相遇问题ppt课件

合集下载

课件PPT《相遇问题》

课件PPT《相遇问题》

03
04
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
预告下节课内容
下节课我们将学习追及问题,探讨两 个物体在同一路线上同向而行,速度 快的物体追上速度慢的物体的问题。
解决这类问题通常需要综合运 用速度叠加原理、相遇时间计 算公式以及逻辑推理等方法。
通过分析问题的本质和建立数 学模型,可以逐步推导出问题 的答案。
05
火车过桥与错车中的相遇问题
火车过桥时间计算
桥长+车长=速度×时间 (桥长+车长)÷速度=时间
(桥长+车长)÷时间=速度
两列火车错车时间计算
(甲车长+乙车长)÷速度和=错车时间 速度和×错车时间=甲车长+乙车长
顺流而下与逆流而上相遇时间计算
当两个物体在同向流动的水中 相遇时,顺流而下的物体会比 逆流而上的物体更快地相遇。
相遇时间可以通过以下公式计 算:相遇时间 = 路程和 / (顺 流速度 + 逆流速度)。
其中,顺流速度 = 船速 + 水 速,逆流速度 = 船速 - 水速。
复杂流水行船相遇问题解析
在复杂的流水行船相遇问题中, 可能需要考虑多个物体的速度、 水流速度以及它们之间的相对 位置等因素。
02
直线相遇问题
同向而行求相遇时间
02
01
03
速度差×相遇时间=路程差 路程差÷速度差=相遇时间 路程差÷相遇时间=速度差
相向而行求路程和

四年级下册数学(数学思维)-第8讲 相遇问题|全国通用 (共21张PPT)

四年级下册数学(数学思维)-第8讲 相遇问题|全国通用 (共21张PPT)
答:两地的距离是192千米.
再见
一列快车和一列慢车同时从A、B两地相向而行,经过5小时两车相遇, 相遇后快车再行3小时到达B地,慢车每小时行60千米,求A、B两地的距 离是多少千米?
技巧归纳
题型四:巧找等量
【分析】 慢车行5小时的路程:60×5=300(千米),快车只要行3小时,可求出 快车的速度:300÷3=100(千米).再根据相遇问题公式:路程=速度 和×相遇时间,就可以求出两地的距离.
技巧归纳
题型四:巧找等量
解:快车的速度为:(60×5)÷3=100(千米/时) A、B两地的距离为:(100+60)×5=800(千米)
答:A、B两地的距离为800千米.
本节总结
相遇问题歌
3
1 相遇问题有多种,两个物体一条线
2 相向而行面对面,相背而行背靠背
基本公式要记牢,线段图解是关键
4
相遇路程÷速度和=相遇时间。
相遇问题
四年级
本节目标
01 渗透两种数学思想:数形结合,公理化思想. 02 学习两种思维方法:线段图解法,公式法.
03 具备画线段图分析解决问题的能力,能更苦运用相遇 问题公式解题.
技巧归纳
题型一:相向而行
相遇路程÷相遇时间=速度和
问两人出发多少分钟后相距2千米?
问甲两、人 乙出两发人多骑甲少车分同、钟时乙后从相相两距距23人千0千米骑米?的车两地同相时向而从行,相甲距每分3钟0行千22米0米,的乙两每分地钟行相18向0米而. 行,甲每分钟行220
960÷2=480(千米), 480÷60-480÷80=2(小时) 答:乙车必须先行2小时.
巩固练习
甲、乙两人分别从两地相向而行,8小时后相遇;如果每小时两人各多 行4千米,那么6小时后相遇,求两地的距离是多少?

