第二讲(古典概型与概率的定义)
概率论第二讲--概率的直观定义
![概率论第二讲--概率的直观定义](https://img.taocdn.com/s3/m/51ff902c52d380eb62946dd1.png)
件次品的概率是多少?
4
P( A)
m n
A中包含的基本事件数 S中的基本事件总数
概 (4)分配问题
率 例4 将15名新生随机分配到3个班级
的 中去,其中有3名优秀生.求:
直 (1)每个班级各分配到一名优秀生的概率
观 (2)3名优秀生分配到同一个班级的概率
定 (5)匹配问题
义 例5 有5双不同的鞋混在一起,今
m n
A中包含的基本事件数 S中的基本事件总数
直 3.属性
观 (1)0≤P(A)≤1 (2)P(S)=1(3)P(φ)=0
定 (4)若A、B互不相容,则P(AB)=P(A)+P(B)
义 一般地,设A1A2···An是两两互不相容的事件,
则 P(A1A2∪···∪Aபைடு நூலகம்)=P(A1)+P(A2)+···+P(An)
(5)任一事件A,有 P( A) 1 P( A)
2
4.典型例题
概
P( A)
m n
A中包含的基本事件数 S中的基本事件总数
率 (1)摸球问题
的 例1 袋中装有6只球,其中4只白球 直 2只红球.从中取球两次,每次随机取
观 一只.分别就放回抽样、不放回抽样,
定 求:
义 (1)取到两只都是白球的概率 (2)取到两只球颜色相同的概率
§1.3 概率的直观定义
• (一)概率的古典定义
1.等可能概型(古典概型)
若试验E具有以下两个特点: ⑴试验的样本空间的元素只有有限个; ⑵试验中每个基本事件发生的可能性 相同. 则称这种试验为等可能概型(古典概型)
1
(一)概率的古典定义
§1.2 概率的定义与古典概型
![§1.2 概率的定义与古典概型](https://img.taocdn.com/s3/m/5f567a13b7360b4c2e3f64aa.png)
设有k 个不同的球, 每个球等可能地落入N 个盒子中(), 设每个盒子容球数无限, 求下列事件的概率:N k ≤(1)某指定的k 个盒子中各有一球;(4)恰有k 个盒子中各有一球;(3)某指定的一个盒子没有球;k m ≤(2)某指定的一个盒子恰有m 个球( )(5)至少有两个球在同一盒子中;(6)每个盒子至多有一个球.例2(分房模型)例7两船欲停靠同一个码头, 设两船到达码头的时间各不相干,而且到达码头的时间在一昼夜内是等可能的. 如果两船到达码头后需在码头停留的时间分别是1 小时与2 小时,试求在一昼夜内,任一船到达时,需要等待空出码头的概率.解设船1 到达码头的时刻为x,0 ≤x < 24船2 到达码头的时刻为y,0 ≤y < 24设事件A表示任一船到达码头时需要等待空出码头设Ω是随机试验E 的样本空间,若能找到一个法则,使得对于E 的每一事件A 赋于一个实数,记为P ( A ), 称之为事件A 的概率,这种赋值满足下面的三个条件:非负性:0)(,≥⊂∀A P A Ω 规范性:1)(=ΩP ∑∞=∞==⎟⎠⎞⎜⎝⎛11)(i i i i A P A P U 可列可加性:L ,,21A A 其中为两两互斥事件,概率的公理化理论由前苏联数学家柯尔莫哥洛夫(A.H.Колмогоров)1933年建立.三、概率的公理化定义6、加法公式:对任意两个事件A, B, 有)()()()(ABPBPAPBAP−+=∪)()()(BPAPBAP+≤∪推广:) ()()() ()( )()()(ABC PBCP ACPAB PCP BPAPCBAP+−−−+ +=∪∪)()1()()()()(2111111n n nnk j i k j i nj i j i ni i ni i A A A P A A A P A A P A P A P L L U −≤<<≤≤<≤==−++++−=∑∑∑一般:右端共有项.12−n例9 中小王他能答出第一类问题的概率为0.7, 答出第二类问题的概率为0.2, 两类问题都能答出的概率为0.1. 为什么不是?2.07.0×若是的话, 则应有)()()(2121A P A P A A P =而现在题中并未给出这一条件.在§1.4中将告诉我们上述等式成立的条件是:事件相互独立.21,A A例10设A , B 满足P ( A ) = 0.6, P ( B ) = 0.7,在何条件下,P (AB ) 取得最大(小)值?最大(小)值是多少?解)()()()(AB P B P A P B A P −+=∪)()()()(B A P B P A P AB P ∪−+=3.01)()(=−+≥B P A P 1)(=∪B A P 最小值在时取得6.0)()(=≤A P AB P ——最小值——最大值)()(B P B A P =∪最大值在时取得。
古典概型的特征与概率计算公式
![古典概型的特征与概率计算公式](https://img.taocdn.com/s3/m/d9a70dc370fe910ef12d2af90242a8956aecaa40.png)
古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。
在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。
1.等可能性:在古典概型中,每个事件的发生概率都是相等的。
2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。
3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。
根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。
即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。
2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。
即:P(A∪B)=P(A)+P(B)。
3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。
即:P(A∩B)=P(A)*P(B)。
4.补事件:事件A的对立事件为A的补事件,记作A'。
补事件是指样本空间中不属于事件A的结果。
事件A的发生与A'的不发生是互斥的。
因此,P(A')=1-P(A)。
5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。
即:P(A∩B)=P(A)*P(B)。
通过以上公式,我们可以计算古典概型中事件的概率。
需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。
第三章 概率 第二讲 古典概率
![第三章 概率 第二讲 古典概率](https://img.taocdn.com/s3/m/4d47537d7fd5360cba1adbf6.png)
