平均数与加权平均数 教学设计(一)
九年级数学上册《加权平均数》教案、教学设计

(五)总结归纳
1.教师引导学生回顾本节课所学内容,对加权平均数的概念、性质、计算方法及应用进行总结。
2.学生分享学习心得,交流在学习过程中遇到的困难和解决问题的方法。
3.教师对本节课的学习情况进行总结,强调加权平均数在实际生活中的重要性,并鼓励学生在日常生活中多观察、多思考。
二、学情分析
九年级的学生已经具备了一定的数学基础,对平均数的概念和计算方法有了初步的了解。在此基础上,学习加权平均数,他们需要在原有的知识基础上,进一步拓展对平均数概念的理解,掌握加权平均数的计算及应用。然而,学生在面对实际问题中数据的处理和分析时,可能会存在一定的困难。因此,在教学过程中,应关注以下几个方面:
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
2.解题过程中,注重思考和分析,尽量用自己的语言进行描述。
3.小组合作任务中,充分发挥团队协作精神,积极参与讨论,共同解决问题。
4.思考与反思部分,真实反映自己的学习情况,提出具有针对性的改进措施。
作业批改与反馈:
1.教师将及时批改作业,给予评价和反馈。
b.引导学生通过小组合作、讨论交流的方式,共同分析问题,运用加权平均数进行数据解读。
c.教师适时给予指导,帮助学生总结经验,提高数据分析能力。
(二)教学设想
1.创设情境,激发兴趣:通过引入与学生生活密切相关的实际问题,激发学生对加权平均数的学习兴趣。
2.自主探究,合作交流:给予学生充足的自主探究时间和空间,鼓励他们通过小组合作、交流讨论,共同解决实际问题。
4.教师对各小组的讨论进行点评,引导学生发现问题和解决问题,提高学生的合作能力和思维能力。
加权平均数教案(教学设计)

《平均数》教学设计一、教学目标(一)知识与技能: 理解算数平均数、加权平均数的概念,并会运用公式进行计算;理解权的意义;知道权的三种表现形式。
(二)过程与方法: 通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
(三)情感态度与价值观:培养学生积极参与、主动探究的精神, 通过解决身边的实际问题,让学生初步认识数学与生活的密切联系。
二、学情分析学生在小学学习了平均数的基础知识,对平均数有了初步的了解;在上学期还学习了数据的收集和整理。
因此他们已经具备了学习平均数的知识结构和认知特点。
三、重难点【教学重点】理解算数平均数、加权平均数的概念,并会运用公式进行计算。
【教学难点】理解权的意义。
四、教学准备多媒体课件,导学案五、教学方法讲练结合六、教学过程活动1【导入】创设情景,引入新课同学们,如今我们生活在一个数字化的时代,数据无处不在,我们不仅要收集和整理数据,还要对数据进行分析和处理,今天,我们进入第20章第一节平均数的学习。
(板书课题)【设计意图】数学来源于生活,从实际生活引入课题,激发学生的学习兴趣,使学生不由自主的参与到教学活动中来。
活动2【目标】展示学习目标请学生迅速浏览学习目标。
活动3【活动】提出问题同学们会算平均数吗?(集体回答)如何计算我们班上同学的平均身高?(抽同学回答)小结:如果我们班上有n个同学,我们用x1表示第一位同学的身高,用x2表示第二位同学的同学,以此类推,则全班同学的平均身高为:。
(板书)【设计意图】请学生起来回答问题,可以训练学生的胆量和语言表达能力。
活动4【概念】概念学习一一般地,如果有n个数。
那么叫做这n个数的平均数,读作“x拨” .活动5【练习】练一练1.接下来,我们就利用这个公式来求下列各组数据的平均数,时间2分钟,(抽一位同学来黑板上演示)2.对于第2个小题,有没有不同的求解过程?(请一个学生回答,教师板书)活动6【例题】例题探究一1.在平时,期中,期末成绩中,哪个成绩最重要?从哪个数据看出来的?(抽同学回答)点拔:一般来说,由于各个指标在总结果中占有不同的重要程度,因而会赋予不同的权重。
人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。
本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。
二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。
但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。
此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。
