九年级下册《圆》知识点总结

合集下载

九年级下数学圆知识点总结

九年级下数学圆知识点总结

九年级下数学圆知识点总结在九年级下学期的数学课程中,圆是一个重要的几何形状。

学习圆的相关知识对于理解几何学和进一步解决问题至关重要。

在本文中,将对九年级下数学课程的圆相关知识点进行总结。

一、圆的定义和基本性质1. 圆的定义:圆是由平面上离定点距离相等的所有点组成的集合。

2. 圆的要素:圆心、半径和直径是圆的基本要素。

- 圆心:圆的中心点,通常用字母O表示。

- 半径:圆心到圆上任意一点的距离,通常用字母r表示。

- 直径:通过圆心的一条线段,它的两个端点在圆上,通常用字母d表示。

3. 圆的性质:- 圆上任意两点的距离等于半径的长度。

- 圆的直径是半径的两倍。

- 圆的周长等于直径乘以π(圆周率),即C = πd。

- 圆的面积等于半径平方乘以π,即A = πr²。

二、圆的位置关系和判定方法1. 圆的位置关系:- 同心圆:具有相同圆心但半径不同的圆。

- 内切圆:两个圆相交,且较小的圆完全位于较大的圆内部,二者只有一个公共点。

- 外切圆:两个圆相交,且较小的圆完全位于较大的圆外部,二者只有一个公共点。

- 相交圆:两个圆有两个不重叠的公共点。

- 相离圆:两个圆没有公共点。

2. 判定圆的方法:- 已知圆心和半径:根据圆的定义,可以通过圆心和半径确定一个圆。

- 已知圆上的三个点:三点确定一个圆,可以根据圆的性质绘制出圆来。

- 已知直径两端的点:通过两点绘制直径,以直径中点为圆心,直径的一半为半径即可确定圆。

三、圆的相关角度1. 弧度制和角度制:- 弧度制:用圆的弧长与半径的比值表示,一周为2π弧度。

- 角度制:以直角为90度,一周为360度。

2. 弧度和角度之间的转换:- 角度制转弧度制公式:弧度= (π/180) × 角度- 弧度制转角度制公式:角度= (180/π) × 弧度3. 圆心角和弧度:- 圆心角:以圆心为顶点的角。

- 弧度的定义:弧度是圆心角所对应的弧长与半径的比值。

四、圆与直线的位置关系1. 相切关系:- 切线:与圆只有一个交点的直线。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径)二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O 为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系A外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

