平面图形的几何性质
附录1:平面图形的几何性质new
(3)求整个截面的惯性矩:
§ I - 4 转轴公式 主惯性轴 主惯性矩
一、 惯性矩和惯性积的转轴定理 y1
y
x x1
dA y y1
x1 x
二、截面的形心主惯性轴和形心主惯性矩
1.主惯性轴和主惯性矩:如坐标旋转到= 0 时;恰好有
则与 0 对应的旋转轴x0 ,y0 称为主惯性轴。即平面图形
则 dA=b dy
C
x
同理
注:对于高度微h平行四边形,对形心 x的主惯性矩同样成立。
b y (a)
C
x
b (b)
§ I - 3 平行移轴公式
一、平行移轴定理:
y
yC
以形心为原点,建立与原坐标轴平行 的坐标轴如图
x
dA
a
C
xC
rb y
x
同理:
注意: C点必须为形心
图形对某坐标轴的惯性矩, 等于它对过形心且平行于该轴的坐 标轴之惯性矩加上图形面积与两轴距离平方和的乘积.
对其惯性积为零的一对坐标轴. 平面图形对主轴之惯性矩为主惯性矩。
2.形心主轴和形心主惯性矩: 主惯性轴过形心时,称其为形心主轴。 平面图形对形心主轴之惯性矩,称为形心主惯性矩.
形心主惯性矩:
若平面图形有两个对称轴,此二轴均为形心主轴; 若平面图形有一个对称轴,则该轴为一形心主轴, 另一形心主轴 过形心, 且与该轴垂直.
y
四、惯性半径
图形对x轴的惯性半径: 图形对y轴的惯性半径:
x dA
y
r
x
例I-2 试计算图示圆截面对于其形心轴(即直径轴) 的惯性矩。
解: y
由于圆截面有极对称性,
材料力学平面图形的几何性质
y
c
h
b
z
例 试拟定下图旳形心。
y 10
C2
120
c(19.7;39.7)
C1
80 图(a)
解:1、图形分割及坐标如图(a)
A1 700, z1 45, y1 5
A2 1200, z2 5, y2 60
2、求形心
zc
zi Ai
z 1
A1
z
2
A2
A
A1 A2
z
45 700 51200 19.7(mm) 700 1200
yc
yi Ai y1 A1 y2 A2
A
A1 A2
5 700 601200 39.7(mm)
700 1200
11
§4.3 惯性矩和惯性积 1 惯性矩
I z
y 2 dA
A
I y
z 2 dA
A
量纲:m4、mm4。 惯性矩是对轴而言。 惯性矩旳取值恒为正值。
y
dA A
y
ρ
0
z
z
已知:矩形 b h
12
64 4
24
I yc
I 矩yc
I圆yc
(1.5d )3 2d 12
d 4
64
0.513d 4
Y(对称轴)
d yc O
z1
Z(矩形旳对称轴)
2d
zc
b
25
作业 • 4.2 • 4.7
yz dA
图形对y、z两轴旳惯性积
I yz yzdA A
y z
dA
y z
惯性积则可能为正值,负值, 也可能等于零。
I yz
yzdA
A
材料力学平面图形的几何性质
平面图形的剪切中心和弯曲中心
剪切中心:平面图形中,剪切中心是剪切面上各点剪切应变之和为零的点,与该点距离最近的各 点组成的剪切面称为剪切面。
弯曲中心:平面图形中,弯曲中心是弯曲面上各点弯曲应变之和为零的点,与该点距离最近的各 点组成的弯曲面称为弯曲面。
刚性特性:平面图形在剪切和弯曲变形下,其几何形状和尺寸保持不变的性质称为刚性特性。
剪切中心和弯曲中心在平面图形中的作用:在平面图形中,剪切中心和弯曲中心是确定平面图形 在剪切和弯曲变形下应力和应变分布的关键点,对于分析平面图形的受力特性和稳定性具有重要 意义。
平面图形的抗扭刚度和抗弯刚度
抗扭刚度:表示材料 抵抗扭转变形的能力, 与平面图形的几何形 状和尺寸有关。
抗弯刚度:表示材料 抵抗弯曲变形的能力, 与平面图形的几何形 状、尺寸和材料本身 的弹性模量有关。
计算方法:根据 几何学原理,可 以通过平面图形 的边长、角度等 参数计算面积和
周长
平面图形的形心、质心和重心
形心:平面图形 中所有点组成的 面积的平均位置, 表示图形的几何 中心。
质心:平面图形 中所有点组成的 物质质量的平均 位置,表示图形 的质量中心。
重心:平面图形 中所有点组成的 重力场强度的平 均位置,表示图 形的重力中心。
