八年级数学上册 11.3 多边形及其内角和教案 新人教版
多边形及其内角和第一课时教案数学八年级上第11章113人教版
11.3多边形及其内角和第一课时教案一、教学目标(1)观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角,对角线等数学概念;(2)能由实物中辨别寻找出几何体,由几何体图形联想或设计一些实物形状;(3) 了解类比的数学学习方法。
二、教学重难点重点:连接多边形、内角、外角、对角线的概念以及凸多边形的形状的辨别;难点:正多边形的正确理解以及凸多边形的辨别三、专家建议让学生认识生活中的多边形形状,感受数学与生活的联系;在三角形的基础上,学习多边形把多边形的有关问题转化为三角形问题。
在探究多边形的对角线的条数时,从特殊到一般进行分析,让学生体会从特殊到一般的分析问题的方法。
师生共同探究,教师注意多让学生活动,不要急于得出结论,在学生充分讨论的基础上再给出结论,有利于培养学生的探究精神,从而让学生感受成功的乐趣。
四、教学方法情境引入——探索研讨——总结归纳——练习提高五、教学用具多媒体,三角板,直尺六、教学过程(一)、情景导入[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?(二)、多边形及有关概念(1)多边形的定义这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在同一平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。
多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。
这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。
例题讲解例1:请列出生活中的一些多边形,并指出其特征解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等教师强调:多边形概念的重要提示:在多边形的概念中,要分清以下几个方面(1)在同一平面内;(2)若干线段不在同一直线上;(3)首尾顺次相结;(4)所形成的封闭图形(2)多边形的内角与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
(2)运用多边形内角和解决实际问题:将理论知识应用于实际问题,需要学生具备一定的分析能力和运算技巧。
举例:针对多边形分割、组合等情形,指导学生运用内角和定理进行求解。
(3)多边形内角和与外角和的关系:理解多边形内角和与外角和的关系,有助于提高学生对几何图形的深入理解。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
一、教学内容
人教版初中数学八年级上册11.3节,本节课将围绕多边形及其内角和展开教学。主要内容包括:
1.多边形的定义与性质,例如三角形的内角和定理。
2.多边形内角和的计算公式,即(n-2)×180°,其中n为多边形的边数。
3.通过实际操作,让学生理解并掌握多边形内角和的概念和计算方法。
4.解决与多边形内角和相关的实际问题,例如多边形分割、组合等情形。
5.培养学生运用多边形内角和定理进行几何推理和计算的能力。
本节课将结合教材内容,注重理论与实践相结合,提高学生对多边形内角和知识点的掌握和应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方:1.培养学生的逻辑推理能力:通过多边形内角和定理的推导与应用,让学生理解几何图形之间的内在联系,提高逻辑推理和论证能力。
本节课将紧扣新教材要求,注重培养学生的学科核心素养,提高学生的综合素质。
三、教学难点与重点
1.教学重点
(1)多边形的定义及性质:理解多边形的组成要素,掌握多边形的基本性质,如三角形的内角和定理。
举例:强调三角形内角和为180°,四边形内角和为360°,引导学生发现多边形内角和与边数的关系。
(2)多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。
人教版八年级数学上册《11.3多边形及其内角和》优秀教学案例
(五)作业小结
1.布置作业:让学生运用所学知识,解决一些与多边形有关的问题,如计算多边形的内角和、判断多边形的类型等。
2.鼓励学生独立思考,创新解题,培养他们的实践操作能力。
3.教师对学生的作业情况进行评价,关注他们的知识掌握程度、能力发展水平以及情感态度。
人教版八年级数学上册《11.3多边形及其内角和》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册《11.3多边形及其内角和》,是在学生学习了平面图形的性质、四边形的性质等知识的基础上进行的一节新授课。通过本节课的学习,学生需要掌握多边形的定义、多边形的内角和定理及多边形的内角和与边数的关系。
在教学过程中,我以“问题驱动”为导向,引导学生通过自主探究、合作交流的方式来发现和证明多边形的内角和定理。在课堂中,我注重让学生经历“观察、操作、思考、表达”的过程,培养他们的空间想象能力、逻辑推理能力和数学语言表达能力。
3.运用实例讲解如何运用多边形的内角和定理解决实际问题,如计算不规则图形的内角和等。
4.引导学生思考:如何用数学方法证明多边形的内角和定理?
