解圆锥曲线问题常用方法及性质总结
圆锥曲线基本题型总结
锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1•设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是()1/1C.圆D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为()A.5J+= 1 (yH0) -B.+ ∖ f ( X2,9)=1 (yH 0 )C错误!-错误!=1 G∙≠ 0) °D∙错误! + = 1 (y≠0)【注:检验去点】3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为()A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣⅛射线,注意一支与两支的判断】4•已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是()A↑∖PF i∖-∖PF2 I |=5B.∣ I PFll-I PF2∖ I =6C.∣∣PF1∣-∣PF2∣∣=7D.∣ I PF1∖-∖PF2∖ I =0 【注ι2a<∣Fι F2∣是双曲线】5•平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是()A.∖ f(x2, 1 6)- 错误! = l(xW-4) "B.错误!∙=l(xW∙3)C- = I(XM 4) 。
巧用八种几何性质解决圆锥曲线问题
巧用几何性质求解圆锥曲线问题一.圆锥曲线定义与几何意义结合例题1 如图,12(,0),(,0)F c F c -分别为双曲线2222:1(,0)x y a b a bΓ-=>的左、右焦点,过点1F 作直线l ,使直线l 与圆222()x c y r -+=相切于点P ,设直线l 交双曲线Γ的左右两支分别于A 、B 两点(A 、B 位于线段1F P 上),若1::2:2:1F A AB BP =,则双曲线Γ的离心率为( )A .5B 265C .2623D .263【解析】连接2AF ,2BF ,设||BP x =则1||||2F A AB x ==,即1||5PF x =,||3PA x =, 根据双曲线定义可知,12||||2BF BF a -=即21||||242BF BF a x a =-=-21||||2AF F A a -=即21||2||22AF a F A a x =+=+,直线l 与圆222()x c y r -+=相切于点P ,∴21PF PF ⊥,在12Rt F PF ∆中22222222121||||||(2)(5)425PF F F PF c x c x =-=-=-①在2Rt APF ∆中222222222||||||(22)(3)458PF AF PA a x x a x ax =-=+-=-+② 在2Rt BPF ∆中222222222|||B |||(42)()15416PF F PB x a x x a ax =-=--=+-③②③联立得222245815416a x ax x a ax -+=+-,即65x a =①②联立得2222425458c x a x ax -=-+即22244208c a x ax =++④将65x a =代入④,即222664420855c a a a a ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭整理得22535c a =即225326555c c e a a ====,选B巩固1 已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( ) A .3B .4C .5D .6【解析】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=- 抛物线的准线方程:1y =-,()1,4C ,415CP ∴=+=,()min514MA MF ∴+=-=,选B二.余弦定理在圆锥曲线中的应用例题2 如图,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()12,0,,0,F c F c P -是椭圆C上一点,O 为坐标原点,若1260F PF ∠=,且223PO a =,则椭圆C 的离心率是A .22B .32C .63D .23【解析】设12,PF m PF n ==.由椭圆的定义,得2m n a +=,① 在12PF F △中,由余弦定理,得2222cos60(2)m n mn c ︒+-=,②2-①②得:()2234mn a c =-,③将③代入②,得22224833m n a c +=+ 在1POF 中,由余弦定理,得2221||2||cos PO c PO c FOP m +-⨯⨯∠=,④ 在2POF 中,由余弦定理,得2222||2||cos PO c PO c F OP n +-⨯⨯∠=,⑤④+⑤,得2222222216482||22933a m n PO c c a c +=+=+=+,化简,得2223a c =,故6e =,选C 三.