平面图形稳定性分析的方法:通过力学分析、数学建模、实验测试等方法,对平面图形的稳定性 进行分析。
平面图形稳定性在工程中的应用:广泛应用于桥梁、建筑、机械等领域,以确保结构的稳定性和 安全性。
平面图形失稳的临界力和临界应力
定义:临界力是 指使平面图形失 稳的最小外力, 而临界应力则是 指在该外力作用 下,平面图形达 到失稳状态时的 应力值。
平面图形的动力学特性
平面图形的几何性质
——材料力学教案§A-1 引言不同受力形式下杆件的应力和变形,不仅取决于外力的大小以及杆件的尺寸,而且与杆件截面的几何性质有关。
当研究杆件的应力、变形,以及研究失效问题时,都要涉及到与截面形状和尺寸有关的几何量。
这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性短、惯性积、主轴等,统称为“平面图形的几何性质”。
研究上述这些几何性质时,完全不考虑研究对象的物理和力学因素,作为纯几何问题加以处理。
§A-2 静矩、形心及相互关系任意平面几何图形如图A-1所示。
在其上取面积微元dA ,该微元在Oxy 坐标系中的坐标为x 、y 。
定义下列积分:⎰=Ax A y S d ⎰=Ay A y S d (A-1)分别称为图形对于x 轴和y 轴的截面一次矩或静矩,其单位为3m 。
如果将dA 视为垂直于图形平面的力,则ydA 和zdA 分别为dA 对于z 轴和y 轴的力矩;x S 和y S 则分别为dA 对z 轴和y 轴之矩。
图A-1图形的静矩与形心图形几何形状的中心称为形心,若将面积视为垂直于 图形平面的力,则形心即为合力的作用点。
设C x 、C y 为形心坐标,则根据合力之矩定理⎭⎬⎫==C y C x Ax S Ay S (A-2)或⎪⎪⎭⎪⎪⎬⎫====⎰⎰A ydA AS y A xdA A S x A x CAyC (A-3) 这就是图形形心坐标与静矩之间的关系。
根据上述定义可以看出:1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。
对某些坐标轴静矩为正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的静矩。
实际计算中,对于简单的、规则的图形,其形心位置可以直接判断。
例如矩形、正方形、圆形、正三角形等的形心位置是显而易见的。
对于组合图形,则先将其分解为若干个简单图形(可以直接确定形心位置的图形);然后由式(A-2)分别计算它们对于给定坐标轴的静矩,并求其代数和;再利用式(A-3),即可得组合图形的形心坐标。
材料力学附录I 平面图形的几何性质2形心主轴和形心主惯性矩
i1
i1
i1
材料力学 附录I 平面图形的几何性质
例I-4-1:已知三角形对底边(x1轴)的惯性矩为bh3/12,
求其对过顶点的与底边平行的x2轴的所以不
x2
能直接使用平行移轴公式,需先求出 三角形对形心轴xC的惯性矩,再求对
h xC
h/3
x1
x2轴的惯性矩,即进行两次平行移轴
I
A2 zc
60 1003
12
50 44.72
60 100
404 64
50 44.7
202
202
4.24106 mm4
材料力学 附录I 平面图形的几何性质
§I-5 转轴公式 主惯性轴*
一、 惯性矩和惯性积的转轴定理
y
x1 y1
x cos y sin x sin y cos
材料力学 附录I 平面图形的几何性质
y
1.先求截面的 形心轴
A2
取参考坐标系如图,则:
A1
zc
yc
60100 50 60 100
202 202
70
44.7mm
yc z 2.求截面对形心轴的惯性矩:
I yc
Iy
100 603 12
404 64
1.67 106 mm4
I zc
I A1 zc
12
64 4
d
y
yC
x1
I
yC
I
矩xC
I圆xC
(1.5d )32d 12
d 4
64
0.513
d
4
I xCyC0
2d
O
xC yC轴便是形心主轴
x xC
I xC、I yC便是形心主惯性矩
工程力学第四章
Z
C
Z
y
a yC
dA
ZC
y
2
ZC
截面对Z轴的惯性矩为:
