1.1 第1课时 平均数和加权平均数

人教版八年级下期 教案设计20.1.1 第1课时 平均数和加权平均数

人教版八年级下期教案设计20.1.1 第1课时平均数和加权平均数20.1数据的集中趋势20.1.1平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究探究点一:平均数【类型一】已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()A.8B.5C.4D.3解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】已知一组数据的平均数,求新数据的平均数已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是() A.6B.8C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】 以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( )A .14岁B .14.3岁C .14.5岁D .15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】 以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( )A .87分B .87.5分C .88分D .89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】 以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】 加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。

人教版数学八年级下平均数和加权平均数教案设计

人教版数学八年级下平均数和加权平均数教案设计
学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
选手
表达能力
阅读理解
综合素质
汉字听写
甲85788573乙73
80
82
83
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;
(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.
方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.
解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.
方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.
【类型四】以比的形式给出各数据的“权”
小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )
二、合作探究
探究点一:平均数
【类型一】已知一组数据的平均数,求某一个数据
如果一组数据3,7,2,a,4,6的平均数是5,则a的值是( )
A.8 B.5 C.4 D.3
解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A.

八年级数学人教版下册20.1.1加权平均数优秀教学案例

八年级数学人教版下册20.1.1加权平均数优秀教学案例
1.让学生理解加权平均数的含义,掌握其计算方法,能够运用加权平均数解决实际问题;
2.培养学生的数学思维能力,提高他们在生活中运用数学知识的意识;
3.通过对加权平均数的学习,培养学生团队合作、沟通交流的能力。
在教学过程中,教师应注重启发式教学,引导学生主动探究、发现规律,并通过小组讨论、互动交流等方式,充分调动学生的积极性,提高他们的学习兴趣。同时,结合生活实际,选取具有代表性的例题,让学生在解决问题的过程中,体会加权平均数在生活中的重要作用。
1.通过小组讨论、互动交流,培养学生的团队合作能力和沟通交流技巧;
2.利用生活实例,引导学生发现加权平均数在实际生活中的应用,提高学生运用数学知识解决实际问题的能力;
3.培养学生主动探究、发现规律的数学思维能力,激发学生对数学的兴趣;
4.通过对加权平均数的学习,培养学生运用数学知识进行分析、解决问题的方法。
2.利用数学情境导入:通过设计一个有趣的课堂游戏,让学生在游戏中体验加权平均数的计算方法,激发学生的学习兴趣。
(二)讲授新知
1.讲解加权平均数的定义:通过PPT展示、讲解,让学生理解加权平均数的含义,明确权数的作用;
2.讲解加权平均数的计算方法:通过示例、讲解,让学生掌握加权平均数的计算公式,能够熟练运用加权平均数解决实际问题;
(二)问题导向
1.设计具有挑战性的问题,激发学生的思考兴趣,如“如何计算一家企业的平均工资?”、“在评选优秀学生时,如何合理计算学生的综合成绩?”等;
2.引导学生从问题中发现关键信息,提炼数学问题,如在计算平均工资问题时,引导学生关注工资数据的不同层级(如基本工资、奖金等);
3.鼓励学生积极探究、发现规律,培养学生的数学思维能力。
三、教学策略
(一)情景创设

人教版八级数学下册第20章《平均数》教学设计

人教版八级数学下册第20章《平均数》教学设计

平均数授课方案第一课时授课方案思想:本节从解决实责问题出发,引出对数据平均数和数据颠簸大小的研究,同时浸透用样本估计整体的思想。

授课目的1.知识与技术:描述加权平均数的看法,会求一组数据的加权平均数。

2.过程与方法:体验求加权平均数的过程,认识“权”的意义,锻炼数据办理的能力。

依照加权平均数的求解过程,培养相应的判断能力。

3.感神态度与价值观:经过解决身边的实责问题,初步认识到数学与人类生活的亲近联系及对人类历史发展的作用。

授课重点:1.加权平均数的看法;2.会求一组数据的加权平均数的意义。

授课难点:说明加权平均数的意义,会求一组数据的加权平均数。

授课方法:引导法授课安排: 2 课时授课媒体:幻灯片课件第 1 课时授课过程(一)创立问题情境,引入新课用样本估计整体是统计的基本思想。

当所要察看的整体的个数很多也许察看自己带有破坏性时,我们常常经过用样本估计整体的方法来认识整体。

看下面的问题:(配幻灯片1)农科院为了选出合适某地种植的甜玉米种子,对甲、乙两个品种各用10 块试验田进行试验,获得各试验田每公顷的产量(见下表)。

依照这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?各试验田每公顷产量品种(单位:吨)甲乙甜玉米的产量和产量的牢固性是农科院选择种子时所关心的问题。