圆锥曲线定义的灵活应用例题3 已知双曲线2222:1(0,0)x y E a b a b-=>>的左右焦点分别为1F ,2F ,以原点O 为圆心,1OF 为半径的圆与双曲线E 的右支相交于A ,B 两点,若四边形2AOBF 为菱形,则双曲线E 的离心率为( )A 31B 3C 2D 21【解析】如图,∵四边形2AOBF 为菱形,∴22||AF OA OF c === 又∵12F F 是圆O 的直径,∴1290F AF ∠=︒,∴()22123AF c c c =-=∴由双曲线的定义可得:122(31)AF AF a c -==-,∴3131e ==-,选A 巩固2 设点P 是以1F ,2F 为左、右焦点的双曲线2222 1(0,0)x y a b a b-=>>右支上一点,且满足120PF PF ⋅=,直线1PF 与圆2224a x y +=有且只有一个公共点,则双曲线的离心率为( )A .32B 32C 10D 10【解析】如图所示1F ,2F 为双曲线的左、右焦点,∴()1,0F c -,()2,0F c ,120PF PF ⋅=,∴12PF PF ⊥直线1PF 与圆2224a x y +=有且只有一个公共点,∴直线1PF 与圆2224a x y +=相切,设切点为E∴1OE PF ⊥,∴2OE PF ,又O 为12F F 的中点,∴E 为1PF 的中点,22PF OE a ==又1OF c =,2a OE =,∴2214a F E c =-,根据双曲线定义,222224a PF PF c a a -=-=解得10c e a =,选D 四.圆锥曲线几何意义与不等式练习例题4 直线l 过抛物线24y x =的焦点且与抛物线交于A ,B 两点,则4||||AF BF +的最小值是A .10B .9C .8D .7【解析】由抛物线标准方程可知p =2因为直线l 过抛物线24y x =的焦点,由过抛物线焦点的弦的性质可知1121AF BF p+== 所以4AF BF +()114AF BF AF BF ⎛⎫=+⋅+ ⎪ ⎪⎝⎭441BF AF AF BF ⎛⎫=+++ ⎪ ⎪⎝⎭因为AF BF 、为线段长度,都大于0,由基本不等式可知 444152BF AF BF AFAF BF AF BF ⎛⎫+++≥+⨯ ⎪ ⎪⎝⎭522≥+⨯=9,此时2BF AF =,选B 巩固3 已知P 为双曲线C :22221x y a b-=(0a >,0b >)左支上一点,1F ,2F 分别为C 的左、右焦点,M 为虚轴的一个端点,若2||MP PF +的最小值为12F F ,则C 的离心率为( )A .262+ B .26+C .426+ D .46+【解析】21||||2MP PF MP PF a+=++221222MF a b c a c +=++=即22222c a a c -+=,化简得222850c ac a -+=,即22850e e -+= 解得462e +=或462e -=,所以462e +=,选C 巩固4 已知点()4,2M --,抛物线24x y =,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 作PQ l ⊥,点Q 为垂足,过P 作FQ 的垂线1l ,1l 与l 交于点R ,则QR MR +的最小值为( ) A .125+B .25C .17D .5【解析】根据抛物线定义得PF PQ =,1l FQ ⊥,则1l 为FQ 的垂直平分线FR RQ ∴=,()224125QR MR FR MR FM ∴+=+≥=++=,选D五.向量几何意义与圆锥曲线 例题5M 为双曲线()222210,0x y a b a b-=>>右支上一点,12,F F 分别是双曲线的左、右焦点,且120MF MF ⋅=,直线2MF 交y 轴于点N .若1NF M △的内切圆的半径为b ,则双曲线的离心率为( ) A .2B .3C .2D .3【解析】如图所示:因为120MF MF ⋅=,所以三角形1F MN 为直角三角形故它的内切圆半径111222MF MN NF MF MN NF r +-+-==121222MF MN MN MF MF MF a b +---====所以2e =,选A巩固5 过双曲线()222210x y a b a b-=>>右焦点F 的直线交两渐近线于A 、B 两点,若0OA AB ⋅=,O为坐标原点,且OAB 内切圆半径为31a -,则该双曲线的离心率为( ) A .233B .3C .433D .31+【解析】因为0a b >>,所以双曲线的渐近线如图所示设内切圆圆心为M ,则M 在AOB ∠平分线OF 上 过点M 分别作MN OA ⊥于N ,MT AB ⊥于T , 由FA OA ⊥得四边形MTAN 为正方形,由焦点到渐近线的距离为b 得FA b =,又OF c =, 所以OA a =,31NA MN ==- 所以3133NO OA AN a =-=--=, 所以tan 3MN b AOF a NO =∠== 得2231b e a ⎛⎫=+=⎪⎝⎭选A巩固6如图,抛物线21:2(0)C y px p =>,圆222:12p C x y ⎛⎫-+= ⎪⎝⎭,圆2C 与y 轴相切,过1C 的焦点F 的直线从上至下依此交1C ,2C 于,,,A B C D ,且||||AB BD =,O 为坐标原点,则DA 在OF 方向上的投影为( )A .2B .4C .6D .8【解析】由圆2C 与y 轴相切可知,12p = ,解得2p =,所以21:4C y x =,()222:11C x y -+= 由题意知,()1,0F ,设()()1122,,,A x y D x y 直线:AD 1x my =+,与抛物线方程联立得214x my y x=+⎧⎨=⎩ ,即2440y my --= 