I Z y dy ( yC a) dy
2 A A
y
yC
IZ
A
2 yC dA 2a
yC dA a A
2 A
截面对形心轴 ZC轴的惯性矩
由ZC轴通过截面 形心,其值为0
2
O
即:I Z I ZC a A
1400 16
50
(2)由平行移轴公式计算惯性矩
Iy
I I I yc 2
(0.24 0.211)m 0.029 m
4
4
0.86m 1.4m3 a A1 (0.7 0.51)2 1.204 m4 z 12 0.24 m 4 A B a b 3 II II 16 16 I yc I y 0 a 2 A2 0.828m 1.334 m yc 12 1.334 ( 0.05 0.51) 2 1.105m 4 c z d 2 y o 4 0.211m C D 430 860
b3
12 0.02m 0.14m3 (0.08 0.0467 )2 m2 2.8 103 m2 12 7.68 106 m4
z A1
2
20
0 100
II
yC
y
140
z
20
II II I yc I y 0 a 2 A2
C
z b 3 2 A2 z 0 12 100 3 (0.01m)(0.02m) 0.0467 mm2 2.0 103 mm2 12
100
材料力学第五章
xC
Sy A
n
x C
Ai
i 1
n
Ai
i 1
n
yC
Sx A
i 1 n
y C
Ai
Ai
i 1
第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图
Ⅱ
所示。
求:图形的形心。
50
C2
Ⅰ
C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z
ydA
A
Sy AzC
Sz AyC
yC
Sz A
ydA
A
A
zC
Sy A
zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy
建筑力学 第五章(最终)
dA 2 y dz 2 R2 Z 2dz
于是求得
Sy
z dA
A
R
z
O
2
R2 z2 dz 2 R3 3
2R3
zc
Sy A
3 πR2
4R 3π
2
图5-6
5. 2. 3 组合图形的面积矩计算
当图形是由若干个简单图形(如矩形、圆形和三角形等)组合而成时, 这类图形称为组合图形。由于简单图形的面积及其形心位置均为已知,而且 由面积矩的定义可知,组合图形对某一轴的面积矩等于其各简单图形对该轴 面积矩的代数和,即
5.1.2 物体重心的坐标公式
1. 重心坐标的一般公式
设有一物体,如图5-1所示。重心 c 坐 标为(xc,yc,zc),物体的容重为 γ,总体积 为V。将物体分割成许多微小体积 ΔVi,每 个微小体积所受的重力 PGi Vi , 其作 用点坐标(xi,yi,zi)。整个物体所受的重力
为 PG PGi 。
n
xc
A1x1c A2x2c An xnc A1 A2 An
Ai xic
i 1 n
Ai
i 1
n
yc
A1 y1c A2 y2c An ync A1 A2 An
Ai yic
i 1 n
Ai
i 1
(5-6)
【例5-1】试求图5-2 所示 Z 形平面图形的形心。
解:将Z 形图形视为由三个矩形图形组合而成,以 c1 、c2 、c3 分别表示 这些矩形的形心。取坐标系如图5-2 所示,各矩形的面积和形心坐标为
5. 2. 2 面积矩与形心的关系
由平面图形的形心坐标公式 (5-4) 和面积矩的定义可得
yc
A
第四章 平面图形的几何性质
D
12
组合图形的惯性矩:
I y I yi
i 1
n
I z I zi
i 1
n
空心圆截面:
I y Iz
D4 d 4
64
D 1 64
4 4 4 4
d ( ) D
z
Ip
D4 d 4
32
D 1 32
D
O d
zC z
100
1
20
C(yc,zc) 140 2
yC
zc
(2)求T形截面对形心轴yC的惯性矩Iyc
I y c I y i ( I y ci a Ai )
2 i
20
y