三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。
2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。
3.培养学生的运算能力和合作精神,提高学生的数学素养。
四. 教学重难点1.重点:加权平均数的计算方法。
2.难点:对实际问题中权重的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。
2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。
3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。
4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。
2.准备PPT课件,展示平均数和加权平均数的定义和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。
通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。
通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。
同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。
平均数与加权平均数 教案

23.1 平均数与加权平均数教学目标知识技能:1.认识和理解数据的权及其作用;2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算.数学思考:1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念;2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.解决问题:会利用加权平均数解决实际问题.情感态度:通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.教学重点加权平均数的概念以及运用加权平均数解决实际问题.教学难点对数据的权及其作用的理解.教学过程一、复习引入教师讲解:在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用,例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图20.1.3—1).考试成绩更为重要.这样如果一个学生的平时成绩为70分,考试成绩为90分,那么他的学期总评成绩应该为70×40%+90×60%=82(分)二、探究新知(一)加权平均数概念的引入教师讲解;一般来说,由于各个指标在总结果中占有不同的重要性,因而会被赋予不同的权重,上例中的40%与60%就是平时成绩与考试成绩在学期总评成绩中的权重,最后计算得到的学期总评成绩82分就是上述两个成绩的加权平均数.教师要求学生模仿上题计算下面问题:小青在初一年级第二学期的数学成绩分别为:第1次测验得89分,第二次测验得78分,第3次测验得85分,期中考试得90分,期末考试得87分.如果按照图20.1.3—2所显示的平时、期中、期末成绩的权重,那么小青该学期的总评成绩应该为多少分?学生计算后教师给出答案.设置此题的目的主要是让学生熟悉按权重计算平均值的方法.考试60%平时40%图21.1.3—1期中30%平时10%期末60%图21.1.3—2专业知识工作经验仪表形象图21.1.3—3(二)例题讲解教师提出问题:某公司对应聘者A 、B 、C 、D 进行面试,并按三个方面给应聘者打分,最后打分结果如下表所示,如果你是人事主管,会录用哪一个应聘者?四位应聘者的面试成绩满分 A B C D 专业知识 20 14 18 17 16 工作经验 20 18 16 14 16 仪表形象2012111414教师提出各种不同意见让学生分析:甲同学说:看谁的总分高就录用谁,通过计算可以发现D 的总分最高,应被录用.这时乙同学说:我有不同意见,三个方面满分都是20分,但按理这三个方面的重要性应该有所不同,比如专业知识就应该比仪表形象更重要.所以不能像甲同学所说的那样平均.教师指出,显然乙同学的意见更为合理.教师再提出:假设上述三个方面的重要性之比为6∶3∶1(如图20.1.3—3),那么应该录用谁呢?教师给出A 应聘者得分的计算方法:(见课本)教师要求学生模仿上述计算方法算出另三位应聘者的最后得分.然后从计算结果来确定谁应被录用.学生计算完后教师给出答案.教师提出以下问题让学生计算:如果这三个方面的重要性之比为10∶7∶3,此时哪个方面的权重最大?