由韦达定理知,124y y m +=,124y y =-,则()21212242x x m y y m +=++=+,()21212116y y x x ==因为||||AB BD =,则()221,2B m m +,代入2C 得,424410m m +-=,解得2212m = 因为()()1212,,1,0DA x x y y OF =--=,所以DA 在OF 方向上的投影为()2212121221442422DA OF x x x x x x OF ⎛⎫⋅-=-=+-=⨯+-= ⎪⎝⎭,故选A巩固7 已知F 1,F 2分别为椭圆22221x y a b+=(a >b >0)的左、右焦点,P 为椭圆上一点,O 为坐标原点,且(OP +2OF )·2F P =0,|1PF |=2|2PF |,则该椭圆的离心率为A .55B .54C .53D .52【解析】如图,取P F 2的中点A ,连接OA ,∴2OA =2OF +OP ,且OA =112F P ,1 O A F P ,又∵(OP +2OF )·2F P =0, ∴OA ⊥2F P ,又1OA F P ,∴1PF ⊥2F P ,∵122PF PF =,不妨设|P F 2|=m ,则|P F 1|=2m ∵|P F 2|+|P F 1|=2a =3m ,∴|F 1F 2|=4c 2=m 2+(2m )2=5m 2,∴a c =5,∴e =5,故选C 六.三角形的心在圆锥曲线中例题6 已知14m <<,12,F F 为曲线22:144x y C m+=-的左、右焦点,点P 为曲线C 与曲线22:11E y x m -=-,在第一象限的交点,直线l 为曲线C 在点P 处的切线,若12F PF △的内心为点M ,直线1F M 与直线l 交于N 点,则点N 横坐标为( )A .1B .2C .3D .4【解析】如图由椭圆的性质可知,PN 为12F PF ∠外角的角平分线,以N 为圆心作圆与12,PF PF ,x 轴分别相切于,,Q R E所以11121222FQ F E F P PQ c EF F P PR c RF =⇒+=+⇒+=+ ()1222222222F P PR RF c RF a c RF RF a c ⇒++=+⇒=+⇒=-所以2EF a c =-,E x a =,2E N a x x ===,选B巩固8 .平面直角坐标系xOy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B .若OAB ∆的垂心为2C 的焦点,则1C 的离心率为______【解析】设OA 所在的直线方程为b y x a =,则OB 所在的直线方程为by x a=- 解方程组2{2by x a x py ==得:222{2pbx apb y a==,所以点A 的坐标为2222,pb pb a a ⎛⎫ ⎪⎝⎭ 抛物线的焦点F 的坐标为:0,2p ⎛⎫⎪⎝⎭,因为F 是ABC ∆的垂心,所以1OB AF k k ⋅=- 所以2222252124pb p b b a pb a a a ⎛⎫- ⎪-=-⇒=⎪ ⎪ ⎪⎝⎭,所以2222293142c b e e a a ==+=⇒= 巩固9 已知椭圆C :22162x y +=的左、右焦点分别为1F ,2F ,如图AB 是过1F 且垂直于长轴的弦,则2ABF 的内切圆半径是________【解析】设2ABF 内切圆的半径为r ,由椭圆的方程22162x y +=其中6a =2b =222c a b -,1224F F c ==因为AB 是过1F 且垂直于长轴的弦则有222116AF AF -=,122AF AF a +==1AF =,2AF =2ABF 的周长22l AF BF AB =++==面积121142233S AB F F =⨯⨯=⨯=,由内切圆的性质可知,有123r ⨯=,解得23r = 故2ABF 内切圆的半径为23七.斜率的几何意义问题例题7 若实数x ,y 满足222210x y x y +--+=,则42y x --的取值范围为( ). A .40,3⎡⎤⎢⎥⎣⎦B .4,3⎡⎫+∞⎪⎢⎣⎭C .4,3⎛⎤-∞- ⎥⎝⎦D .4,03⎡⎫-⎪⎢⎣⎭【解析】令42y t x -=-,则24y tx t =-+,联立22242210y tx t x y x y =-+⎧⎨+--+=⎩消失y 得2222(1)(642)41290t x t t x t t ++--+-+=由题意该方程有解∴2222(642)4(1)(4129)0t t t t t ---+-+≥,解得43≥t ,选B 巩固10 已知在平面直角坐标系中,椭圆221:195x y C +=的左、右顶点分别为12,A A .直线l :()()()2121m y m x y m R -+-=+∈交椭圆于P ,Q 两点,直线1A P 和直线2A Q 相交于椭圆外一点R ,则点R 的轨迹方程为_______________.【解析】因为()()()2121m y m x y m R -+-=+∈,所以(22)10m y x x y --+--=由22010y x x y --=⎧⎨--=⎩得1x y =⎧⎨=⎩,故直线l 恒过(1,0),由题意知,直线PQ 斜率不为0 设PQ 的方程为1x ty =+,112212(,),(,)(0,0)P x y Q x y y y ><,(,)R x y联立椭圆方程,得22(59)10400t y ty ++-=则>0∆,1212224010,,5959ty y y y t t --=+=++,()12124y y y y t+=由1,,A P R 三点共线可得1133y y x x =++,由2,,A Q R 三点共线可得2233y y x x =-- 两式相除可得121222213(3)(2)3(3)(4)x y x y ty x y x y ty ---===+++12121224ty y y ty y y -+()()121122421424y y t y t y y t y t+⋅-==+⋅+,解得9x = 所以点R 在定直线9x =上,故点R 的轨迹方程为9x = 八.