100 203 20 1403 2 ( 150 103.3 ) 100 20 ( 103.3 70 )2 20 140 12 12
A
I y1z1 y1 z1 dA
A
y
y1 cos cos cos sin sin y cos z sin y1 y cos z sin z1 y sin z cos
23
z1 z
z
形心主轴唯一
y
形心轴 y’、z’ 不是形心主轴 形心轴 y、z 是形心主轴
C
y
15
公式(formula of parallel axis)
已知:Iyc,Izc,Iyczc;求: Iy,Iz,Iyz。
z
b
y zc
2 2 I zc y1 dA I yc z1 dA A A
形心坐标为:
建筑力学6第六章
学习目标:
1. 理解静矩、惯性矩、极惯性矩、惯性半径和惯性积的概 念。
2. 熟练掌握组合图形形心位置的计算。 3. 会应用平行移轴公式计算组合图形对形心轴的惯性矩。 4. 熟记矩形、圆形等简单图形对其形心轴的惯性矩。
重点:
组合图形形心位置的确定及组合图形对形心轴的惯性矩的 计算。
平面图形的几何性质
若平面图形对某轴的静矩为零,则该轴必通过平面图形的形 心。
• 如果平面图形具有对称轴,对称轴必然是平面图形的 形心轴。故平面图形对其对称轴的静矩必等于零。 二、组合图形的静矩
在工程实际中,经常遇到工字形、T形、环形等横截面的 构件,这些构件的截面图形是由几个简单的几何图形组合而 成的,称为组合图形。
单位为m或mm。
为了便于查用,表6-1列出了几种常见截面图形的面积、 形心和惯性矩。
平面图形的几何性质
平面图形的几何性质
第三节 组合图形的惯性矩
第一节 静矩
一、静矩的概念
微面积dA与坐标 y(或坐标 z) 的乘积称为微面积dA对z轴(或y轴)
的静矩 .
这些微小乘积在整个面积 A内 的总和,称为该平面图形对z轴(或 y轴)的静矩。
用Sz(或Sy)表示。即
Sz
A dSz
A
ydA
Sy
A dS y
zdA
A
Ai zCi
i1
式中 yCi 、zCi 及 Ai 分别为各简单图形的形心坐标和面积 ,n 为组成组合图形的简单图形的个数。
平面图形的几何性质
例6-1 矩形截面尺寸如图所示。试求该矩形对 z1轴的 静矩 Sz1和对形心轴 z 的静矩 Sz 。
工程力学-附录 II 平面图形的几何性质
例题
例 题 II-5
§II 平面图形的几何性质
画出下列图形形心主惯性轴的大致方位
C
C
C
C
C
C
C
7.工程上常用的各种型钢截面几何参数
工程上常用的工字钢、槽钢、等边角钢、不
等边角钢可查附录III型钢表
例如:型号为25a的工字钢
Y
查表可知: A 48.541cm2
d
h
X
X
I x 5020cm4
Wx
y
(2)组合图形惯性矩可 分块计算求代数和。
A1 c1
A2
z
c2
(3)定义惯性半径 iz,iy
y
iz
Iz A
iy
Iy A
(II.7)
例题
例 题 II-1
§II 平面图形的几何性质
求矩形截面对z轴的惯性矩
dy
解:
h
h
z
2
Iz y2dA y2bdy b y2dy
dA
A
A
h
2
b
( h )3 2
H
AC2C2 h
zC yC
建立过形心的zCyC坐标系,及平行于
zC轴的z轴 A1 yC1 A2 yC2
Hh
h 2
Hh(h
H 2
)
3h
H
A1 A2
2Hh
4
(2)求惯性矩
yC
I zC
I1zC1
Hh ( yC
h)2 2
I2zC2
Hh(h
H 2
yC )2
Hh3 Hh ( h H )2 hH 3 Hh ( h H )2 Hh 5(H 2 h2 ) 6Hh
第10章平面图形的几何性质ppt课件
如:
1.静矩
n
Sx
yd A
ydA
A n
A1 An n
i 1
Ai
yd A
S xi Ai yCi A yC
i 1
i 1
n
n
S y S yi Ai xCi A xC
i 1
i 1
y
xC C yC
x O
2.形心
n
Ai xCi
Ix0
Ix
Iy 2
1 2
Ix Iy
2
4
I
2 xy
I y0
Ix
Iy 2
1 2
Ix
Iy
2
4
I
2 xy
极大值Imax 极小值Imin
例 计算所示图形的形心 主惯性矩.