第三章概率第二讲古典概率【考点透视】1.基本事件:在实验中所有可能的结果都是随机事件,我们把这类随机事件称为基本事件.基本事件有两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型:将具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等3.古典概型概率计算公式P(A)=mn.m表示事件A包含的基本事件的个数,,n表示基本事件的总数。
3.古典概型的适用条件:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.4.古典概型的解题步骤:(1)求出总的基本事件数;(2)求出事件A所包含的基本事件数,然后利用公式P(A)=A包含的基本事件的个数基本事件的总数【新知探究】探究点一基本事件问题1抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?答(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反), (正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).问题2上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?答由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.问题3在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?答(正,正,反),(正,反,正),(反,正,正);(正,正,正),(正,正,反),(正,反,正),(反,正,正).例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解所求的基本事件有6个,A={a,b},B={a,c},C={a,d}, D={b,c},E={b,d},F={c,d};“取到字母a”是基本事件A、B、C的和,即A+B+C.小结基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.探究点二古典概型问题1抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?答基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此基本事件出现的可能性是相等的.问题2抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?答这个试验的基本事件有6个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此基本事件出现的可能性是相等的.问题3上述试验的共同特点是什么?答(1) 试验中所有可能出现的基本事件只有有限个;(2) 每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.例2某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?解不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的(为什么?),即不满足古典概型的第二个条件.小结判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.探究点三古典概型概率公式导引在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算?问题1在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?解出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1,因此P(“正面朝上”)=P(“反面朝上”)=1 2,即P(出现正面朝上)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数.问题2在抛掷骰子的试验中,如何求出现各个点的概率?解出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”),反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=1 6.进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=16+16+16=12.即P(“出现偶数点”)=“出现偶数点”所包含基本事件的个数”/基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数”/基本事件的总数.P(A)=事件A所包含的基本事件的个数/基本事件的总数.问题3从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U,A=∅时,P(A)等于什么?答P(A)=mn;当A=U时,P(A)=1;当A=∅时,P(A)=0.例3单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解由于考生随机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能,因此基本事件总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含一个基本事件,所以P(A)=1 4.小结解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.探究点四与顺序有关的古典概型问题1在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?答这是因为猜对的概率更小,由概率公式可知,分子上的数还是1,因正确答案是唯一的,而分母上的数即基本事件的总数增多了,有(A), (B),(C),(D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D) ,(A,B,C),(A,B,D),(A,C,D),(B,C,D),(A,B,C,D)共15个,所以所求概率为115<14.例1同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为(1,4),(2,3),(3,2),(4,1).(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数基本事件的总数=436=19.问题2为什么要把两个骰子标上记号?如果不标记号会出现什么情况?若用古典概型公式,所求的概率是多少?