相遇问题ppt课件

相遇问题ppt课件
详细描述
飞机相遇问题需要考虑飞行高度、速度、航向等多种因素, 通过雷达监测和空中交通管制系统进行协调。这类问题对于 保障航空安全具有重要意义。
行星相遇问题
总结词
行星相遇问题主要研究行星之间的相 对运动和交汇情况,通常涉及天文学 和航天探测领域。
详细描述
行星相遇问题需要考虑行星之间的距 离、速度、轨道半径等因素,通过精 确计算和观测来预测和解释天文现象 。这类问题对于航天任务和宇宙探索 具有指导意义。
几何法
总结词
通过几何图形和几何定理来分析问题,并找到解决方案。
详细描述
几何法是解决相遇问题的另一种方法。它通过使用几何图形和几何定理来分析问题,并找到解决方案 。这种方法适用于具有几何特征的相遇问题,如圆形、直线等。通过分析几何图形和几何定理,可以 找到相遇的时间和地点。
CHAPTER 03
相遇问题的实际案例
度公式等。
未来研究的方向
01
更复杂环境下的相遇问题
随着科技的发展,物体在更复杂环境(如非理想气体、非均匀重力场等
)中的运动越来越常见,这为相遇问题研究提供了新的挑战和机会。

02
多体相遇问题
当多个物体同时运动并可能发生相遇时,如何预测和避免相遇是一个值
得研究的问题。这涉及到更复杂的动力学和优化算法。
相遇问题的应用场景
交通问题
如两辆车从不同地点出发,最终 在某处相遇,需要考虑车速、道
路状况和交通规则等因素。
行星运动
在天文学中,行星之间的相对运动 可以视为相遇问题,需要考虑行星 的速度、轨道半径和时间等因素。
军事战略
在战争中,敌我双方在不同地点出 发,最终在某处相遇,需要考虑军 队的速度、地形和战术等因素。

完整版《相遇问题》PPT之一.ppt

完整版《相遇问题》PPT之一.ppt

60千米
50千米
甲地
乙地
8
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
9
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
10
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
11
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
14
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
15
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
60千米
50千米
甲地
乙地
28
精品文档
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?

《相遇问题》优秀ppt课件

《相遇问题》优秀ppt课件

李明
65米/分
68米/分
王超
?米 (68+65)×6 = 133×6 = 798(米) 答:两地间的路程是798米。
3.张平和夏晓同时从家出发去天文展览馆,张平的速度 是65米/分,夏晓的速度是70米/分,15分钟后两人同时到 达。从张平家经过天文展览馆到夏晓家的路程是多少米?
65×15+70× 15 = 975 + 1050 = 2025(米)
= 620(米)
答:小星家和小明家相距620米。
(2)两人同时从纪念塔向少年宫走去,经过6分钟,小
明到了少年宫,这时小星离少年宫还有多少米?
64×6-60×6
或:(64-60)×6
= 384-360
= 4×6
= 24(米)
= 24(米)
答:这时小星离少年宫还有24米。
6. 两辆卡车同时从一个工厂出发,向相反方向驶去。两车
的速度分别是75千米/时、90千米/时。经过3小时,两辆
卡车相距多少千米?
如果两车出发时驶向同一 方向,3小时后相距多少
千米?
90×3+75×3 = 270+225 = 495(千米)
90×3-75×3 = 270-225 = 45(千米)
或:(90+75)×3 = 165×3 = 495(千米)
或:(90-75)×3 = 15×3 = 45(千米)
第一种解法:
70×4+60×4 = 280+240 = 520(米)
第二种解法:
(70+60)×4 = 130×4 = 520(米)
答:他们两家相距 520 米。
7 回顾解决问题的过程,你有什么体会?
画图和列表都 可以帮助我们 理解题意。

《相遇问题》课件ppt

《相遇问题》课件ppt
多个物体在不同时间、不同方向相遇:需要综合考虑时间 和空间因素,建立更为复杂的数学模型。
三维空间中的相遇问题
物体在三维空间中相遇,需要考虑垂直和水平方向的距离:需要使用三维坐标系 和向 Nhomakorabea计算方法。
考虑空气阻力、重力等因素:三维空间中物体的运动还受到重力和空气阻力的影 响,因此需要综合考虑这些因素。
物理方法
总结词
利用物理学的原理和方法来求解相遇问题
详细描述
物理方法通常涉及到速度、加速度等物理概念。通过对物体的运动过程进行分析 ,建立相关的物理方程,从而求解相遇问题。在某些情况下,还可以使用动能定 理、动量定理等物理定理来简化问题的求解
03
相遇问题的实际应用
追及问题
总结词
在直线运动中,两人或多个物体同时从不同位置出发,在相 对运动中不断靠近或远离的问题。
总结词
在环形的跑道上,多个人或物体同时从不同位置出发,不断追逐相遇的问题。
详细描述
环型跑道问题需要考虑不同方向上的相对运动,需要分析每圈运动中各物体的相 对位置和速度变化,列出方程求解。
火车相遇问题
总结词
两列火车同时从不同的火车站出发,在相对运动中相遇的问 题。
详细描述
火车相遇问题需要考虑火车自身的长度和速度,同时还需要 考虑两列火车相对速度的变化。需要分析运动过程,列出方 程求解。
解决方法和思路
解析法
通过对相遇问题的数学模型进行解析,得出解决问题的公式和方法。
综合法
通过画图、分析运动过程、找出等量关系等方法,综合解决相遇问题。
经典例题解析
两辆汽车相向而行,在一条直线上,已知两车之间的距离和 两车行驶的速度,求两车相遇的时间。
两艘船同时出发,相向而行,在一条直线上,已知两船之间 的距离和两船行驶的速度,求两船相遇的时间和相遇的位置 。