阿波罗尼斯圆的应用例题8 古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k (0k >,1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A 、B 间的距离为2,动点P满足PA PB =222PA PB +的最大值为( ) A.3+B.7+C.8+D.16+【解析】以AB 中点为原点,AB 所在直线为x 轴,则()1,0A -,()10B , 设(),P x y,所以由PAPB==()2223x y -+=()222222212PBP PA B x y +⎡⎤==-+⎣⎦其中()221x y -+看作是圆()2223x y -+=上的点(),x y 到点()1,0的距离的平方, 所以其最大值为(214=+,所以222PA PB+的最大值为(248+=+ C巩固11 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比||||MQ MP λ=(0,1)λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点(1,1)B ,则2||||MP MB +的最小值为( )A .6B .7C .10 D.11【解析】C 设(),0Q a ,(),M x y ,根据||||MQ MP λ=和221x y +=求出a 的值 由2||||||||+=+MP MB MQ MB ,两点之间直线最短,可得2||||MP MB +的最小值为BQ 根据坐标求出BQ 即【详解】设(),0Q a ,(),M x y ,所以()22=-+MQ x a y由1,02P ⎛⎫- ⎪⎝⎭,所以2212⎛⎫=++ ⎪⎝⎭PQ x y ,因为||||MQ MP λ=且2λ=,所以()2222212-+=⎛⎫++ ⎪⎝⎭x a y x y整理可得22242133+-++=a a x y x ,又动点M 的轨迹是221x y +=,所以24203113a a +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又=2||MQ MP 所以2||||||||+=+MP MB MQ MB因为(1,1)B ,所以2||||MP MB +的最小值为()()22121010=++-=BQ巩固12 阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点M 的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知()3,0A ,()0,0O ,若直线340x y c -+=上存在点M 满足2=MA MO ,则实数c 的取值范围是( )A .()7,13-B .[]7,13-C .()11,9-D .[]11,9-【解析】点M 在直线340x y c -+=上,不妨设点M 的坐标为3,4x c x +⎛⎫⎪⎝⎭由直线340x y c -+=上存在点M 满足2=MA MO ,则()2222333444x c x c x x ⎡⎤++⎛⎫⎛⎫-+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦整理可得()2225632480x c x c +++-=()()22632100480c c ∆=+--≥()()269101370713c c c c c ⇒--≤⇒-+≤⇒-≤≤所以实数c 的取值范围为[]7,13-,选B。
圆锥曲线常用方法与结论(收藏)
FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
圆锥曲线解题技巧归纳
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
高中数学圆锥曲线知识点总结5篇
高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中圆锥曲线题型及解题方法
高中圆锥曲线题型及解题方法
高中数学中的圆锥曲线是指椭圆、双曲线和抛物线这三种曲线。
下面是一些常见的高中圆锥曲线题型及其解题方法:
1.椭圆题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定椭圆的中心、长轴和短轴的长度。
o图形性质:通过关键参数判断椭圆的形状,并确定焦点和直径等性质。
2.双曲线题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定双曲线的中心、焦距和各轴的长度。
o图形性质:通过关键参数判断双曲线的形状,确定焦点、渐近线和渐近角等性质。
3.抛物线题型:
o方程转化:将标准方程转化为顶点形式或焦点式。
o确定关键参数:通过比较方程的系数,确定抛物线的顶点、焦距和开口方向。
o图形性质:通过关键参数判断抛物线的形状,确定