(三)学生小组讨论
1.划分学习小组,每组选定一个多边形进行探究,尝试用数学方法证明多边形的内角和定理。
2.引导学生通过观察、操作、思考、表达的过程,发现并证明多边形的内角和定理。
3.小组合作:教师组织学生进行小组合作,让学生在讨论、交流中共同解决问题,提高他们的沟通协作能力和实践操作能力。
4.反思与评价:教师鼓励学生在课堂结束后进行自我反思,关注他们的知识掌握程度、能力发展水平以及情感态度,为学生的持续发展提供指导。
5.教学策略:教师运用了情景创设、问题导向、小组合作等多种教学策略,使学生在实践中掌握知识,提高能力,形成良好的学习习惯。
八年级数学上册11.3多边形及其内角和教案(新)新人教
§11.3.1多边形教学目标1.了解多边形及有关概念,理解正多边形及其有关概念.2.区别凸多边形与凹多边形.重点难点1.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.2.难点:多边形定义的准确理解.教学过程一、新课讲授投影:图形见课本P19图11.3一l.你能从投影里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形看投影:图形见课本P19.11.3—6.在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.二、课堂练习课本P21练习1.2.三、课堂小结引导学生总结本节课的相关概念.四、课后作业课本P24第1题.备用题:一、判断题.1.由四条线段首尾顺次相接组成的图形叫四边形.()2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.() 3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()二、填空题.1.连接多边形的线段,叫做多边形的对角线.2.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.3.各个角,各条边的多边形,叫正多边形.三、解答题.1.画出图(1)中的六边形ABCDEF的所有对角线.2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?§11.3.2多边形的内角和教学目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点难点1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n 边形内角和=n×l80°一2×180°=(n一2)×180°.分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。
人教版2020八年级数学上册 第11章 11.3 多边形及其内角和 多边形的外角和教案 (新版)新人教版
多边形的外角和课题:多边形的外角和课时第二课时教学设计课标要求探索并掌握多边形外角和公式教材及学情分析多边形的一个外角可以用相邻的内角表示,这样外角的问题就转化为内角的问题。
运用例2的思路,n边形的外角和是n个平角减去多边形的内角和。
多边形的内角和恒等于360°,与边数的多少无关,这一点与内角和不同,要让学生注意。
本节内容的展开运用了类比、推广的方法,以及把复杂问题转化为简单问题、化未知为已知的思想方法等,教学中应结合具体内容让学生加以体会。
学生以接触过类比思想,通过类比归纳总结对学生难度不大。
课时教学目标1、探索多边形外角和公式,并能运用公式解决简单的问题。
2、通过求三角形、四边形、五边形外角和,运用类比的方法得出多边形外角和计算公式。
3、经历探索类比总结规律的过程,激发学生学习的兴趣。
重点多边形外角和公式难点多边形外角和公式的推导教法学法指导教具准备PPT教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课创设情境1、什么是三角形的外角?外角有什么性质?2、三角形的外角是多少度?3、我们是如何计算三角形的外角和的呢?4、多边形的内角和是如何计算的呢?通过问题回顾三角形内角和定理,引导学生这个定理探索多边形的内角和教学过程探索多边形内角和如图,你能仿照上面的方法求四边形的外角和吗?四边形外角和=4个平角-四边形内角和=5×180°-(4-2) × 180°=360 °如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?1234ABCDEF56通过运用平角的定义和多边形内角和定理逐步推导多边形外角和,培养学生归纳总结规律的能力巩固练习n边形外角和3、如果一个四边形的一组对角互补,那么另一组4、正n边形的每一个外角等于___.每一个内角等于 ,它是几边形?(n-2).180=3×360 行综合运用,培。
人教版八年级上册第十一章11.3多边形的内角和教学设计
(二)讲授新知
1.教师引导学生通过观察和实际操作,发现多边形内角和与边数的关系。首先,从四边形开始,让学生剪下四个角,拼成一个平角,从而得出四边形的内角和是360°。