九年级_圆_全章知识点总结

九年级_圆_全章知识点总结

九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。

2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。

3、弧:圆上任意 叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。

小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。

4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。

5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。

6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。

过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。

8、过 的三点确定一个圆。

9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。

三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。

其中正确的有 (填序号)。

例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。

初三《圆》知识点及定理

初三《圆》知识点及定理

高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。

九年级下册圆的知识点总结

九年级下册圆的知识点总结

九年级下册圆的知识点总结九年级下册的数学学习内容涉及到圆的相关知识,本文将对圆的性质、计算公式以及与其他几何图形之间的关系进行总结。

一、圆的性质1. 定义:圆是由平面上与一个固定点的距离恒定的所有点组成的集合。

2. 圆心与半径:圆心是距离所有边界点相等的点,半径是由圆心指向边界上的任意一点的线段,圆心与半径共同决定了一个圆。

3. 直径与周长:直径是通过圆心的两个边界点的线段,它的长度是半径的两倍。

周长是围绕圆边界的长度,可以用2πr表示,其中r为圆的半径。

4. 弧与弦:弧是圆上两个点之间的一段曲线,弦是圆上两个点之间的一条直线段,弦的两个端点也在圆上。

二、圆的计算公式1. 圆的面积公式:圆的面积可以通过πr²计算,其中π为一个不变的常数,约等于3.14,r是圆的半径。

2. 弧长公式:弧长可以根据圆心角的大小和圆的半径计算,如果圆心角θ(单位为弧度)对应的圆弧长度为L,那么L = rθ。

3. 弦长公式:给定圆心角θ和圆的半径r,弦长可以通过2rsin(θ/2)计算得到。

三、圆与其他几何图形的关系1. 圆与直线:圆与直线可以有多种位置关系,可能相离、相切或相交。

当一条直线与圆相交时,相交的点可能有两个、一个或没有。

2. 圆与三角形:圆可以与三角形有共同的一条边,这种情况下,圆称为三角形的内切圆;也可以与三角形相切于三条边,这种情况下,圆称为三角形的外切圆。

3. 圆与正多边形:正多边形是指所有边和角相等的多边形,能够内切于一个圆。

正多边形的外接圆则是能够将正多边形的所有顶点都包含在内部的一个圆。

总结:九年级下册的圆的知识点主要包括圆的性质、计算公式和与其他几何图形之间的关系。

圆的性质包括圆心和半径、直径和周长、弧和弦;计算公式包括圆的面积公式、弧长公式和弦长公式;圆与其他几何图形的关系包括圆与直线、三角形和正多边形之间的关系。

通过对这些知识点的学习和理解,可以更好地掌握圆的相关概念和运用技巧,为解决与圆相关的问题提供帮助。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。

3. 半径(r):圆心到圆上任意一点的距离。

4. 直径(d):通过圆心的最长弦,是半径的两倍长度。