对称轴、焦点和准线等性质。
解题方法的关键在于确定关键参数,然后利用这些参数来判断曲线的形状和性质。
同时,要熟练掌握方程转化的方法,以便在解题过程中将方程转化为更容易分析的形式。
除了掌握相应的公式和技巧,还需要多做练习,加深对圆锥曲线图形和性质的理解。
同时,理论和实践相结合,通过画图、观察和推理的方式加深对圆锥曲线的认识。
最重要的是理解概念和思想,而不只是死记硬背。
只有真正理解了圆锥曲线的几何性质,才能更好地应用于解题,并在应用过程中灵活运用。
圆锥曲线解题技巧和方法综合方法
圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。
2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。
a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。
过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。
(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。
2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。
sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。
(完整版)解圆锥曲线问题常用方法及性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
解圆锥曲线问题常用的八种方法与七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。
该方法适用于直线与圆锥曲线有交点的情况。
2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。
一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。
3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。
一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。
4.切线法:利用切线与圆锥曲线的交点性质来解题。
一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。
5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。
6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。
7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。
8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。
二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。
2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。
3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。
4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。
5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。
6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。
7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。
圆锥曲线解题技巧
圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。
若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。
2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。
方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。
圆锥曲线专题:定值问题的7种常见考法(解析版)
圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。
2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。
二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。
三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。
四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。
浅谈解决圆锥曲线问题的几种方法
浅谈解决圆锥曲线问题的几种方法【摘要】圆锥曲线问题是数学中重要的课题之一,本文将深入探讨解决这一问题的几种方法。
首先介绍了圆锥曲线的概念和问题的重要性。