2.接着,教师提出问题:五边形的内角和是多少?引导学生通过同样的方法,剪下五个角,拼成一个平角,发现五边形的内角和是540°。
8.教学评价,促进发展
教师应采用多元化评价方式,如口头提问、书面作业、小组讨论等,全面评估学生的学习效果,并及时给予反馈,促进学生的持续发展。
四、教学内容与过程
(一)导入新课
1.教师出示一幅美丽的镶嵌图案,引导学生观察其中的多边形,并提出问题:“这些多边形是由哪些三角形组成的?它们的内角和是多少?”通过这个问题,让学生回顾三角形的内角和知识,为新课的学习做好铺垫。
5.情境总结,提升认知
在课堂小结环节,教师可通过提问、让学生分享学习心得等方式,帮助他们巩固所学知识,提升认知水平。
6.融入信息技术,提高教学效果
利用多媒体、网络等信息技术手段,为学生提供丰富的学习资源,如动画、视频等,帮助他们直观地理解多边形内角和的计算方法。
7.课后作业,巩固提高
教师应布置适量、有针对性的课后作业,让学生在课后巩固所学知识,提高解题能力。
3.教师继续提问:六边形、七边形、八边形的内角和分别是多少?学生通过实际操作,总结出多边形内角和的计算公式:内角和= (边数- 2) × 180°。
4.教师引导学生从几何图形的角度,解释多边形内角和的计算公式。通过分析,让学生明白每个顶点处的内角和为180°,所以多边形的内角和等于所有顶点处的内角和之和,即为(边数- 2)× 180°。
八年级数学上册第11章三角形11.3多边形及其内角和多边形的外角和教案新版新人教版
多边形的外角和课题:多边形的外角和第二教学设计课标要求探索并掌握多边形外角和公式教材及学情分析多边形的一个外角可以用相邻的内角表示,这样外角的问题就转化为内角的问题。
运用例2的思路,n边形的外角和是n个平角减去多边形的内角和。
多边形的内角和恒等于360°,与边数的多少无关,这一点与内角和不同,要让学生注意。
本节内容的展开运用了类比、推广的方法,以及把复杂问题转化为简单问题、化未知为已知的思想方法等,教学中应结合具体内容让学生加以体会。
学生以接触过类比思想,通过类比归纳总结对学生难度不大。
课时教学目标1、探索多边形外角和公式,并能运用公式解决简单的问题。
2、通过求三角形、四边形、五边形外角和,运用类比的方法得出多边形外角和计算公式。
3、经历探索类比总结规律的过程,激发学生学习的兴趣。
重点多边形外角和公式难点多边形外角和公式的推导教法学法指导教具准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课创设情境1、什么是三角形的外角?外角有什么性质?2、三角形的外角是多少度?3、我们是如何计算三角形的外角和的呢?4、多边形的内角和是如何计算的呢?通过问题回顾三角形内角和定理,引导学生这个定理探索多边形的内角和教学过程探索多边形内角和如图,你能仿照上面的方法求四边形的外角和吗?四边形外角和=4个平角-四边形内角和=5×180°-(4-2) × 180°=360 °如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?1234ABCDEF56通过运用平角的定义和多边形内角和定理逐步推导多边形外角和,培养学生归纳总结规律的能力巩固练习n边形外角和3、如果一个四边形的一组对角互补,那么另一4、正n边形的每一个外角等于___.每一个内角,倍,它是几边形?行综合运用,培。
八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案 (新版)新人教版
八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案(新版)新人教版一. 教材分析《新人教版八年级数学上册》第11.3节介绍了多边形及其内角和,11.3.2节主要讲解多边形的内角和。
本节内容是学生在学习了平面几何基本概念和三角形内角和的基础上,进一步探究多边形的内角和。
通过本节内容的学习,使学生掌握多边形的内角和定理,提高学生的逻辑思维能力和空间想象能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本概念,对三角形的内角和有了一定的了解。
但多边形的内角和可能对学生来说较为抽象,因此,在教学过程中,需要引导学生从已知知识出发,逐步探究多边形的内角和。
三. 教学目标1.让学生理解多边形的内角和定理。
2.培养学生用数学知识解决实际问题的能力。
3.提高学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.重点:掌握多边形的内角和定理。
2.难点:如何推导出多边形的内角和定理。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等,让学生在探究中学习,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学PPT。
2.教学素材(如多边形的图片)。
3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些多边形的图片,如正方形、矩形、三角形等,引导学生观察这些多边形的特点。