相遇问题课件

相遇问题课件

淘气家
邮局 商店
笑笑家
2.两人出发后,多长时间相遇?
70米/分
淘气家
淘气家和笑笑家相距840米
50米/ 分
笑笑家
2.两人出发后,多长时间相遇?
70米/分
50米/分
两家相距840米
列方程解决问题
画线段图表示题意 找出题目中的等量关系 设出未知数量 列出方程并解答
2.两人出发后,多长时间相遇?
出X分发
答:两人出发后6分钟相遇。
踢毽子
淘气每分钟踢48个,笑 笑每分钟踢52个,两人同时 踢,踢300个需要几分钟?
录文件
淘气和笑笑同时录入 一份5700字的文件。录完 这份文件需用多长时间?
笑笑每分录 入90个字。
淘气每分录 入100个字。来自踢毽子淘气每分钟踢48个,笑笑每 分钟踢52个,两人同时踢,踢 300个需要几分钟?
等量关系:
淘气踢的个数+笑笑踢的个数=300个
解:设需要x分钟。 48x + 52x = 300
100x = 300 x=3
答:需要3分钟。
录文件
笑笑每分录 入90个字。
淘气每分录 入100个字。
淘气和笑笑同时录入一份 5700字的文件。录完这份文件 需用多长时间?
等量关系: 淘气录的字数+笑笑录的字数=5700字
两人出发后,多长时间相遇?
780米/分
560米/分
两家相距840米
列方程解决问题
画线段图表示题意 找出题目中的等量关系 设出未知数量 列出方程并解答
两人出发后,多长时间相遇?
840米
淘 80米/分
笑 60米/分
等量关系: 淘气走的路程+笑笑走的路程=840米
解:设出发后x分相遇。

相遇问题ppt课件

相遇问题ppt课件

其他领域中的应用
总结词:相遇问题在其他领域中也有着 广泛的应用,涉及物理、生物、经济等 方面。
3. 经济:在经济领域中,相遇问题涉及 到供求关系、市场均衡等方面,是研究 市场经济的重要内容之一。
2. 生物:在生态学中,相遇问题涉及到 物种分布、种群动态等,是研究生态系 统的重要内容之一。
详细描述
1. 物理:在物理学中,相遇问题涉及到 弹性碰撞、非弹性碰撞等概念,是研究 物体运动的重要内容之一。

03
04
05
人文领域中的应用
01 02 03 04
总结词:相遇问题在人文领域中也有着重要的应用,涉及历史事件、 文化传承等方面。
详细描述
1. 历史事件:历史上的某些事件涉及到相遇问题,如两次世界大战中 敌对国家之间的战斗、航海探险中的船只相遇等。
2. 文化传承:在文化传承中,不同文化之间的交流和融合也涉及到相 遇问题,如东西方文化的交流、不同民族之间的融合等。
验证解
将解代入原图形进行验证,确保解的正 确性。
模拟法
模拟实验
根据题目描述,模拟两个物体的运 动过程,观察它们何时相遇。
记录数据
在模拟过程中记录相关数据,如时 间、位置等。
分析数据
根据记录的数据分析两物体的运动 规律,得到相遇的条件和时间。
验证解
将解代入模拟过程进行验证,确保 解的正确性。
06
相遇问题的应用实例
相遇问题ppt课件
目录
• 相遇问题概述 • 直线型相遇问题 • 圆周型相遇问题 • 综合型相遇问题 • 相遇问题的求解方法 • 相遇问题的应用实例
01
相遇问题概述
定义及问题建模
01
定义
02