哪一位应被录用呢?学生计算后会发现,4个人的分数全改变了,得分最高的人也改变了.通过这一题要让学生领会,权重的选择既要符合客观实际,又要带有人为的因素. 三、随堂练习 课本练习题 四、课时总结本节课要让学生通过实际问题理解权重的概念(不要求学生掌握它的定义,能理解会用就行)并能计算加权平均数.五、布置作业 六、板书设计黑板分为左、中、右三部分,中间与右边用于教师板书课本例题等,写满后擦去更新.左边用于板书以下内容:加权平均数的意义. “权”的含义. 加权平均数的计算.作业优化设计1、有m 个数的平均值是x ,n 个数的平均值是y ,则这m +n 个数的平均值是( ) A 、2x y + B 、x y m n ++ C 、mx nym n++ D 、x y +2、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差为()A、35B、3C、0.5D、-33、某校举行运动会,按年级设奖,第一名得5分,第二名得3分,第三名得2分,第四名得1分,某班派8名同学参加比赛,共得2个第一,1个第三,4个第四,则该班8名同学的平均得分为______________.4、某班有40名学生,其中14岁的有10人,15岁的有20人,16岁的有10人,这个班学生的平均年龄为_____________岁.5、小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长了9%,30%,6%,小颖家今年的总支出与去相比增长的百分数是多少?6、某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:表1 演讲答辩得分表(单位:分)A B C D E甲90 92 94 95 88乙89 86 87 94 91表2 民主测评票统计表(单位:张)“好”票数“较好”票数“一般”票数甲40 7 3乙42 4 4 规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)在什么范围内,甲的综合得分高;在什么范围内,乙的综合得分高?。
第1课时 平均数(一)教案

第二十章 数据的分析20.1 数据的集中趋势第1课时 平均数(一)●学习目标1.理解加权平均数的统计意义.2.会用加权平均数分一组数据的集中趋势,发展数据分析能力.●学习重点对权及加权平均数的概念的理解.●学习难点运用加权平均数描述数据的集中趋势.教学过程设计一、创设情景 明确目标 郊县 人数/万 人均耕地面积/公顷A 15 0.15B 7 0.21C 10 0.18问题:小明同学求得这个市郊县的人均耕地面积为:x =0.15+0.21+0.183=0.18(公顷) 你认为小明的解法对不对?为什么?学生思考回答:答:不对.因为人均耕地面积是用总面积除以总人数.而不是三个人均面积的平均数. 归纳导入:小明的回答不正确,如何计算人均耕地面积呢?二、自主学习 指向目标自学教材第111至112页的内容,学习至此,请完成学生用书.(1)加权平均数__一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数__. (2)在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分.则这5名同学的平均成绩是__8.6分__.(3)某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩是__8.3环__.(4)从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤__10.4__元.三、合作探究 达成目标探究点一 加权平均数的有关概念活动1:教材中问题三个郊县的人数(单位:万)15、7、10在计算人均耕地面积时作用重要不重要?展示点评:这三个人数分别叫0.15公顷、0.21公顷、0.18公顷三个数据的__权__. 上面的平均数0.17称为0.15、0.21、0.18的__加权平均数__.小组讨论:n 个数的加权平均数.若n 个数x 1,x 2,…x n 的权分别是w 1,w 2…w n ,则这n 个数的加权平均数是多少?反思小结:x =x 1w 2+x 2w 2+…+x n w n w 1+w 2+…+w n,数据的权能够反映数据的相对__重要程度__. 针对训练1.若1,3,x ,5,6五个数的平均数为4,则x 的值为( D )A .3B .4C .4.5D .52.若m 个数的平均数是a ,n 个数的平均数是b ,则这m +n 个数的平均数是__ma +nb m +n__.3.