120 40 z 20
25 20 10
解:该图形形心C的位置已
确定,如图所示.
过形心C选一对座标轴
C
y
y z 轴,计算其惯性矩(积).
1.5d (2d )3 3d 2(0.177d )2 [πd 4 πd 2 (0.5d 0.177d )2 ]
12
64 4
2d
0.685d 4
I zC I矩zC I圆zC
(1.5d )3 2d πd 4 0.513d 4
12
64
I yC zC 0
所以 yCzC 便是形心主轴
——反映平面图形的形状与尺寸的几何量
如:
在轴向拉(压)中:
FN A
l FNl EA
本章介绍:平面图形几何性质的定义、计算方法和性质
§10.1 静矩与形心
理论力学 第五章 平面图形的几何性质
y
2)、求形心
xc
Ax
A
i ci
A1 xc1 A2 xc 2 A1 A2
C2
c(-20.3;34.7)
C1 80
35 1100 20.3(mm) 10 110 80 10
i ci
x
yc
A y
A
A1 y c1 A2 y c 2 A1 A2
60 1100 34.7(mm) 10 110 80 10
§5-3
极惯性矩
y
dA
定义:I p dA
2 A
I p:极惯性矩
极惯性矩恒为正 单位:长度4
x
O
圆截面
d
2
I p A dA
1、实心圆截面——
O
d
I P dA 2 d
2 2 A A
d 2 0
1 4 2 d d 32
y 10
A2 1200mm2 , xc 2 5mm, yc 2 60mm
2)、求形心
C2
120
c(19.7;39.7)
C1
A1 xc1 A2 xc 2 zc A A1 A2 45 700 5 1200 19.7mm) 700 1200
i ci
Ax
80
2 2 A A 2 A c 2 2 A A
y
I x I xc a 2 A I y I yc b A
2
yc xc
x
b
c
a
y
dA yc
xc
——平行移轴公式
o
x
•图形对任意轴的惯性矩,等于图形对于与该轴平 行的形心轴的惯性矩加上图形面积与两平行轴间距 平方的乘积;
建筑力学 第7章 平面图形的
A2=200×40=8000,yc2=40/2=20 截面对Z轴的静矩为:
Sz1 Ai yci A1 yc1 A2 yc2 8000140 8000 20 1.28106
图7-7
7.2 惯性矩和惯性积
【例7-1】试求如图7-4所示工字形截面的 形心坐标。
解:将平面图形分割为三个矩形,每个图 形的面积和形心坐标分别为:
A1=80×40=3200,z1=0, y1=40+120+40/2=180
A2=120×40=4800, z2=0, y2=40+120/2=100
A3=40×120=4800, z3=0, y3=40/2=20
图7-6
2.组合平面图形的静矩 在工程实际中,经常会遇到由简单几何图形组合而
成的横截面构件,根据平面图形静矩的定义,组合图形对 z轴(或y轴)的静矩等于各简单图形对同一轴静矩的代数 和,即
S z
A1 yC1 A2 yC2 An yCn
n
Ai yCi
S y
我们把这些只与平面图形几何形状和尺
寸有关的几何量称之为平面图形的几何性质, 它是纯粹的几何问题,与研究对象的力学性 质无关,但它是影响构件承载力的重要因素。 例如,在前两章介绍的应力和变形的计算公 式中可以看出,应力和变形不仅与杆的内力 有关,还与杆件截面的横截面积A、极惯性 矩IP、抗扭截面系数WP等一些几何量密切 相关,以后在弯曲等问题中我们还会遇到平 面图形其它的一些几何性质。
2 19953750
Iy
I1y
I2y
640
(完整word版)第五章 平面图形几何性质
5-1 试用积分法确定图示平面图形的形心位置。
解:(1)建立极坐标极坐标(α,ρ),取微面积dA d d ραρ=⋅。