提问:你们知道这些多边形有多少个内角吗?让学生回顾三角形内角和的知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解多边形的内角和定理。
通过PPT展示多边形内角和定理的证明过程,引导学生理解并掌握定理。
同时,让学生思考如何运用定理解决实际问题。
3.操练(10分钟)让学生分组讨论,每组设计一个多边形,并计算其内角和。
学生可以利用纸张和直尺在课堂上进行实际操作,增强对多边形内角和定理的理解。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目可以包括计算多边形内角和、运用内角和定理解决实际问题等。
教师在旁边辅导,解答学生的疑问。
人教版数学八年级上册11.3多边形及其内角和教学设计
1.学生按时完成作业,确保作业质量。
2.家长督促学生完成作业,关注学生的学习进度。
3.教师认真批改作业,及时了解学生的学习情况,针对问题进行辅导。
4.学生遇到问题要主动请教同学或老师,积极解决困难。
2.情境导入:向学生展示一些生活中的多边形实物,如五角星、六边形的地砖等,引导学生观察这些多边形的特点,激发学生学习多边形的兴趣。
3.问题导入:提出问题:“我们已经知道三角形的内角和是180度,那么四边形的内角和是多少度呢?五边形、六边形呢?”引发学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.多边形的定义与分类:讲解多边形的定义,即由三条以上的线段首尾相连围成的图形。根据边数,多边形可分为三角形、四边形、五边形、六边形等。
2.引导学生回顾学习过程,反思自己在小组讨论、课堂练习中的表现,总结学习方法和经验。
3.提醒学生加强对多边形性质的记忆,为后续学习打下基础。
4.鼓励学生将所学知识运用到生活中,发现数学的乐趣和价值。
五、作业布置
1.基础作业:请学生完成课本练习题11.3中的第1-10题,巩固多边形内角和、外角和及对角线性质的相关知识,提高解题能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、分类、内角和、外角和及对角线性质。
2.难点:
(1)理解多边形的内角和定理,并能灵活运用到实际问题中;
(2)掌握多边形外角和的性质,解决与外角和相关的实际问题;
(3)运用对角线性质解决多边形相关问题,提高空间想象能力。
(二)教学设想
1.教学方法:
人教版数学八年级上册11.3多边形及其内角和教学设计
一、教学目标
(一)知识与技能
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
人教版数学八年级上册11.3.2多边形的内角和教学设计
3.过渡语:回顾已学的三角形、四边形的内角和性质,为新课的学习做好知识铺垫。
(二)讲授新知
1.演示与发现:利用多媒体课件或实物模型,展示多边形的内角和与边数之间的关系,引导学生发现规律。
2.推导公式:通过具体例子(如五边形、六边形等),引导学生总结多边形内角和的计算公式。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生运用能力。
五、作业布置
1.基础巩固题:完成课本第115页的练习题1、2、3,巩固多边形内角和的计算方法。
-练习题1:求解给定多边形的内角和;
-练习题2:根据多边形的内角和,判断多边形类型;
-练习题3:运用内角和性质解决实际问题。
2.提高拓展题:完成课本第116页的探究题,提高学生运用多边形内角和解决问题的能力。
-探究题:一个多边形的内角和是540度,求该多边形的边数。
3.实践应用题:结合生活中的实例,设计一道运用多边形内角和知识的问题,并解决问题。
-例如:一个正多边形的每个内角是120度,求该多边形的边数。
4.小组合作题:分组讨论,共同完成以下问题。
-讨论题1:多边形内角和与边数之间的关系;
-讨论题2:内角和公式在生活中的应用实例。
-利用多媒体课件或实物模型,帮助学生直观地理解多边形内角和与边数之间的关系。
-设置一些具有挑战性的问题,让学生在解决问题的过程中,逐步掌握内角和公式的运用。
-开展小组讨论,让学生在交流中相互启发,提高解决问题的能力。
四、教学内容与过程
(一)导入新课
1.创设情境:通过展示生活中的多边形实物,如五角星、六边形的地板砖等,引发学生对多边形内角和的好奇心。
人教版数学八年级上册教学设计《11-3多边形及其内角和》(第1课时)
人教版数学八年级上册教学设计《11-3多边形及其内角和》(第1课时)一. 教材分析《11-3多边形及其内角和》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握多边形的内角和公式,并能够运用该公式解决实际问题。
教材通过引入多边形的概念,引导学生探究多边形的内角和,从而得出结论。
教材内容安排合理,由浅入深,有利于学生掌握知识。
二. 学情分析八年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。
但是,多边形的内角和公式的推导过程较为复杂,需要学生具有较强的逻辑思维能力和动手操作能力。
在导入环节,可以利用学生已有的知识,激发他们的学习兴趣。