某校几名学生参加今年全国初中数学竞赛,其中8名男同学的平均成绩为85分,4名女同学的平均成绩为76分,则该校12名同学的平均成绩为__82__.探究点二 加权平均数的运用活动2:一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?展示点评:学生独立完成计算过程,得到结论同样的一组数据,如果规定的权变化,则加权平均数随之改变.小组讨论:(1)问和(2)问有什么区别?计算一般平均分时各项成绩的权分别是多少?在权重不同的情况下,我们如何计算加权平均数?反思小结:上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权.针对训练4.某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( D )A .84B .86C .88D .905.某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验.小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分.(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少? 解:(1)98×50%+80×20%+90×30%=92分答:这学期小明的数学总评成绩是92分.(2)(98×5+80×2+90×3)÷10=92分6.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比选手 演讲内容 演讲能力 演讲效果A 85 95 95B 95 85 95请决出两人的名次.解:A :85×50%+95×40%+95×10%=90B :95×50%+85×40%×95×10%=91所以B 的名次比A 好.四、总结梳理 内化目标1.什么是加权平均数?什么是权?解:根据实际需要对不同类型的数据赋予与其重要程度相应的比重,这些比重叫做权,相应的平均数叫做加权平均数.2.如何求加权平均数?解:x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n(注意:加权平均数和平时所求的平均数有区别)五、达标检测 反思目标1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为__3.5__.2.某人打靶,有a 次打中8环,b 次打中9环,则这个人平均每次中靶__8a +9b a +b__环. 3.如果数据2,3,x ,4的平均数是3,那么x 等于__3__.4.已知1,2,3,a ,b ,c 的平均数是8,那么a ,b ,c 的平均数是__14__.5.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分.已知该班平均成绩为80分,问该班有多少人?答:26人6.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示: 应聘者 笔试 面试 实习甲 85 83 90乙 80 85 92试判断谁会被公司录取,为什么?答:乙被公司录取.因为乙的评分为87.5,而甲的评分为86.9.作业练习 深化目标上交作业:教材第121至122页练习第1、3、4题;课后作业:见学生用书部分.●教学反思平均数是统计中的一个重要概念,在教学中突出让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.。
20.1.1平均数与加权平均数教学设计

20.1.1 平均数-加权平均数、教学目标知识与技能1、认识权、会求加权平均数,并体会权的差异对结果的影响。
2、理解算数平均数和加权平均数的区别和联系,并能利用其解决一些实际问题。
过程与方法尝试从实际情境中处理信息,在观察、猜想、说明过程中体会数学思考过程的层次性和表述的严谨性; 培养学生观察问题、分析问题、解决问题的能力;培养学生认真、耐心、细致的学习态度和学习习惯.情感态度与价值观通过权对结果的影响,使学生初步对“扬长避短”有所理解,体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
在探索过程中形成实事求是的态度和勇于探索的精神.二、教学重点和难点重点:1.理解权和加权平均数的概念,会求一组数据的加权平均数. 2.体会权的差异对结果的影响,认识到权的重要性。
3. 探索算数平均数和加权平均数的区别于联系。
难点:1. 体会权的差异对结果的影响,认识到权的重要性。
2.探索算数平均数和加权平均数的区别于联系。