则cos y ρα=, (2)求形心位置222322cos ()cos 43434rrACd d d d ydA r r r y AA rππραρραρρααπππ⋅⋅⋅⋅=====⎰⎰⎰⎰⎰ 由对称性可知:43C r z π=。
图形形心为(43rπ,43r π).700图题5—1b 图题5—2b5—2 确定图示平面图形力的形心位置。
解:(1)选取通过矩形I 的形心C 1,矩形II 形心C 2,矩形III 形心C 3 (2)求形心位置由于截面左右对称,故:400mm C z =.3131150400150150800200400150500150700222mm=305mm 150800200400500150i Cii C ii A yy A==⎛⎫⎛⎫⨯⨯+⨯⨯++⨯⨯- ⎪ ⎪⎝⎭⎝⎭==⨯+⨯++⨯∑∑ 图形形心为(305,400)。
5-4图示矩形、箱形和工字形截面的面积相同,试求它们对形心轴z 的惯性矩.(a)题5-4图解:(1)矩形341212zbh aI==(2)箱形箱形与方形面积,即:22226 5.45.4aa bt at t==→=333322224(0.9)(1.8)(0.9)(1.8)()(2)()(2) 5.4 5.4 5.4 5.4121212120.4567za a a aa a a ab t b t b t b tIa++--++--=-=-=(3)工字形截,即:面23332 1.625.2aa at at t=⨯+→=工字形截面方形面积33333341.6(22)(1.6)81.6(22)(1.6)8 5.2 5.2121212120.8695za aa a a aa a t a t aIa+⨯-+-=-=-=10.45670.869515.4810.4312zz zI I I==工方箱::::::5—8图示矩形h=2b=200mm,(1)试求矩形通过坐标原点O1的主惯性轴的位置及主惯性矩。
材料力学第四章 平面图形的几何性质
§4.1 静矩和形心
一、静矩,即面积对轴的矩:(与力矩类似)
z
是面积与它到轴的距离之积。
图形对y轴和z轴的静矩为
dA
Sz
ydA
A
z
Sy
zdA
A
特点:
y▲静矩的量纲为长度的三次方;
第四章 平面图形的几何性质
§4.1 静矩和形心 §4.2 惯性矩和惯性半径 §4.3 惯性积 §4.4 平行移轴公式 §4.5 转轴公式 主惯性轴
第四章 平面图形的几何性质
【基本内容】
一、静矩、形心 二、惯性矩、惯性积、惯性半径 三、主轴、主惯性矩、形心主惯性平面的概念 四、平行移轴公式、转轴公式
跟踪训练
1.图示矩形截面的I.Ⅱ两部分对z轴的静矩的关 系是( )
例 1 求下列各图的图形形心位置。
za
y1
1 2
a,
y2
3 2
a
z1
a,
z2
1 2
a
2a o
A1
y
n
Ai yi
i 1
n
Ai
2a2
1a 2 2a2
a2 a2
3 2
a
5 6
a
i 1
A2
a
yz
n
Ai zi
i 1
n
Ai
2a2 a a2 1 a 2
I z1
Iy
2
Iz
Iy
Iz 2
cos2
I yz sin 2
I y1z1
Iy
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I zy zydA 0
A
截面的几何性质
三、惯性半径
常将图形的惯性矩表示为图形面积A与某一长度平方
的乘积,即
2 I z iz A, 2 I y iy A, 2 I P iP A
或改写成
iz Iz , A iy Iy A , iP IP A
式中iz、iy、iP分别称为平面图形对z轴、y轴、和极 点的惯性半径,也叫回转半径。单位为m或mm。 惯性半径愈大,平面图形对该轴的惯性矩(或对极点的 极惯性矩)也愈大。