5. 弦(c):连接圆上任意两点的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定的弧。

10. 切线(t):与圆只有一个公共点的直线。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的弦。

3. 圆的任意两点之间的弧,优弧总是大于劣弧。

4. 切线与半径相交于圆外的一点,形成直角。

5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。

6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。

4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。

四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。

2. 圆与圆的关系:内含、外离、相交、内切、外切。

3. 圆的切线问题:求切线长度、切点坐标等。

4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。

5. 圆的面积问题:根据圆的半径、直径、周长等求面积。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。

2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。

3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆⇒d r<⇒点C在圆;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;切(图4)⇒ 有一个交点 ⇒ d R r =-; 含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级数学下册圆的知识点整理

九年级数学下册圆的知识点整理

1.圆的定义与性质-定义:圆是平面上所有距离等于半径的点的集合。

-圆心:圆上任意两点的连线的垂直平分线的交点。

-半径:从圆心到圆上任意一点的长度。

-直径:通过圆心的两个点所确定的线段的长度,等于半径的2倍。

-弦:连接圆上两点的线段。

-弧:圆上的一段弯曲的连续的部分。

-弧长:弧所对应的圆的周长的比例,弧长等于弧所对应的圆的弧度乘以半径。

-圆周角:以圆心为顶点的角,大小等于所对弧的弧度。

2.圆心角与弧长的关系-弧度制:弧所对应的圆的半径长的角,记作弧长/半径。

-弧度制与度角制的换算:180°=Π弧度,1°=Π/180弧度。

-圆心角的弧度等于所对弧的弧长除以半径。

3.圆的位置关系-相交:两个圆的内部有公共点。

-外切:一个圆与另一个圆的外部只有一个公共点。

-两圆相切:两个圆的外部有一个公共点。

-相离:两个圆的内部没有公共点,也没有公共切点。

4.弧与弦的关系-弦分弧:一个弦所对的两条弧,互为补角。

-等弧等价:等长的弧。

5.切线与圆的关系-切线:与圆仅有一个公共点的直线。

-切线的性质:切线与半径垂直,半径在切点上的垂线上。

6.直径、弦与切线的关系-直径是两个切点的连线。

-沿切线作的直径过切点的垂线,则直径上的垂直弦与切线相交于切点。

-公共切线:与两个圆分别有且仅有一个公共切点的直线。

7.线段与圆的位置关系-线段在圆内:线段的两个端点在圆内部。

-线段与圆相交:线段的一个端点在圆内部,另一个端点在圆外部。

-线段切圆:线段的一个端点在圆上,另一个端点在圆外部。

-线段被圆所截:线段的两个端点都在圆外部。

8.弦的性质-弦的中点:连接圆弧两端点的线段的中点在圆的内部。

-等弧等价:等长的弦所对的两条弧相等。

-弦的位置:两个相等长的弦互为等幅弦。

-垂直弦:以圆心为直径的弦是直径。

-到圆心的距离:从圆心到弦的中点的距离等于半径的长度。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级数学圆知识点总结