三、学情分析学生在小学已经学习了算术平均数,并且知道了算术平均数的算法。
但对于初中生而言,已经会遇到学校招聘学生会分笔试面试成绩配比问题;学生成绩报告测中综合成绩是如何打分等问题。
以及今后面临考公务员,事业单位等笔试面试分数配比等问题。
此时简单的算数平均数已经不能处理这些问题。
因此,本章内容的学习对学生现在以及将来都会有重要的影响。
四、教学方法与教学手段1、教法选择:设疑、活动、交流、引导、归纳、拓展2、学法指导:观察思考探究,体验知识的生成过程;比较、发现、归纳。
3、教学手段:利用多媒体为媒介,为学生提供生动的实验背景,以学生为主体,探索、发现知识,教师总结点评。
五、教学过程1 •情境创设某学校招聘一名语文教师,对甲、乙两名候选人进行了三项素质测试,她们的各项测试成绩如下表所示:根据实际需要,学校将课堂教学、普通话、和粉笔字三项测试得分按 6 3 :的比例确定各人的测试成绩,此时谁将被录用?小结:在实际生活中,一组数据中各个数据的重要程度并不总是相同的,有时有些数据比其他数据更重要。
冀教版数学九年级上册23.1《平均数与加权平均数》教学设计

冀教版数学九年级上册23.1《平均数与加权平均数》教学设计一. 教材分析冀教版数学九年级上册第23.1节《平均数与加权平均数》是学生在掌握了算术平均数、几何平均数等基础知识后,进一步学习平均数的一种拓展。
本节内容通过引入加权平均数的概念,让学生更好地理解平均数的含义,并能运用加权平均数解决实际问题。
教材通过丰富的例题和练习,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了算术平均数、几何平均数等基础知识,对于平均数的概念和求法有一定的了解。
但加权平均数的概念和求法对于学生来说是一个新的知识点,需要通过实例来理解和掌握。
学生的思维方式从形象思维向抽象思维转变,需要教师引导和启发。
三. 教学目标1.理解加权平均数的含义,掌握加权平均数的求法。
2.能够运用加权平均数解决实际问题。
3.培养学生的抽象思维能力和解决实际问题的能力。
四. 教学重难点1.加权平均数的含义和求法。
2.运用加权平均数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生思考和探索。
2.运用实例讲解,让学生直观地理解加权平均数。
3.采用小组合作学习,培养学生的团队协作能力。
4.注重练习,巩固所学知识。
六. 教学准备1.准备相关的实例和练习题。
2.准备多媒体教学设备,如投影仪等。
七. 教学过程1.导入(5分钟)通过提问方式复习已学的平均数知识,引导学生思考平均数的含义和求法。
然后引入加权平均数的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现一组实际问题,如某班级有30名学生,其中语文成绩平均分为80分,数学成绩平均分为90分,问该班级的总成绩平均分是多少?让学生独立思考和解答,引导学生运用已学的平均数知识解决问题。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用加权平均数的概念和求法计算。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行小组合作学习,共同完成一组练习题。
教师选取部分学生进行解答展示,并给予评价和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数与加权平均数教学设计(一)教学设计思想本节内容一共需要三个课时来学习,第一课通过比较两种小麦单位面积的产量,引入平均数的概念,并介绍用计算器计算一组数据的平均数的方法。
第二课时通过探究三次购买的西红柿的平均价格,引入加权平均数的概念,并通过确定比赛名次的例题,让学生认识到加权平均数在实际生活中的应用。
第三课时安排的是学生的一次实践活动,通过让学生估测黑板的宽度,使学生体会,用多次估测值的平均数做实际长度的估计值,可以减少误差的道理。
通过这三个课时的学习掌握这部分内容。
教学目标知识与技能在实际情境中理解平均数的概念和意义,会计算一组数据的算术平均数;能利用计算器计算一组数据的平均数和加权平均数;在具体情境中理解加权平均数的概念,体会“权”的意义,知道算术平均数与加权平均数的联系与区别;提高互相合作与交流的能力。
过程与方法初步经历数据的收集、加工整理的过程,能利用平均数、加权平均数解决一些实际问题,发展数学应用能力;情感态度价值观体会数学知识与现实生活的紧密联系,增强数学应用意识。
教学重难点重点:平均数与加权平均数的概念和意义及其应用。