二、用平行移轴公式计算组合截面的惯性矩
组合图形对任一轴的惯性矩,等于组成组合图形的各简 单图形对同一轴惯性矩之和。即
I z I1z I 2 z I nz I iz I y I1 y I 2 y I ny I iy
计算组合图形的惯性矩步骤 1.确定组合图形的形心位置, 2.查表求得各简单图形对自身形心轴的惯性矩, 3.利用平行移轴公式,就可计算出组合图形对其形心轴 的惯性矩。
截面的几何性质
计算 I Z 及 I y
120
500
整个截面图形对z轴、y轴的 惯性矩应分别等于两个矩形对z
A1
C1 C A2 yc C2 O 250 z1 z z2
I Z I1z I 2 z
580ห้องสมุดไป่ตู้
轴、y 轴的惯性矩之和。即
z’
两个矩形对自身形心轴的惯 性矩分别为 3 500 1203 250 580 I1Z 1 mm4 , I 2 Z 2 mm4 12 12 3 3 500 120 250 580 4 I1Z 1 mm , I 2 Z 2 mm4 12 12
当坐标轴通过平面图形的形心时,其静矩为零;反 之,若平面图形对某轴的静矩为零,则该轴必通过平面 图形的形心。 如果平面图形具有对称轴,对称轴必然是平面图形
的形心轴,故平面图形对其对称轴的静矩必等于零。
截面的几何性质
二、组合图形的静矩 根据平面图形静矩的定义,组合图形对z轴(或y轴)的静
矩等于各简单图形对同一轴静矩的代数和,即
截面的几何性质
第二节 惯性矩、惯性积、极惯性矩
一、惯性矩
惯性矩是面积与它到轴的距离的平方之积。
I z y 2 dA
A
y
I y z 2 dA
A
z
极惯性矩是面积对极点的二次矩。
I r r 2dA I z I y
A
r
d yA z
惯性矩是对坐标轴来说的,同一图形对不同的坐标轴其惯 性矩不同。极惯性矩是对点来说的,同一图形对不同点的极惯 性矩也各不相同。惯性矩恒为正值,常用单位为m4或mm4。
I z1 bh3 h bh3 h Iz A bh 12 2 3 2
2 2
y
h/2
C
z1 b/2
z
h/2
b/2
I y1
hb3 b hb3 b Iy A bh 12 2 3 2
2
2
截面的几何性质
截面的几何性质
二、惯性积
惯性积面积与其到两轴距离之积。
y z
dA
I zy zydA
A
r
y z
惯性积是平面图形对某两 个正交坐标轴而言,同一图 形对不同的正交坐标轴,其 惯性积不同。惯性积可能为 正或负,也可能为零。单位 为m4或mm4。
如果坐标轴z或y中有一 根是图形的对称轴,则该图 形对这一对坐标轴的惯性积 一定等于零。
截面的几何性质 500 A1 120 C1 C A2 yc C2 O 250 z1 z z2
580
z’
y轴正好经过矩形截面A1和A2的形心,所以
y1
10
解 将平面图形看作由矩形Ⅰ和Ⅱ组成 2 2 矩形Ⅰ A1=10×120mm =1200mm
yC1 120 mm 60mm 2
10 mm 5mm 2
C1
120
z C1
矩形Ⅱ
10 C2
A2=70×10mm2=700mm2
z1
80
yC 2
zC 2
70 10 mm 45mm 2
图形对任一轴的惯性矩,等于图形对与该轴平行的形 心轴的惯性矩,再加上图形面积与两平行轴间距离平方的 乘积。 由于a2(或b2)恒为正值,故在所有平行轴中,平面图 形对形心轴的惯性矩最小。
截面的几何性质
例7-5 计算如图7-9所示的矩形截面对z1轴和y1轴的惯性矩。
解 z、y轴是矩形截面的形
心轴,它们分别与z1轴和y1轴平 行,则由平行移轴公式得,矩 形截面对z1轴和y1轴的惯性矩分 别为
h/2
y
S z1
h bh A y C bh 2 2
2
h/2
C
z z1
(2) 计算矩形截面对形心轴的静矩 截面对z轴的静矩为
b/2
b/2