九年级数学圆知识点总结

引言:正文:一、圆的基本概念1.1圆的定义圆是平面上所有到圆心距离都相等的点的集合。

1.2圆的要素圆包括圆心、半径和直径三个要素。

圆心是圆上所有点的中心点,通常用大写字母O表示;半径是圆心到圆上任意一点的距离,通常用小写字母r表示;直径是由圆心穿过圆的两个点所构成的线段,是圆的最长直径。

1.3圆的常见术语圆上的任意一条线段叫做弦,通过圆心且两端点在圆上的弦叫做直径,通过圆心的弦叫做直径的平分线,通过圆心的两条半径叫做直径的垂直平分线。

二、圆的性质2.1圆的轴对称性圆具有轴对称性,即圆上的任意一点关于圆心对称的另一点也在圆上。

2.2圆的切线性质若直线与圆相切于某一点,则这条直线的斜率与半径的斜率互为相反数。

即斜率k1斜率k2=1。

2.3弧的度数圆上的弧可以用弧度来度量,一个完整的圆周分为360度(或2π弧度)。

2.4弧长和扇形面积圆弧的长度与圆的半径和弧度有关,可以使用公式:弧长=半径弧度。

圆的扇形面积可以使用公式:扇形面积=1/2半径的平方弧度。

三、圆的运算3.1圆的周长圆的周长可以使用公式:周长=2π半径。

3.2圆的面积圆的面积可以使用公式:面积=π半径的平方。

3.3弧长的计算已知角度和半径,可以使用公式求弧长:弧长=弧度半径。

四、圆与三角形的关系4.1判定圆内外点的位置关系对于圆外的一点,通过连接这个点和圆心,可以构成一个直角三角形。

利用勾股定理可以判断这个点与圆的位置关系。

4.2圆与正方形的关系正方形内接圆的半径等于正方形边长的一半。

正方形的对角线与圆的直径,且正方形的对角线垂直。

4.3圆与等边三角形的关系等边三角形内切圆的半径等于等边三角形边长的一半。

五、圆周角与弧度制5.1圆周角的度量圆周角是一个角度,以角度制度量,一个完整的圆周角为360度。

5.2弧度制弧度制是用弧长和半径的比值来度量角度,一个完整的圆周角为2π弧度。

总结:九年级数学圆的知识点总结了圆的基本概念、圆的性质、圆的运算、圆与三角形的关系以及圆周角和弧度制。

九下数学圆知识点总结

九下数学圆知识点总结

九下数学圆知识点总结一、圆的定义与特点1、圆的定义:所有穿过固定一点O的直线段均等长的图形,称为圆。

2、圆心:圆上所有直线段等长的一点,叫做圆心,用符号O表示。

圆心也可以由圆上的任意点P作圆的过程,得到。

3、圆的半径:圆上任意一点P到其圆心O之间的一条线段,叫做圆的半径,用符号r表示。

4、圆的周长:圆是一种闭合的曲线,圆的周长是把圆一周的长度,用C表示,公式C = 2πr。

5、圆的面积:圆的面积是将圆区域内的面积,用S表示,公式S = πr2。

二、圆的性质1、相等性质:任意两个半径之和等于直径,称为圆的相等性质。

2、轴对称性质:圆上任一点考察其与圆心之间的连线,称之为一轴,其另一端点,也就是与轴点对称的点,在圆上。

3、夹角性质:任意两条分别经过圆心的弦所对应的夹角均等,称为圆的夹角性质。

4、平分线性质:任一点到圆心所确定的直线,把圆切成两半,称这条直线为圆的平分线。

5、大圆可容小:任一小圆的半径均小于大圆的半径,若把小圆的圆心置于大圆上,则小圆完全被大圆容纳。

三、圆的构造1、有数角法:通过画出带有指定数量的角的多边形,改变角的位置来移动其顶点,使得它变成一个圆形。

2、直线法:通过直线连接,将有序的三点(称为圆心、圆上点A、圆上点B)按正确的顺序连接起来,就形成一个圆环。

3、三角形法:以圆心O为顶点,圆上的任意两点A、B组成的三角形AOB,它的三条边AB,AO和BO的长度均相等时,这三条边所围成的三角形都相等,则圆出现。

4、根据半径画圆:用圆心O作圆的生成过程,用直尺度取半径为r的圆环,用圆规把圆环勾勒出来。

5、画园的旋转法:利用圆心O及一点A进行旋转绘图,用一支轴OA 连接着一个旋转轴,圆心O不动,点A在圆周上旋转,则圆也就出现了。

九年级数学下册《圆》知识点整理

九年级数学下册《圆》知识点整理

九年级数学下册《圆》知识点整理第十章圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆一、圆的基本性质.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系.三种位置及判定与性质:初中数学复习提纲2.切线的性质(重点)3.切线的判定定理(重点)。

圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系初中数学复习提纲1.五种位置关系及判定与性质:2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段初中数学复习提纲1.相交弦定理2.切割线定理五、与和正多边形.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(解Rt△oAm可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式.圆周长公式2.圆面积公式3.扇形面积公式初中数学复习提纲4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。

九年级数学下册《圆》知识学习总结要点整理

九年级数学下册《圆》知识学习总结要点整理

九年级数学下册《圆》知识点整理第十章圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆一、圆的基本性质.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系.三种位置及判定与性质:初中数学复习提纲2.切线的性质(重点)3.切线的判定定理(重点)。

圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系初中数学复习提纲1.五种位置关系及判定与性质:2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段初中数学复习提纲1.相交弦定理2.切割线定理五、与和正多边形.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(解Rt△oAm可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式.圆周长公式2.圆面积公式3.扇形面积公式初中数学复习提纲4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。