难点:算数平均数与加权平均数的区别与联系;能利用平均数、加权平均数解决一些实际问题。
解决办法:在实际情境中理解平均数与加权平均数的概念和意义,做到真正理解就有助于理解两者的区别,也容易进一步应用。
教学方法启发式教学,小组讨论教学用具多媒体课时安排3课时教学过程设计第一课时“平均成绩”“平均年龄”“平均收入”“平均产量”……。
打开报纸,翻开书本,“平均”一词随处可见。
你知道平均的含义是什么吗?在实际问题中,怎样求平均数呢?(一)观察与思考将一块试验田分成面积相等的8块,每块100m2,在地力、肥料、管理等相同的条件下试种两个不同品种的小麦,产量如下表:1.从图26—1的两幅统计图中,能看出哪个品种小麦的产量更高些吗?2.用什么数代表A,B两个小麦品种的单位面积(以100m2为单位面积)的产量较合适?3.如果只考虑产量这个因素,哪个品种更适合本地种植?由于同一品种的小麦在四块试验田上的产量有差异,要比较两个品种中哪个产量高,通常情况下是比较它们的平均产量。
品种A和品种B在四块试验田上的平均产量分别为1+++=(95858290)88(kg)41+++=(85100105110)100(kg)4由此可知,品种B比品种A的平均产量高,品种B更适合本地种植。
注:1.通过观察比较,品种B的产量更高。
2.用小麦的平均产量代表较合适。
3.品种B。
一般地,我们把n 个数x1,x2,…,xn 的和与n 的比叫做这n 个数的算术平均数(mean),简称平均数,记作“x ”,读作“x 拔”。
即12n 1x (x x ...x )n=+++ 95,85,82,90与其平均数88的差分别为7,-3,-6,2,它们的和为0。
85,100,105,110与其平均数100的差分别为-15,0,5,10,它们的和也为0。
由此可以看出,平均数是将各数据之间的差异相互抵消的结果,它反映了数据的“一般水平”。
注:一组数据中的每个数据与这组数据平均数的差的和为0。
即12n 12n x x)+(x x)+...+(x x)x x ...x )nx nx nx=0---+++-=- ( =((二)做一做某年级20名学生在一次数学竞赛中的成绩如下:(单位:分) 80 85 70 75 70 75 80 80 75 85 75 80 75 70 80 75 85 70 80 75 (1)整理数据,填写统计表:(2)求这20名学生的平均分数。
小明根据“做一做”第(1)题统计的结果,这样计算平均数:1x (704757+806853)77(20=⨯+⨯⨯+⨯=分) 这样计算合理吗?请和同学交流你的看法。
注:目的是使学生学会对数据进行整理,会用简便方法计算平均数。
(1)(2)77分。
小明的计算方法合理。
实际上,这是求平均数的简便算法。
利用有统计功能的计算器,可以很方便地计算平均数。
下面我们以 A 型计算器为例,说明求20名学生成绩的平均数的步骤:(对其他型号的计算器,请参照使用说明书进行计算)注:用不同型号的计算器求平均数时,按键的顺序可能有所不同。
(三)练习用举手示意的方法调查你们班全体同学的年龄(周岁),将结果填在下面的表格内,并用计算器计算平均年龄。
(四)小结引导学生总结本节的主要知识点。
(五)板书设计第二课时(一)一起探究假期里小红和小惠结伴去买菜,三次购买的西红柿价格和数量如下表:1.从平均价格看,谁比较划算?2.思考小亮和小明的说法,你认为他俩谁说得对?小亮说:每次购买单价相同,三次购买总量也相同,平均价格应该也一样,都是(1.2+1.0+0.8)÷3=1.0(元/千克)。
小明说: 三次购买的总量虽然相同,但花费的金额不等,所以平均价格是不一样的。
注:一起探究目的是探究如何计算三次购买西红柿的平均价格。
当每次购买的数量相同时,平均价格是三次购买单价的算术平均数;当每次购买的数量不同时,则不能用算术平均数计算平均价格。
小亮的说法是不对的,小明的说法有道理。
一般情况下,平均数是两个总量的比。
如=总金额平均价格商品总量=总分数平均分数总人数=总产量单位面积平均产量总面积=行驶总路程平均速度行驶总时间实际上,平均价格是花费总金额与购买西红柿总量的比,因此1.221.02+0.821.0/22x 2⨯+⨯⨯==++小红(元千克)1.211.020.83x 0.93/123⨯+⨯+⨯=≈++小惠(元千克)小惠在三种不同单价下购买西红柿的质量不同,所以对三个单价不能同等看待。
在1.2元/千克,1.0元/千克,0.8元/千克时,购买的西红柿的质量分别为1kg ,2kg ,3kg ,它们各占总质量的123666,,。
所以平均价格为123x 1.21.00.80.93/666=⨯+⨯+⨯≈小惠(元千克)这样计算的平均数叫做加权平均数。