三. 教学目标1.知识与技能:使学生掌握多边形的内角和公式,能够运用该公式解决实际问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、合作交流的良好学习习惯。
四. 教学重难点1.重点:多边形的内角和公式。
2.难点:多边形内角和公式的推导过程。
五. 教学方法1.引导法:教师引导学生观察、思考、操作,激发学生的学习兴趣,培养学生独立解决问题的能力。
2.合作交流法:学生在小组内进行讨论、交流,分享学习心得,培养团队协作精神。
3.实践操作法:学生动手操作,直观地感受多边形的内角和,提高动手能力。
六. 教学准备1.教学课件:制作多媒体课件,包括图片、动画等,帮助学生形象地理解知识。
2.学习素材:准备一些多边形的图片,供学生观察和操作。
3.教学用具:准备一些硬纸板,让学生动手剪拼多边形。
七. 教学过程1.导入(5分钟)利用学生已知的四边形和三角形的内角和知识,引导学生思考:多边形的内角和与边数有什么关系?通过提问,激发学生的学习兴趣。
2.呈现(10分钟)展示多边形的图片,让学生观察并思考:这些多边形的内角和分别是多少?引导学生发现多边形内角和的规律。
3.操练(10分钟)学生分组进行讨论,每组选择一个多边形,用硬纸板剪拼出该多边形,并计算其内角和。
人教版八年级数学上册《第十一章第3单元多边形及其内角和》教案设计
人教版八年级数学上册《第十一章第3课时多边形及其内角和》教案设计11.3.1多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A .14或15或16 B .15或16 C .14或16 D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线.方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A .6 B .7 C .8 D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( ) A .等腰三角形 B .长方形 C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.11.3.1 多边形教学过程(师生活动)复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.这些线段围成的图形有何特性?如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.课本P21练习1.2.课堂小结1、今天本节课学习的主要内容(概念)。
新人教版初中数学八年级上册《第十一章三角形:11.3多边形及其内角和》赛课教学设计_1
多边形的内角和一、教材分析:《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习镶嵌”。
按照以往的教材,受三角形、多边形、圆顺次展开的限制,这些内容分别属于不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。
这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。
在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等该概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。
借助三角形的内角和将多边形可以分割成若干个三角形的方法研究多边形。
二、教学目标知识与技能:通过实验探索多边形内角和公式。
数学思考:1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。
解决问题:通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。
情感态度:通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。
同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
三、教学重点、难点重点:探索多边形内角和公式。
难点:分割多边形为三角形这一过程。
四、教学方法:教师引导下的自主探究。
五、教学过程设计六、教学设计说明:课程改革的新任务、新方法、新问题,呼唤教学理念的更新。
教学理念决定教学内容和方法,教学内容是实施素质教育、为学生终身学习和终身发展奠定坚实基础的主要渠道。
这就需要课堂教学必须从只限于对知识的传授点,题型的训练点,答案的得分点的研究,最后关注的是考试“分数线”中解放出来。
秋八年级数学上册《11.3多边形及其内角和》三角形内角和定理教学设计1 (新版)新人教版-(新版)新
三角形内角和定理
[教学目标]
经历探究多边形内角与外角和计算方法的过程,培养学生的合作交流意识同时培养学生善于发现、积极思考、勇于创新的学习态度。
[教学重点、难点与关键]
应用.
教学难点:探索多边形的内角和与外角和公式过程.
.