九年级下圆-知识点总结

九年级下圆-知识点总结

九年级下圆-知识点总结九年级下圆—知识点总结九年级下学期,我们学习了许多有关圆的知识,包括圆的定义、性质、相关定理等。

下面就九年级下圆的知识点进行总结。

一、圆的定义与性质圆是由平面上与一个确定点的距离相等的所有点组成的图形。

圆的性质有以下几点:1. 圆上任意两点之间的距离相等。

2. 圆心到圆上任意一点的距离相等,这个距离称为圆的半径。

3. 圆的直径是通过圆心并且两端点在圆上的线段,直径的长度是半径的两倍。

二、圆的相关定理1. 圆的直径是圆的最长的一条弦, 而圆的半径是最短的一条弦。

2. 圆的弧是两个端点在圆上的弦所对应的一段圆的长度。

3. 两条相交弦的乘积等于它们各自所分割的弧的乘积。

即,当AB和CD两条弦相交于点E时,有AE * BE = CE * DE。

4. 切线和半径垂直,切线是与圆相切于一点的直线。

切线和切线之间的夹角等于两条切线所对应的弧所夹的圆心角的一半。

5. 圆内接四边形的两条对角线之和等于常量。

即,当一个四边形的四个顶点都在同一个圆上时,它的两条对角线的和保持不变。

三、圆的面积与周长圆的周长是圆上任意一点到圆心的距离,也就是圆的半径乘以2π,即周长 = 2πr。

圆的面积是圆内的所有点构成的平面图形的大小,圆的面积公式为S = πr²,其中S表示面积,r表示半径。

四、圆锥与圆柱圆锥是由一个底面为圆的曲面和一个顶点所组成的立体图形。

圆柱是由两个平行的底面为圆的曲面和连接两个底面的侧面所组成的立体图形。

五、圆的应用1. 圆的运动:我们生活中有许多与圆相关的物体或现象,比如车轮的旋转、地球的公转等,这些都是圆的运动。

2. 圆的建筑与装饰:许多建筑物和装饰品中都用到了圆的形状,如钟楼、建筑的圆顶、圆形花坛等。

3. 圆的测量与制作:在工程测量和制图中经常用到圆的测量与制作,例如圆柱的体积计算、圆形图形的绘制等。

以上就是九年级下圆的知识点总结。

通过学习这些知识,我们对圆的性质和应用有了更深入的了解,也能更好地应用于实际生活中。

九年级下册《圆》知识点总结

九年级下册《圆》知识点总结

圆1.圆的认识(1)以点O 为圆心的圆叫作“圆O ”,记为“⊙O ”。

(2)线段OA 、OB 、OC 都是圆的半径,线段AC 为直径。

(3)连结圆上任意两点之间的线段叫做弦。

直径是圆中最长的弦。

(4)圆上任意两点间的部分叫做弧。

小于半圆周的圆叫做劣弧。

大于半圆周的圆弧叫做优弧。

(5)圆心角:顶点在圆心,两边与圆相交的角叫做圆心角。

如∠AOB 、∠AOC 、∠BOC 就是圆心角。

2.圆的对称性(1)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。

圆是中心对称图形,圆心是它的对称中心。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 3.圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 4.圆周角(1)圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。