(完整版)相遇问题优质ppt讲义

(完整版)相遇问题优质ppt讲义

(50+65)×6=690(千米) 860-690=170(千米)
例题
一辆汽车和一辆摩托车同时从相距860千米的两地相向开出。汽车的速度是50千米/时, 摩托车的速度是65千米/时,6小时后两车相距多少千米?10小时后呢?
10小时
汽车
摩托车

(50+65)×10=1150(千米) 1150-860=290(千米)
导 学 一 : 先出发或故障问题
例题
1、甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时 行驶41千米,乙车先出发2小时后,甲车才出发,求从出发到相遇经过几小时?
解析:甲乙出发时间有先后,乙车先行驶的2小时路程不是甲乙两车同时相对而行的路程
总路程 :770-2×41= 698(千米) 速度和: 41+45=86(千米 ∕小时) 时间: 698÷86=8 (小时)
总结
相遇问题
先先出发或故障问
相遇过头问题
注意相遇总路程
相遇问题→未相遇时, 路程和<总路程
相遇过头,路程和>总路程
总结
相遇问题
中点问题
1、与中点有关的相遇问题→ 找路程差
2、找速度差 3、 求出相遇时间→路程差÷
速度差
数学思考:
生与死
从前,在某个国家里有这样一个习俗,每个被判处死的犯人,在处死前要抽一次签,这是他起死回
我爱展示
1、妈妈从家出发到学校接小红,妈妈每分钟走75米,妈妈走了3分钟后,小红从学校出 发,小红每分钟走60米。从小红家到学校有2925米,再经过多少分钟妈妈和小红相遇 ?
解析:1、 妈妈先出发了( 3 )分钟,也就是走了( 225)米
2、小红与妈妈共同行走的总路程为( 2925-225=2700(米 ) ) 3、速度和为 ( 75+60=135米 ∕ 分钟 )

相遇问题ppt课件12篇

相遇问题ppt课件12篇

甲地
乙地
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇,甲乙两地相距多 少千米?
60千米
50千米
甲地
乙地
救护车和小轿车同时从甲乙两地相对开出, 救护车每小时行驶60千米,小轿车每小时行 驶50千米,经过4小时相遇甲乙两地相距多少 千米?
6m-3m=27 9x-4x=6.5
2 y+y=105 8n-n=14
4.有一份5700字的文件,由于时间紧急,安排甲、 乙两名打字员同时开始录入。录完这份文件需用 多长时间?
5.北京到呼和浩特的铁路长660km。一列火车从 呼
和浩特开出,每时行驶60km;另一列火车从北 京
开出,每时行驶72km。两列火车同时开出,经 过
=405(米)
答:他们两家相距405米 。
(65+70)×3 =135 ×3 =405(米)
速度和 × 时间 = 路程
志明和小龙同时从两地对面走去。经过5分钟 两人相遇,两地相距多少米?(用两种方法解答)
54×5+52×5 =270+260
=530(米)
(54+52)×5
=106×5 =530(米)
速度、时间、路程这一组数量有怎样的关系 ?
速度 × 时间 = 路程
张华家距李诚家390米。两人同时从家里出 发,向对方走去。李诚每分走70米,张华每 分钟走60米。
70米 70米
60米 60米
390米
走的时间 张华走 的路程
1分
2分
3分
李诚走 两人所走 现在两人 的路程 路程的和 的路程
走的时间 张华走 的路程
60千米
50千米
甲地
乙地