答如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别,这时,所有可能的结果将是(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为P(A)=A所包含的基本事件的个数基本事件的总数=2 21.问题3在例1中所求的概率和问题2中所求的概率相同吗?哪种求法不符合古典概型?为什么?答求出的概率不相同;问题2中的求法不符合古典概型;因为两个不同的骰子所抛掷出来的点构造的基本事件不是等可能事件.小结古典概型问题包含的题型较多,但都必须紧扣古典概型的定义,进而用公式进行计算.列举法是求解古典概型问题的常用方法,借助于图表等有时更实用有效.探究点五与顺序无关的古典概型例2现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1), (A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2 ),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}有18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1) , (A1,B3,C2)}事件M有6个基本事件组成,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N有3个基本事件组成,所以P(N)=318=16,由对立事件的概率公式得P(N)=1-P(N)=1-16=56.小结在应用古典概型概率计算公式求概率时,有些事件用文字书写较麻烦,我们常用一些字母或数字来表示事件,为解题带来方便.【知识梳理】1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是由几个基本事件组合而成的.2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数基本事件的总数,只对古典概型适用.3.求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏.4.在求概率时,通常把全体基本事件列表或用直角坐标系中的点来表示,以方便我们更直接、准确地找出某个事件所包含的基本事件的个数,然后再根据古典概型的概率公式,求出相应的概率即可.5.解题时,将所有基本事件全部列出是避免重复或者遗漏的有效方法;对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.【小露一手】古典概型练习(一)一、基础过关1.下列是古典概型的是 ( )A .任意抛掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止2.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.153.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A.14 B.12 C.18 D .无法确定4.一袋中装有大小相同的四个球,编号分别为1,2,3,4,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于6”为事件A ,则P (A )等于( )A.14B.16C.38D.49 5.三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率为________.7.从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.8.从含有两件正品a ,b 和一件次品c 的三件产品中每次任取1件,每次取出后放回,连续取两次,求取出的两件中恰好有一件次品的概率.二、能力提升9.有五根细木棒,长度分别为1,3,5,7,9(cm),从中任取三根,能搭成三角形的概率是( )A.320B.25C.15D.31010.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.11.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________.12.某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项活动的志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.三、探究与拓展13.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.(1)正常情况下,求田忌获胜的概率;(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.答案1.C2.D3.B4.C5.13 6.257.解(1)记甲被选中为事件A,基本事件有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁共6个,事件A包含的事件有甲乙,甲丙,甲丁共3个,则P(A)=36=12.(2)记丁被选中为事件B,由(1)同理可得P(B)=12,又因丁没被选中为丁被选中的对立事件,设为B,则P(B)=1-P(B)=1-12=12.8.解有放回的连取两次取得两件,其一切可能的结果组成的样本空间是Ω={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)},∴n=9,用B表示“恰有一件次品”这一事件,则B={(a,c),(b,c),(c,a),(c,b)},∴m=4.∴P(B)=4 9.9.D 10.1411.31012.解把4名获书法比赛一等奖的同学编号为1,2,3,4;2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从6名同学中任选两名,都是书法比赛一等奖的所有可能如下:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.∴选出的两名志愿者都是书法比赛一等奖的概率是P1=615=2 5.(2)从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能如下:(1,5), (1,6), (2,5), (2,6), (3,5),(3,6),(4,5),(4,6),共8个.∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是P2=815.13.解比赛配对的基本事件共有6个,它们是(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Ba,Cb),(Ac,Bb,Ca).(1)经分析:仅有配对为(Ac,Ba,Cb)时,田忌获胜,且获胜的概率为1 6.