(2)半圆或直径所对的圆周角都相等,都等于90°(直角)。

90°的圆周角所对的弦是圆的直径。

(3)同圆或等圆中,一条弧所对的圆周角等于该弧所对的圆心角的一半。

(4)同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。

九年级下册圆知识点

九年级下册圆知识点

九年级下册圆知识点圆知识点一、圆的定义与性质圆是由平面内距离都等于一定值的点的集合构成的图形。

在圆中,距离等于圆半径的点构成圆上的点,而距离小于圆半径的点构成圆内的点,距离大于圆半径的点构成圆外的点。

圆的性质如下:1. 圆的直径是圆上任意两点之间的最长距离,也是通过圆心的两条平行线段之间的距离。

2. 圆的半径是圆心到圆上的任意一点的距离,一条圆的半径相等的两点与圆心连线的中点连线是圆的直径。

3. 圆上的任意一条弧都小于圆的周长,且大于弦和弦对应的圆心角所对应的弧。

4. 同样圆上的弧所对应的圆心角相等。

二、圆的元素1. 圆心:圆心是圆的中心点,用O表示。

2. 半径:圆心到圆上的任意一点的距离,用r表示。

3. 直径:通过圆心,并且在圆上的两个点之间的距离。

直径是圆的两倍,用d表示。

4. 弧:圆上的一段弯曲部分,用弦所对应的圆心角来表示。

5. 弦:连接圆上的两个点的线段。

6. 弦长:弦的长度。

7. 圆周:圆上全部的线段构成的总长度,用C表示。

三、圆的周长和面积的计算1. 圆周长的计算公式是C = 2πr,其中π是圆周率,约等于3.14。

根据该公式,我们可以通过圆的半径直接计算出圆周长。

2. 圆面积的计算公式是A = πr²。

通过该公式,可以根据圆的半径直接计算出圆的面积。

四、圆与其他几何图形的关系1. 圆与直线的关系:- 如果直线与圆交于两点,则直线称为圆的割线。

- 如果直线与圆恰好相切于一点,则直线称为圆的切线。

2. 圆与三角形的关系:- 圆的直径是三角形外接圆的边长,外接圆的圆心是三角形三条边的垂直平分线交点。

- 圆的内切圆与三角形的三边相切,内切圆的圆心是三角形三条边的角平分线交点。

3. 圆与正多边形的关系:- 正n边形的外接圆的半径等于正多边形的边长的一半。

- 正n边形的内切圆的半径等于正多边形的边长与内接圆心到三角形内角平分线的距离之和的一半。

五、圆的应用领域1. 圆的运动学:在物体运动的描述中,常用圆的运动方式来模拟某些物体的轨迹,如行星围绕太阳的运动、地球自转等。

九年级下册数学知识点圆

九年级下册数学知识点圆

九年级下册数学知识点圆一、圆的定义与性质圆是平面上的一个几何图形,由与圆心距离相等的所有点组成。

圆心是圆的中心点,半径是圆心到圆上任意一点的距离。

在圆上选择两点,它们与圆心的连线就是弦,而穿过圆心的弦是直径。

一个圆的周长是它的边界长度,而圆的面积是圆内的区域。

二、圆的周长和面积1.周长:圆的周长也称为圆的周长,可以使用公式C=2πr计算,其中π约等于3.14,r是圆的半径。

例题:求一个半径为5cm的圆的周长。

解答:根据C=2πr,代入r=5cm,得到C=2π×5=10π≈31.4cm。

2.面积:圆的面积可以使用公式A=πr²计算,其中π约等于3.14,r是圆的半径。

例题:求一个半径为5cm的圆的面积。

解答:根据A=πr²,代入r=5cm,得到A=π×5²=25π≈78.5cm²。

三、切线与切点在圆上,以一个点为端点的直线叫做切线,而切线与圆的交点叫做切点。

切线和半径的关系是,半径垂直于切线,并且切线和切点之间的连线和半径共线。

四、弧长和弧度1.弧长:圆的弧长是圆上两个点之间的弧,可以使用公式L=2πr×(θ/360°)计算,其中L是弧长,r是半径,θ是对应的圆心角的度数。

例题:一个半径为6cm的圆上对应一个60°的圆心角,请计算弧长。

解答:根据L=2πr×(θ/360°),代入r=6cm,θ=60°,得到L=2π×6×(60/360)≈6.28cm。

2.弧度:弧度是用来衡量圆心角大小的单位,可以使用公式θ=弧长/半径计算。

例题:一个半径为4cm的圆上弧长为3πcm,求对应圆心角的度数和弧度值。

解答:首先根据θ=弧长/半径,代入弧长L=3πcm,半径r=4cm,得到θ=3π/4≈2.36弧度。

接着,根据圆心角的度数和弧度的关系转化计算得到θ=(θ/π)×180°≈135°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1.圆的认识
(1)以点O 为圆心的圆叫作“圆O ”,记为“⊙O ”。

(2)线段OA 、OB 、OC 都是圆的半径,线段AC 为直径。

(3)连结圆上任意两点之间的线段叫做弦。

直径是圆中最长的弦。

(4)圆上任意两点间的部分叫做弧。

小于半圆周的圆叫做劣弧。

大于半圆周的圆弧叫做优弧。

(5)圆心角:顶点在圆心,两边与圆相交的角叫做圆心角。

如∠AOB 、∠AOC 、∠BOC 就是圆心角。

2.圆的对称性
(1)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。


圆是中心对称图形,圆心是它的对称中心。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的
另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE =④弧BC =弧BD ⑤弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 3.圆心角定理:同圆或等圆中,相等的圆心

所对的弦
相等,所对的弧相等,弦心距相等。

即:①AOB DOE ∠=∠;②AB DE =;③
OC OF =;④弧BA =弧BD
(
上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,
4.圆周角
(1)圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。