接着分别从几何法、代数法、参数法、向量法和微积分法五个方面展开讨论各种解决问题的方法。
在对各种方法进行了综合比较,并指出它们在不同场景下的适用性。
最后展望未来,提出了关于圆锥曲线问题研究的一些新的思路和方向。
通过本文的阐述,读者将对解决圆锥曲线问题有更深入的认识,同时也对未来的研究方向有了一定的启发。
【关键词】圆锥曲线, 解决问题, 方法, 几何法, 代数法, 参数法, 向量法, 微积分法, 综合比较, 适用场景, 未来展望, 引言, 正文, 结论.1. 引言1.1 圆锥曲线概述圆锥曲线是平面上具有特定几何性质的曲线。
根据圆锥曲线的定义,可以将它们分为椭圆、双曲线、抛物线和圆。
它们在几何学和代数学中具有广泛的应用,例如在物理学、工程学和计算机图形学中都有着重要的作用。
椭圆是一个闭合的曲线,其定义是所有到两个固定点的距离之和等于常数的点的集合。
双曲线是一个开放的曲线,其定义是到两个固定点的距离之差的绝对值等于常数的点的集合。
抛物线是一个开放的曲线,其定义是到一个固定点的距离等于到一个固定直线的距离的点的集合。
圆是一个闭合的曲线,其定义是到一个固定点的距离等于常数的点的集合。
圆锥曲线的研究对于理解几何及代数概念具有重要意义。
掌握不同方法解决圆锥曲线问题将有助于我们更深入地理解这些曲线的性质和特点,从而在实际问题中应用这些知识。
在接下来的内容中,我们将介绍几种不同的方法来解决圆锥曲线问题,希望读者能从中受益。
1.2 问题的重要性圆锥曲线在几何学和数学中具有重要的地位,它们是平面上特殊的曲线,包括圆、椭圆、双曲线和抛物线。
解决圆锥曲线问题的方法不仅仅是为了解题,更重要的是培养数学思维和逻辑推理能力。
圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用,掌握解决圆锥曲线问题的方法可以帮助我们更好地理解这些领域的知识和解决实际问题。
浅谈解决圆锥曲线问题的几种方法
浅谈解决圆锥曲线问题的几种方法圆锥曲线问题是高中数学中比较重要的一种问题。
解决圆锥曲线问题需要掌握一定的数学知识和技巧。
本文将从几种不同的角度介绍解决圆锥曲线问题的几种方法。
一、代数法代数法是解决圆锥曲线问题较为基础的一种方法。
对于给定的圆锥曲线,我们可以采用代数方式将其表示出来,然后通过对代数式进行化简、拆分等运算来求解问题。
以椭圆为例,设椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中,a和b分别为椭圆的长半轴和短半轴。
若已知椭圆的长半轴和短半轴分别为5和3,求椭圆的周长和面积。
解题思路:首先,根据椭圆的方程,可以得到:周长:$C=4aE(\frac{b^2}{a^2})$面积:$S=\pi ab$其中,E是椭圆的第二类完全椭圆积分。
代入已知数据,可以得到:周长:$C=4\times 5E(\frac{9}{25})\approx 20.0124$面积:$S=\pi\times 5\times 3\approx 47.1239$二、几何法解题思路:首先,根据双曲线的性质,可以得到:离心率:$e=\sqrt{1+\frac{b^2}{a^2}}$其次,根据题意,双曲线的长轴长度为6,所以有:$2a=6$即:$a=3$又因为焦点为(-3,0),(3,0),所以有:$2c=6$即:$c=3$将已知数据代入公式,可以得到:$b^2=c^2-a^2=9-9=0$所以:离心率:$e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+0}=1$三、投影法以抛物线为例,设抛物线的方程为:$y^2=4px$其中,p为抛物线焦点到抛物线的顶点的距离。
若已知抛物线焦点为(0,2),顶点为(0,0),求抛物线的焦距和面积。
其次,根据题意,抛物线的焦点为(0,2),顶点为(0,0),所以有:$p=2$四、向量法以圆为例,设圆的方程为:$(x-a)^2+(y-b)^2=r^2$其中,(a,b)为圆心坐标,r为圆的半径。
圆锥曲线大题解题技巧
圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。
在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。
以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。
-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。
2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。
-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。
3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。
-利用韦达定理可以快速找到交点的坐标。
4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。
-参数方程可以帮助我们更好地理解曲线的形状和性质。
5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。
-极坐标方法特别适用于求解与焦点、准线相关的问题。
6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。