《相遇问题》课件ppt

《相遇问题》课件ppt
详细描述
两车相背而行,即从不同的方向向同一个目的地行驶,途中两车不会相遇。 对于这类问题,我们只需考虑两车行驶的总路程以及两车行驶的时间。
两车环形相遇
总结词
两车环形相遇问题较为复杂,需要考虑多个因素。
详细描述
两车在圆形跑道上行驶,从同一方向出发,途中会相遇一次,这类问题需要考虑 两车行驶的路程、速度以及时间等多个因素。
船相遇
总结词
船相遇问题通常是在海上或者河流中发生的。
详细描述
船相遇问题需要考虑两条船相对速度以及它们相对距离的变化。这类问题通 常需要使用相对速度和相对距离来求解。
04
相遇问题的实际应用
城市交通规划
交通拥堵
城市交通规划需要考虑道路拥堵问题,相遇问题可以确定车辆相遇的概率以及拥 堵产生的概率。
交通枢纽设计
可以进一步探索相遇问题的变体和扩展,例如多物体 相遇、相遇的最短路径等问题。
可以继续完善相遇问题的课件,添加更多的实例和练 习题,以帮助学生更好地掌握相关知识。
THANKS
谢谢您的观看
代数法
总结词
通过列方程、解方程,求解相遇问题中的未知量。
详细描述
代数法是一种通过列方程、解方程的方法,求解相遇问题中的未知量。在代数法中,需要根据相遇问题的实际 情况,列出相应的方程,然后运用代数知识进行求解。需要注意的是,在列方程的过程中,需要将相遇问题中 的所有未知量都表示出来,以便后续的计算。
程序实现
总结词
通过编程实现相遇问题的自动化求解。
详细描述
程序实现是一种通过编程的方法,实现相遇问题的自动 化求解。在程序实现中,需要根据相遇问题的实际情况 ,编写相应的程序代码,然后运行程序进行求解。需要 注意的是,在编写程序的过程中,需要考虑到所有未知 量和计算步骤的影响,以便得到正确的结果。同时,程 序实现可以大大简化求解过程,提高求解效率。

ppt课件相遇问题

ppt课件相遇问题

02
直线上的相遇问题
相对速度与相对距离
相对速度
当两个物体在同一直线上相对运动时 ,它们的相对速度等于两者速度之和 或之差(取决于它们的运动方向)。
相对距离
在直线相遇问题中,相对距离是指两 个物体在移动过程中,它们之间的距 离变化。
一次相遇问题
定义
两个物体在直线上一相遇后即分离,不再有第二次相遇。
求解方法
利用相对速度和相对距离的概念,建立数学模型进行求解。
多次相遇问题
定义
两个物体在直线上一相遇后不分离,而是继续移动并再次相遇。
求解方法
需要分析物体的运动规律和相对位置关系,找出每次相遇的时间和地点。
03
曲线上的相遇问题
圆周相遇问题
总结词
在圆周上,两个物体以不同的速度沿不同的路径移动,它们可能会在某些时间点 相遇。
详细描述
圆周相遇问题通常涉及到两个或多个物体在同一个圆或不同圆上移动,并需要找 出它们何时何地相遇。这类问题通常需要使用几何和运动学原理来解决。
椭圆相遇问题
总结词
在椭圆轨道上,两个物体以不同的速 度沿不同的路径移动,它们可能会在 某些时间点相遇。
详细描述
椭圆相遇问题与圆周相遇问题类似, 但涉及的是椭圆轨道而不是圆形轨道 。这类问题也需要使用几何和运动学 原理来解决。
相遇问题的分类
直线相遇
多次相遇
两个物体在同一直线上相向而行,直 到相遇。
两个物体在同一直线上多次相向而行 ,直到相遇。
曲线相遇
两个物体在曲线上相向而行,直到相 遇。
相遇问题的应用场景
交通问题
如两辆车在同一直线上相向而行 ,直到相遇。
行人相遇
如两个人在同一直线上相向而行, 直到相遇。

人教版四年级上册数学关于相遇问题(课件)