(2)半圆或直径所对的圆周角都相等,都等于90°(直角)。

90°的圆周角所对
的弦是圆的直径。

(3)同圆或等圆中,一条弧所对的圆周角等于该弧所对的圆心角的一半。

(4)同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。

(5)若三角形一边上的中线等于这边的一半,那么这个三角形是直
角三角形。

即:在△ABC 中,∵OC OA OB == ∴△ABC 是直角三角形或90C ∠=︒
F
E C
B
A
O
O E
D
C
B O
D
A
B
C
A O
D
C
A
O
C
B
A
O
B
A
O
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。


5.点与圆的位置关系
设⊙O 的半径为r ,点圆心O 的距离为d ,则 (1)点在圆外⇔d r > (2)点在圆上⇔d r = (3)点在圆内⇔d r < 6.(1)过一点可以画无数个圆;
过两点可以画无数个圆,圆心在两点连线的垂直平分线上; 过不在同一条直线上的三个点可以确定一个圆。

(2)三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心。

这个三角形叫做这个圆的内接三角形。

三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。

(3)一个三角形的外接圆是唯一的。


7.直线与圆的位置关系
(1)如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离。

(2)如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切。

此时这条直线叫做圆的切线,这个公共点叫做切点.
(3)如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线.
如上图,设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,从图中可以看出: 若d r >⇔直线l 与⊙O 相离; 若d r =⇔直线l 与⊙O 相切; 若d r <⇔直线l 与⊙O 相交; 8.切线
(1)判定定理:经过半径外端且垂直于这条半径的直线是圆的
切线。


即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线
证明切线常用的方法:1.连半径,证垂直;2.作垂直,证半径。

(2)性质定理:圆的切线垂直于经过切点的半径。

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

(3)切线长:切线上某一点与切点之间的线段的长. 性质:从圆外一点可以引圆的两条切线,切线长相等,这一点与圆心的连
线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线∴PA PB =,PO 平分BPA ∠.
(4)三角形的内切圆:与三角形各边都相切的圆叫做这个三角形的内切圆。

三角形内切圆的圆心叫做这个三角形的内心。

这个三角形叫做这个圆的外切三角形,三角形的内心就是三角形三条角平分线的交点,它到三角形三边的距离相等。

A
9.圆的内接四边形定理:圆的内接四边形的对角互补. 即:在⊙O 中,∵四边形ABCD 是内接四边形

∴180C BAD ∠+∠=︒180B D ∠+∠=︒
10.圆和圆的位置关系
1)两个圆没有公共点,那么就说两个圆相离,其中(1)又叫做外离,(2)、(3)又叫做内含。

(3)中两圆的圆心相同,这两个圆还可以叫做同心圆。

2)如果两个圆只有一个公共点,那么就说这两个圆相切,如其中(4)又叫做外切,(5)又叫做内切。

3 11.圆内正多边形的计算
(1)正三角形在⊙O 中△ABC 是正三角
形,有关计算在Rt BOD ∆中进行:
::32OD BD OB =;
(2)正四边形::2OE AE OA = (3)正六边形::32AB OB OA =. 12.圆中的计算问题 (1)弧长的计算公式为:180
n r
l π=
(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

扇形面积的计算公式:21
3602n r S lr π==
n :圆心角R :扇形多对应的圆的半径l :扇形弧长S :扇形面积
(3)圆锥的母线:把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线。

圆锥的高:连结顶点与底面圆心的线段叫做圆锥的高.
(4)圆锥的底面周长就是其侧面展开图扇形的弧长,圆锥的母线就是其侧面展开图扇形的半径。

圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,
即S=
πra
圆锥的全面积就是它的侧面积与它的底面积的和.
(1)两圆外离d R r ⇔>+; (2)两圆外切d R r ⇔=+; (3)两圆外离R r d R r ⇔-<<+; (4)两圆外离d R r ⇔=-; )
0d R r
⇔≤<-D
C
B
A
O
E
C
B
A
D
O
B
A
O
即S S S
=+

表底=
2
ra r
ππ
+。

相关文档
最新文档