由于z轴为矩形截面的对称轴,通过截面形心,所以矩形
Sz=0
截面的几何性质
例7-2 试计算如图7-3所示的平面图形对z1和y1的静矩, 并求该图形的形心位置。
Sy zC A Sz yC A
y
z
S z A yC S y A zC
dA y 平面图形对z轴(或y轴 )的静矩,等于该图形面积 A与其形心坐标yC(或zC) z 的乘积。
xC
yC
截面的几何性质
S z A yC S y A zC
zc=0
选坐标系yoz′,以确定截面形 心的位置yC。将截面图形分为两 个矩形。
580
z’
矩形Ⅰ
3 2
矩形Ⅱ
2 3 2
A2 (250 580) mm2 145 103 mm2 , y2 A1 (500 120)mm2 60 103 mm2 , y1 (580 60) mm 640 mm
A
y dz dy
h/2
C
z
b
h 2 h 2
bh3 y bdy 12
2
I y z 2 dA
A
b 2 b 2
3 hb z 2 hdz 12
截面的几何性质 y
(2) 计算矩形截面对z轴、y轴的惯性
半径
截面对z轴和y轴的惯性半径分别为
iz
iy
h/2
C
z
Iz bh3 12 h A bh 12
10 mm 5mm 2
截面的几何性质
该平面图形对z1轴和y1轴的静矩分别为
S z1 Ai yCi A1 yC1 A2 yC 2 1200 60 700 5mm3 7.55104 mm3
i 1 n
S y1 Ai zCi A1 zC1 A2 zC 2 1200 5 700 45mm3 3.75104 mm3
580
a1
z1 z z2
0 mm4 37.6 108 mm4
I2Z
2 2
A2
O 250
yc
C2
a2
z’
250 5803 I 2 Z 2 a A2 1022 250 580 mm4 55.6 108 mm4 12
所以
I z I1Z I 2Z (37.6 108 55.6 108 )mm4 93.2 108 mm4
xa xC yb yC
I z1 y12 dA ( y a) 2 dA
A A A
r
a
C y 1
( y 2 2ay a 2 )dA I z 2aSz a A
2
I z1 I z a A
2
S z Ay 0
截面的几何性质
I z1 I z a 2 A 2 I y1 I y b A I z1 y1 I zy abA
截面的几何性质
应用平行移轴公式得
120
500 A
1 500 1203 2 2 4 I1Z I1Z 1 a1 A1 248 500 120 mm 37.6 108 mm4 12 C1 500 1203 2 2 4 8 4 a A 248 500 120 mm 37.6 10 mm 1 1 1 C 12
S z A1 y C1 A2 y C 2 An y Cn Ai y Ci i 1 n S y A1 z C1 A2 z C 2 An z Cn Ai z Ci i 1
n
式中 yCi、zCi及Ai分别为各简单图形的形心 坐标和面积; n为组成组合图形的简单图形的个数。
Ai z Ci z C i 1n A i i 1 n Ai yCi i 1 yC n Ai i 1
n
组合图形 形心的坐标 计算公式
截面的几何性质
例7-1 矩形截面尺寸如图7-2所示。试求该矩形对z1轴的静矩
Sz1和对形心轴z的静矩Sz。 解 (1) 计算矩形截面对z1轴的静矩
截面的几何性质
例7-7
试计算图示T形截面对形心轴z、y的惯性矩。
500 A1
120
C1
a1
z1
C 580 a2 C2 A2 O 250 yc
z z2
zo
截面的几何性质
解 求截面形心位置 由于截面有一根对称轴y, 故形心必在此轴上,即
120
500
A1 C1 C A2 yc C2 O 250
z1
z z2
i 1