[教学方法]
本节课采用“探究与互动”的教学方式,
[教学过程:]
(一)探索多边形的内角和
(1)请学生任意画出一个三角形、四边形、五边形、六边形
(2)请学生回答什么叫做多边形的对角线。
(3)从多边形指定的一个顶点出发,引出它所有的对角线
(4)回顾三角形的内角和等于多少度。
(5)探索四边形、五边形、六边形的内角和是多少度。
若是n边形呢?
(6)总结多边形内角和,你会得到什么样的结论?
(7)、课堂练习
课本练习第1题(1)(2)
(二)探索多边形的外角和
(1)请学生任意画出一个三角形、四边形、五边形、六边形的一个顶点中的一个外角。
(2)探索三角形、四边形的外角和、
(3)、总结五边形、六边形的外角和是多少度。
若是n边形呢?
(4)总结多边形外角和,你会得到什么样的结论?
(三)小结:本节课你有哪些收获?
(四)作业:
课本习题。
八年级数学上册 11.3 多边形及其内角和教案 新人教版
业
探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?
教学
后记
教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。
二、探究五边形的内角和
三、归纳探究n边形的内角和
根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
四、多边形的外角和公式:
A
B C
课题:多边形的内角和与外角和
教师提问,学生思考作答。
教师总结:三角形的内角和等于180°。
情境
导入
问题:你知道任意一个四边形的内角和是多少吗
学生猜想,引入课题
探
求
新
知
一、探究四边形的内角和
A D
B C
教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
E 4 D
5
F 3 C
6
2
A 1 B
问题2:n边形外角和等于多少度?
n边形外角和等于360°
1、学生分小组交流与探究,进一步来论证自己的猜想。
2、由各小组成员汇报探索的思路与方法,讲明理由。
情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
重点
难点
重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。
人教初中数学八年级上册 11.3 多边形及其内角和教案
11.3多边形及其内角和教学目标知识与技能观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角、对角线等数学概念过程与方法能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识情感态度价值观了解类比这种重要的数学学习方法,体验生活中处处有数学的道理.教学重点了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别。
教学难点正多边形的正确理解以及凸多边形的辨别。
教学准备教师:多媒体课件(某几个重点教学片段使用)、三角尺。
教学过程(师生活动)设计理念引入新课复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.利用现实生活情境吸引学生尽快投入到数学课堂中来。
让学生们观察、回答、补充,既能体现主体性,又能较自然地过渡到新课教学中来。
新知探究这些线段围成的图形有何特性?【(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.】这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?你能仿照三角形的定义给多边形定义吗?归纳:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫运用类比方法学习新知识,便于发现新旧知识的异同点,同时完做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.善学生的认知结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BC
课题:多边形的内角和与外角和
教师提问,学生思考作答。
教师总结:三角形的内角和等于180°。
情境
导入
问题:你知道任意一个四边形的内角和是多少吗
学生猜想,引入课题
探
求
新
知
Hale Waihona Puke 一、探究四边形的内角和AD
B C
教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
重点
难点
重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。
教学过程
教师活动
学生活动
复备标注
时间安排
启
动
课
堂
预习
复习
反馈
问题:你知道三角形的内角和是多少度吗?
小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
E 4 D
5
F 3 C
6
2
A 1 B
问题2:n边形外角和等于多少度?
n边形外角和等于360°
1、学生分小组交流与探究,进一步来论证自己的猜想。
2、由各小组成员汇报探索的思路与方法,讲明理由。
让学生归纳借助辅助线将五边形分割成三角形的不同分法。
探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。
学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360°。
例
题
分
析
例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?
例2、一个多边形的内角和与外角和相等,它是几边形?
113 多边形及其内角和教案
课题
课时
本学期第 课时
日期
本单元第 课时
课型
新授课
复备人
审核人
感
知
目
标
学
习
目
标
知识与能力:了解多边形的内角和与外角和公式,并能进行简单的应用
过程与方法:让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。
二、探究五边形的内角和
三、归纳探究n边形的内角和
根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
四、多边形的外角和公式:
(教师从学生的回答中,了解学生有条理表达自己的思考过程。)
学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。
巩
固
练
习
求下列图中x值
150°2x°
120°
x°
80°
120°
75°x°
小
结
提
升
1、多边形的内角和:(n-2)·180°
多边形的外角和:360度
2、用分割多边形的方法探究多边形问题
推
荐
作
业
探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?
教学
后记