-图形工具可以帮助我们验证答案的正确性。
7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。
-特殊点的性质往往在解题中起到关键作用。
8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。
-学习并掌握常见的解题模式和思路。
通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。
重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。
圆锥曲线的解题方法
圆锥曲线的解题方法导语:定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。
过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。
第一、圆锥曲线的解题方法:一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2、求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
二、圆锥曲线最值问题(1)化为求二次函数的最值根据已知条件求出一个参数表示的二次函数解析式,用配方法求出在一定范围自变量下函数的最值。
例题:曲边梯形由曲线{C}及直线x=1,x=2所围成,那么通过曲线上哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。
解析:设切点{C},求出切线方程{C},再求出这条切线与直线x=1,x=2的交点纵坐标,根据梯形面积公式列出函数关系式:梯形面积={C},从而得出结论。
(2)利用圆锥曲线性质求最值先利用圆锥曲线的定义性质列出关系式,再用几何或代数方法求最值。
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
浅谈解决圆锥曲线问题的几种方法
浅谈解决圆锥曲线问题的几种方法圆锥曲线是数学中的一个重要分支,它以一个可变的圆锥剖面为基础,通过圆在不同角度上的截面形成了五个不同的曲线:圆、椭圆、抛物线、双曲线和直线。
在实际应用中,圆锥曲线常常被用来描述各种物理现象和工程问题,如轨道设计、光学成像、天体运动等。
本文将会介绍解决圆锥曲线问题的几种方法。
1.几何法几何法是最基本,也是最直观的一种解决圆锥曲线问题的方法。
几何法的思想是将所求的曲线拆分为几个小段,然后求出每个小段的形状和位置参数,最终将它们拼接起来得到整个曲线。
例如,在构造椭圆的过程中,我们可以先画一个长轴和短轴所在的矩形,然后再通过调整矩形的顶点位置将矩形变形为椭圆。
2.代数法代数法是解决圆锥曲线问题的另一种常用方法。
代数法的思想是利用数学式子描述曲线,通过解方程来求解曲线的参数。
例如,在求解抛物线的方程时,我们可以将抛物线的矢量方程转化为标准方程或焦点方程,然后利用所给的条件求解方程中的参数。
3.向量法向量法是一种比较高效的解决圆锥曲线问题的方法。
向量法的思想是用向量来描述曲线的性质和形状,然后通过向量计算来求解曲线的参数。
例如,在计算椭圆的周长时,我们可以将椭圆的周长用向量积的形式表示出来,然后通过向量积的运算得到周长的解析表达式。
4.微积分法微积分法是一种比较深入的解决圆锥曲线问题的方法。
微积分法的思想是利用微积分理论来求解曲线的性质和参数。
例如,在求解椭圆的面积时,我们可以将椭圆的面积转化为曲线积分问题,用微积分方法来求解。
总之,圆锥曲线问题可以采用多种不同的方法来求解,每一种方法都有其独特的优点和应用场合。
在实际问题中,我们需要根据具体情况选择合适的方法来求解,以达到高效和准确的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
12. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-.椭圆与双曲线的经典结论椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤21-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<.11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122θtan 2PF F S b ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b aγ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e ≤21+时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a +≥或220a b x a+≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122θcot 2PF F S b ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-. (2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b aγ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.。