怎样察看一种甜玉米的产量和产量的牢固性呢?这要用到本章将要学习的怎样用样本的平均数和方差估计整体的平均数和方差等知识。

(二)解说新课以前,我们对平均数、中位数和众数有了—些认识。

知道它们都能够作为一组数据的代表,从不同样的角度供应信息。

从本节开始,我们将在实责问题情境中,进一步商议它们的统计意义,领悟它们在解决实责问题中的作用。

1.问题:某市三个郊县的人数及人均耕地面积以下表:郊县人数 /万人均耕地面积 /共顷A15B7C10这个市郊县的人均耕地面积是多少?(精确到0.01 公顷)。

学生分组谈论,发生疑问后,教师恩赐引导,引出“加权平均数”的看法。

八年级数学下册《平均数加权平均数》教案、教学设计

八年级数学下册《平均数加权平均数》教案、教学设计
5.创新思考题:鼓励学生发挥自己的想象力,设计一道与平均数和加权平均数相关的数学问题,并尝试解决。此举旨在培养学生的创新思维和问题解决能力。
作业要求:
1.学生需独立完成基础巩固题和提高拓展题,确保对基本概念和计算方法的掌握。
2.实践应用题要求学生以小组为单位,分工合作,共同完成数据的收集、整理和分析。
3.小组合作,探究学习:将学生分成小组,让他们在合作中共同探讨平均数和加权平均数的相关问题。教师在此过程中给予适当的引导和指导,鼓励学生发表自己的观点,培养学生的团队合作能力和创新思维。
4.理论联系实际,学以致用:布置具有实际背景的练习题,让学生运用所学知识解决实际问题。通过这种方式,帮助学生将理论知识与实际应用相结合,提高他们解决实际问题的能力。
(四)课堂练习
1.教学内容:教师设计具有实际背景的练习题,让学生独立完成,巩固所学知识。
设计意图:通过课堂练习,检验学生对平均数和加权平均数的理解和掌握程度。
2.练习题:包括计算简单平均数、加权平均数,以及解决实际问题等类型。
3.学生活动:认真完成练习题,及时反馈,查漏补缺。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结平均数和加权平均数的概念、计算方法及其在实际生活中的应用。
(二)过程与方法
1.通过小组合作、讨论、实践等方式,让学生在探索中掌握平均数和加权平均数的概念及其应用。
2.利用实际问题引入本节课的内容,引导学生通过观察、分析、归纳等过程,发现平均数和加权平均数在生活中的广泛应用。
3.设计丰富多样的练习题,巩固学生对平均数和加权平均数的理解和运用,提高他们的解题能力。
设计意图:通过总结归纳,帮助学生巩固所学知识,提高数学素养。
2.学生活动:积极参与总结,分享自己在学习过程中的收获和感悟。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1数据的集中趋势
20.1.1平均数
第1课时平均数和加权平均数
1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)
2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)
一、情境导入
在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).
二、合作探究
探究点一:平均数
【类型一】已知一组数据的平均数,求某一个数据
如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()
A.8B.5C.4D.3
解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A.
方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.
【类型二】已知一组数据的平均数,求新数据的平均数
已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是() A.6B.8C.10 D.无法计算
解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.
方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.
探究点二:加权平均数
【类型一】以频数分布表提供的信息计算加权平均数
某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如
锻炼时间是()
A.6.2小时B.6.4小时
C.6.5小时D.7小时
解析:根据题意得(5×10+6×15+
7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.
方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.
【类型二】 以频数分布直方图提供的信息计算加权平均数
小明统计本班同学的年龄后,绘
制如右频数分布直方图,这个班学生的平均年龄是( )
A .14岁
B .14.3岁
C .14.5岁
D .15岁
解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.
方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
【类型三】 以百分数的形式给出各数据的
“权”
某招聘考试分笔试和面试两种,
其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( )
A .87分
B .87.5分
C .88分
D .89分
解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.
方法总结:笔试和面试所占的百分比即
为“权”,然后利用加权平均数的公式计算.
【类型四】 以比的形式给出各数据的
“权”
小王参加某企业招聘测试,他的
笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )
A .255分
B .84分
C .84.5分
D .86分
解析:根据题意得85×2
2+3+5

80×
32+3+5+90×5
2+3+5
=17+24+45
=86(分).故选D.
方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.
【类型五】 加权平均数的实际应用
学校准备从甲乙两位选手中选择
一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
解析:(1)先用算术平均数公式,计算乙
的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.
解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;
(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.
方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.
三、板书设计
1.平均数与算术平均数
2.加权平均数
“权”的表现形式
这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。

相关文档
最新文档