人教版四年级上册数学关于相遇问题(课件)
即:先算甲和乙在5小时内共同行驶的路程 =(48+50)×5=490(千米) 又因为:甲从A地先出发两小时,即:3×48=144千米 再加上5小时后:两车还相距15千米 所以AB两地的距离=144+490+15=649千米
例题2:甲、乙两辆汽车分别从A、B两地出发相向而行,
甲从A地先出发3小时后,乙再从B地出发。乙车出发5小时 后,两车还相距15千米。甲车每小时行48千米,乙车每小 时行50千米。求A、B两地的距离是多少千米?
例题2:甲、乙两辆汽车分别从A、B两地出发相向而行,
甲从A地先出发3小时后,乙再从B地出发。乙车出发5小时 后,两车还相距15千米。甲车每小时行48千米,乙车每小时 行50千米。求A、B两地的距离是多少千米?
解题关键公式1:相遇路程=甲走的路程+乙走的路程 =甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间 =速度和×相遇时间
甲 60×时间
A
所以:
B
60×10 100×10 =600米 =1000米
时间=甲乙的路程差÷甲乙的速度差 =(600+1000)÷(80-60) =1600÷20=80(分钟)
• 路程=速度×时间
• =乙的速度×时间+丙的速度×时间
• =(乙的速度+丙的速度)×时间
• 乙
80×时间
100×时间 丙
共经过了多少分钟?
解题关键公式2:相遇时间=相遇路程÷速度和
因为:A、B两地相距900米,甲、乙两人同时、同地向同一
方向行走,当乙到达目标后,立即返回与甲相遇
即: 甲
900米


900米
A

相遇问题课件ppt

相遇问题课件ppt
详细描述
根据两个物体的运动轨迹和相对位置 ,可以建立方程来表示它们在时间或 距离上的关系。通过解方程,可以找 到相遇的时间、地点或距离等关键信 息,从而解决相遇问题。
利用速度和时间关系求解
要点一
总结词
利用速度和时间的关系是解决相遇问题的重要思路之一。
要点二
详细描述
在相遇问题中,两个物体的速度和时间是关键因素。通过 分析它们的速度和时间关系,可以确定它们在何时何地相 遇。例如,如果两个物体以不同的速度相向而行,那么它 们相遇的时间可以通过它们的速度和距离来计算。
距离公式法
总结词
利用距离、速度和时间之间的关系来解决相遇问题。
详细描述
根据距离公式,两个物体在同一直线上运动,一个物体以速度v1从起点出发,另 一个物体以速度v2从另一起点出发,两者将在t时间后相遇。通过解方程得到相 遇时间t,进而确定相遇地点。
运动轨迹法
总结词
通过绘制运动轨迹图来解决相遇问题。
详细描述
这类问题通常涉及到半径、速度和时间的关 系。两物体在圆形轨道上运动,它们分别从 不同的起点出发,沿着相反的方向运动。在 某一时刻,它们相遇。这类问题需要找出两 物体的半径、速度和时间之间的关系,以确 定它们何时相遇。
04
CHAPTER
相遇问题的变种题型
有障碍物的相遇问题
总结词
这类问题涉及到两个物体在运动过程中遇到障碍物,需要计 算它们相遇的时间和地点。
天文问题
如两颗行星在太空中相对 运动,何时何地相遇。
02
CHAPTER
相遇问题的基本解法
相对速度法
总结词
通过比较两个物体的相对速度来解决相遇问题。
详细描述
在相遇问题中,两个物体在同一直线上运动,当它们朝向对方运动时,它们的 相对速度是两者速度之和;当它们背向对方运动时,相对速度是两者速度之差 。通过计算相对速度和距离,可以确定相遇时间。

相遇问题ppt课件

相遇问题ppt课件
化学反应的发生需要分子之间发生碰撞并传递能量。通过研究分子碰撞的频率 和能量传递的方式,可以了解反应的速率和机理。
相遇问题在工程中的应用
车辆碰撞
在道路交通安全领域,车辆碰撞是一个重要的问题。通过研 究车辆碰撞的力学特性和碰撞后的损伤程度,可以评估车辆 的安全性能和设计改进方案。
飞机空气动力学
飞机在空中飞行时,其空气动力学性能与相遇问题密切相关 。通过研究飞机的空气动力学特性和飞行性能,可以优化飞 机的设计和操作。
距离变化
在t时刻,两质点各自走过的距离分别是s1(t)和s2(t),则 s1(t)+s2(t)=d。
相遇地点
设两质点的初始位置分别为A和B,则相遇地点C满足 AC=BC。
圆周型相遇问题
01
02
03
04
定义
两个质点分别从圆周上的两点 出发,沿着圆周相向而行,直
到相遇。
距离变化
假设两质点在t时刻相遇,则 他们在t时刻走过的距离之和
数值法的应用实例
相遇问题
两个物体在直线或曲线上运动, 在某一点相遇。可以通过建立运 动方程,使用数值法求解相遇的
时间和位置等信息。
碰撞问题
两个或多个物体发生碰撞,其运 动状态发生改变。可以通过建立 碰撞模型,使用数值法求解碰撞
后的速度、位置等信息。
弹性碰撞
两个物体发生弹性碰撞,其动量 和能量在碰撞前后保持不变。可 以通过建立弹性碰撞方程,使用 数值法求解碰撞前后的速度、位
解析法的基本思想是建立合适的数学模型, 将实际问题转化为数学问题,以便进行精确 求解。
解析法的求解步骤
01
02
03
建立数学模型
根据相遇问题的具体情况 ,建立合适的数学模型, 包括变量定义、方程建立 等。