其中123666,,分别叫做1.2,1.0,0.8的权重,简称为权。
注:由于小惠三次购买的西红柿质量是分别占总质量的123666,,,所以应对三个单价分配不同的系数求和,进而求得平均价格。
小红在三种单价下购买的西红柿的质量占总质量的比重都相同,即三种单价的权相同,所以平均价格是三个单价的算术平均数。
在不同权重下,平均价格也不同。
加权平均数的另一种应用是,各项测试成绩的重要程度不同时,人为地确定一个各项测试成绩在总成绩中所占的比例,这些比例则构成各项测试成绩的权重。
不同的权重下求出的平均成绩可能不同,相应地,各选手的排名也会有所改变。
(二)例题例1 某主持人大赛,要进行专业素质、综合素质、外语水平、临场应变四项测试。
如果各项均采用10分制,三名选手的各项测试成绩如下表所示:(1)如果按照四项测试成绩的算术平均数排列名次,名次顺序是怎样的?(2)如果规定按专业素质、综合素质、外语水平和临场应变四项测试的成绩各占60%,20%,10%,10%计算最后成绩,排名次序有什么变化?解:(1)四项测试成绩的平均数及排名次序如下表:(2)三名选手成绩的加权平均数及排名次序如下表按算术平均数排名次,实际上是将四项测试成绩同等看待。
而按加权平均数排名次,则是对每项成绩分配不同的权重,体现每项成绩的重要程度不同。
如专业素质成绩的权重为60%,说明专业素质对主持人最重要。
当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。
用计算器计算甲选手四项成绩的加权平均数按键顺序如下:(选择一元统计模式,准备输入数据))用计算器计算另两名选手成绩的加权平均数可仿照进(保存数据,显示结果x8.73行。
注:用计算器计算加权平均数,可将权重按比例变为整数后作为频数进行计算。
(三)练习为推选一名同学参加学校演讲比赛,班里组织了一次选拔赛,由教师组成评委,对甲、乙、丙三名候选人分别从演讲内容、语言表达能力和感染力三方面打分。
评委打分的结果如下表:答案仿照例1的解答过程:(1)甲、乙、丙按三项得分的算术平均数分别是x 8.53x 8.47x 8.57≈≈≈甲乙丙(分)(分)(分)比较算术平均数,丙是优胜者。
(2)甲、乙、丙按三项得分的加权平均数分别是x =8.46x =8.5x =8.43甲乙丙(分)(分)(分)比较加权平均数,乙是优胜者。
(四)小结引导学生总结本节的主要知识点。
(五)板书设计第三课时 (一)做一做请全班同学目测黑板20s ,估测黑板的宽度(单位:cm):记录每人的估测结果。
(1)8到10人一组,分组统计估测数据,并计算估测数据的平均数。
(2)汇总各组的人数和各组估测数据的平均数,计算全班同学估测数据的平均数。
(3)实际测量黑板的宽度(单位,cm),将结果写在黑板上。
(4)将你估测的结果减去测量的结果,求估测的误差。
用举手的方法统计估测误差,并填写统计表:注:(1)根据本班总人数分组,确定每组人数,每组指派一人汇总本组每人的估测数据并计算出本组估测的平均数。
当各组人数不相同时,应按加权平均数来计算。
(2)计算全班的估测平均数时,应注意是所有数据的和除以总人数。
(3)至少找两名同学来实际测量黑板的宽度。
(4)由教师来统计学生的估测误差,并用举手方式确定每个区间的人数。
(二)大家谈谈1.你的估计结果,小组平均数、全班平均敷,哪个和测量结果更接近?2.估测误差的绝对值不超过10cm的同学占多大百分比?估测误差的绝对值超过20cm的同学占多大百分比?3.用哪个数作为实际宽度的估计值较好?在实际生活中,我们经常要估测或测量物体的长度。
估测时,误差是不可避免的,即使用测量工具也会有误差,但用多次估测值或测量值的平均数作为实际长度的估计值可以减少误差。
注: l.一般地,所有数据的平均数比每小组的平均数可能更接近实际宽度。
2.略。
3.用所有数据的平均数作为实际宽度的估计值较好。
(三)例题例2某班50名同学用目测的方法,估计一本书的长度(单位:cm),将估测数据进行分组整理,结果如下表:利用这50个数据的平均数,估计这本书的长度。
注:由于对数据整理后,损失了原始数据信息,此时求平均数只能采用近似方法。
一般给出平均数的一个范围即可。
解:对于分组数据,在第一组6个数据中,每个数据不小于16,小于20;在第二组19个数据中,每个数据不小于20,小于24……所以50个数据的和不小于16×6+20×19+24×17+28×8=1 108,同时,这50个数据的和小于20×6+24×19+28×17+32×8=1 308。
设这50个数据的平均数为x,则11081308≤,x<5050≤<22.16x26.16对于分组数据,一般得到的是这些数据平均数的一个范围。