五年级数学相遇问题课件ppt

五年级数学相遇问题课件ppt
关系式: 路程÷速度=时间
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
以前我们研究的是一个物 体运动的行程问题,今天 我们要研究较为复杂的行 程问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
解:设经过x小时两车相遇. 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
40x+60x = 50
( 40 + 60 ) x = 50
面包车的速度 小轿车的速度 相遇时间 总路程
100X = 50 X = 50 ÷100
相遇时间 总路程 速度和
方解70:法X1+2设一5X00他:X=X=2们=42204经4000÷0过01X2分0钟时间相遇。方==222法44000(二00分÷÷:)(12700+50)
X=20 答:他们经过20分钟时间相遇。 。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
关于相遇,你是怎么理解的?
两个运动物体 两地 相向而行 走完了全程
如果说两人从两地同时出发直到相 遇,说明了什么?
两人所用的时间相同.
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
像这种有两个物 体同时从两地相向而 行直到相遇,有关这 样的应用题叫做“相 遇问题”。
运动结果: 相遇
X = 0.5
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

四年级数学下册课件-相遇问题

四年级数学下册课件-相遇问题
甲、乙两人从相距100米的A、B两地同时出发,相向而行,甲的速度是3米/秒,乙的速度是2 米/秒,经过多长时间两人相遇?
甲、乙两人从相距100米的A、B两地同时出发,相向而行,甲的速度是3米/秒,乙的速度是2 米/秒,经过多长时间两人相遇?
提升练习题
题目:小明和小 红同时从家出发, 小明每分钟走50 米,小红每分钟 走60米,他们相 距1000米,请问 他们多久能相遇?
相遇问题在数学竞赛中通常需要运用代数、几何等数学知识进行解答。
相遇问题在数学竞赛中常常与其他题型相结合,如追击问题、比例问题等。
练习题及解析
基础练习题
甲、乙两人从相距100米的A、B两地同时出发,相向而行,甲的速度是3米/秒,乙的速度是2 米/秒,经过多长时间两人相遇?
甲、乙两人从相距100米的A、B两地同时出发,相向而行,甲的速度是3米/秒,乙的速度是2 米/秒,经过多长时间两人相遇?
计算时间:例 如,计算两个 朋友在公园相
遇的时间
计算距离:例 如,计算两辆 车在公路上相
遇的距离
计算速度:例 如,计算两艘 船在海上相遇
的速度
计算费用:例 如,计算两个 家庭在超市相
遇的费用
在数学竞赛中的应用
相遇问题在数学竞赛中经常出现,是考察学生逻辑思维能力和数学应用能力的重 要题型。
相遇问题可以应用于解决行程问题、工程问题、经济问题等实际问题。
添加标题
题目:甲、乙两车 分别从A、B两地同 时出发,相向而行, 甲车速度为60千米 /小时,乙车速度 为40千米/小时, 两车相遇时,甲车 比乙车多行驶了20 千米,求A、B两地
之间的距离。
添加标题
解析:设A、B两地 之间的距离为x千 米,则甲车行驶时 间为x/60小时,乙 车行驶时间为x/40 小时,根据题意, 有x/60-x/40=20, 解得x=160千米。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西城
乙每天铺设150米 甲每天铺设140米
东城
(140 + 150)×5 = 290 × 5 = 1450(米)
?米
140 ×5 + 150×5 = 700 + 750 = 1450(米)
答:两个工程队一共铺设管道 1450 米。
12
3.(2)
两队分别从两头同时施工,8各月开通。这条隧道长多少米? (150 + 120)×8 = 270 × 8 = 2160(米) 答:这条隧道长 2160 米。
(140 + 150)×5 = 290 × 5 = 1450(米)
(2) 两队分别从两头同时施工,8各
月开通。这条隧道长多少米?
(150+ 120)×8 = 270 × 8 = 2160(米)
(3)两人同时开始录入一份稿件,1小时正好录完。甲的打字速度是80 字/分,乙的打字速度是65字/分。甲比乙多录入多少个字?
每小大时时货行6车驶5平6千5均米千每米小。
小货车平均每小 时每行小驶时7755千千米米。
西城
物流中心
东城
?千米
你能用线段图整理条件和问题吗?
5
两辆货车分别从东、西两城同时出发,相向而行,经过4小 时在物流中心相遇。东、西两城相距多少千米?
每小时65千米 西城
4小时相遇 物流中心
每小时75千米 东城
(80 - 65)×60 = 15 × 60 = 900(个)
数量关系和解题思路都与相遇问题基本一致。
15城
4小时相遇
物流中心 ?千米
每小时75千米 东城
画线段图 整理信息
列式解答 解决问题
大货车行 驶的路程
+
小货车行 驶的路程
= 总路程
速度和 × 时间 = 总路程
抽象出 数量关系10
2. 两列火车分别从东、西两地同时相对开出,5小时后相遇。 甲车的速度是110千米/时,乙车的速度是100千米/时。求 东、西两地间的路程。(先画图整理条件和问题,再解答)
110千米/时
100千米/时


(110 + 100)×5 = 210 × 5 = 1050(千米)
?千米
110 ×5 + 100×5 = 550 + 500 = 1050(千米)
答:东、西两地相距 1050 千米。
11
3. (1)甲、乙两个工程队从同一地点分别向东、西两个方向铺 设管道。甲队每天铺设管道140米,乙队每天铺设管道150 米。5天后,两个工程队一共铺设管道多少米?(先画图整 理条件和问题,再解答)
13
3. (3)两人同时打印一份稿件,甲的打字速度是80字/分,乙得 得打字速度是65字/分。甲1小时比乙多录入多少个字?
(80 - 65)×60 = 15 × 60 = 900(个)
答:甲1小时比乙多录入 900 个字。
14
想一想,这3个问题与上面那些问题有着怎样的联系?
(1)甲、乙两个工程队从同一地点分别向东、西两个方向铺设管道。甲 队每天铺设管道140米,乙队每天铺设管道150米。5天后,两个工程 队一共铺设管道多少米?(先画图整理条件和问题,再解答)
相遇问题
崂山区姜哥庄小学 姜丽
1
两辆货车分别从东、西两城 同时出发、相向而行, 经过4小时在物流中心相遇. 东、西两城相距多少千米?
大货车平均每小 时行驶65千米。
小货车平均每小 时行驶75千米。
模拟演示 2
3
4
两辆货车分别从东、西两城 同时出发、 相向而行, 经过4小时在物流中心 相遇. 东、西两城相距多少千米?
?千米
路程和 速度和
总结
6
两辆货车分别从东、西两城同时出发,相向而行,经过4小 时在物流中心相遇。东、西两城相距多少千米?
西城
4小时
物流中心
4小时
东城
?千米
65 × 4 + 75 ×4
= 260 + 300
= 560(千米)
返回
答:东、西两城相距 560 千米。
7
两辆货车分别从东、西两城同时出发,相向而行,经过4小 时在物流中心相遇。东、西两城相距多少千米?
西城
物流中心
东城
?千米
65+75
返回
65+75
65+75
65+75
(65 + 75)× 4 = 140 × 4 = 560(千米)
答:东、西两城相距560千米。
8
回顾上面两种解题思路,想一想,怎样解决相遇问题?
大货车行 驶的路程
+
小货车行 驶的路程
= 总路程
速度和 × 时间 = 总路 程
返回 9
想一想,刚才在解决“东、西两城相距多少千米?” 这个问题时,我们经历了怎样的过程?
相关文档
最新文档