(2)田忌的策略是首场安排劣马c出赛,基本事件有2个:(Ac,Ba,Cb),(Ac,Bb,Ca),配对为(Ac,Ba,Cb)时,田忌获胜且获胜的概率为1 2.答正常情况下,田忌获胜的概率为16,获得信息后,田忌获胜的概率为12.古典概型练习(二)一、基础过关1.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为( )A.150B.110C.15D.142.有100张卡片(标号为1~100),从中任取1张,取到卡片上的号码是7的倍数的概率是( )A.750B.7100C.748D.3203.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( )A.16B.536C.112D.12 4.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( ) A.14B.13C.38D.125.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________.6.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是________.7.设袋中有a 1,a 2两支好签,b 1,b 2两支坏签,四人依次从袋中无放回地任抽一签,分别求他们抽到好签的概率.8.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率. 二、能力提升9.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.2510.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 ( )A.49B.13C.29D.1911.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________;如果试过的钥匙不扔掉,这个概率是________.12.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率. 三、探究与拓展13.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.答案1.C2.A3.C4.C 5.12 6.297.解设事件A1,A2,A3,A4分别表示第一人,第二人,第三人,第四人抽到好签的事件,则A1={a1a2b1b2,a1a2b2b1,a1b1a2b2,a1b1b2a2,a1b2a2b1,a1b2b1a2,a2a1b1b2,a2a1b2b1,a2b1a1b2,a2b1b2a1,a2b2a1b1,a2b2b1a1},共12个基本事件.A2={b1a1b2a2,b1a1a2b2,a2a1b1b2,a2a1b2b1,b2a1b1a2,b2a1a2b1,b1a2b2a1,b1a2a1b2,a1a2b1b2,a1a2b2b1,b2a2a1b1,b2a2b1a1},共12个基本事件.同理,我们可列举出A3,A4也都包含12个基本事件.由古典概型的计算公式,可得P(A1)=P(A2)=P(A3)=P(A4)=1224=12.8.解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P=26=13.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=316. 故满足条件n<m+2的事件的概率为1-P1=1-316=13 16.9.C10.D11.131412.解(1)由题意可知:n1+1+n=12,解得n=2.(2)不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个.∴P (A )=412=13.13.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.第二次抽取第一次抽取1 2 3 4 5 1 (1,1) (1,2) (1,3) (1,4) (1,5) 2 (2,1) (2,2) (2,3) (2,4) (2,5) 3 (3,1) (3,2) (3,3) (3,4) (3,5) 4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典概型. 用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P (A )=525=15=0.2.。
古典概型概率
![古典概型概率](https://img.taocdn.com/s3/m/35f9c1cb534de518964bcf84b9d528ea81c72f1c.png)
古典概型概率
古典概型概率是由法国数学家保罗·科尔贝于1812年提出,是有限随机实验中计算概率的一种理论。
它认为随机实验的可能性取决于该实验所包含的样本空间无外乎两个:实验成功或失败。
对于一个有限的样本空间来说,如果注意到其中某些成功的情况数量(即S1),则失败情况的数量也就已经定义好了(即F=N-S1)。
因此,可以将该随机实验的成功概率表述为S1/N。
古典概型概率通常用来估计一件特定事件发生的几率。
例如在随机试验中用一个面值为6的正方体来代表6个不同情况时,如果要估计在这6 个情况中出现特定情况的几率,则可以使用古典概型概率估计这一特征情况出现的几率是1/6.
总之,古典概型概率是利用样本量少但是样本数量单一、容易数量化的情况来估计特征情况出现的几���;考量到不同因子影响、分布开展大量样本测得、不易数量化时对此理论进行扩展使之通用性加强.。
1-第二节古典概率与几何概率
![1-第二节古典概率与几何概率](https://img.taocdn.com/s3/m/d11fd17531b765ce0508141f.png)
N C C C 30!/ 10! 10! 10!
10 30 10 20 10 10
9 9 P(A) 3! C 27 C18 C99 /N 50/ 203
1 7 10 10 P(B) C 3 C 27 C 20 C10 /N
3 C / C
7 27
10 30
a( a b 1 )! a P ( Ak ) ( a b )! ab
解法2 1.把a只黑球和b只白球都看着没有区别.
2. 把a+b只球摸出来依次排在一直线的a+b个位置 上.若把a只黑球的位置固定下来,则其它位置必然 a C 为白球,则黑球在a+b个位置中的放法共有 a b , 3.有利于A的场合是在第k个位置上固定一个黑球, 其余a - 1个黑球被放到其余a+b-1个位置上,共有 a 1 Ca 种放法. 因此 b 1
k n k CM CN M P , n CN
0 k minn , M n M
超几何分布
例11 30名毕业生中有3名运动员,将他们平均分配 到甲、乙、丙三个城市去工作,求: (1)每市都有一名运动员的概率; (2)3名运动员集中在一个市里的概率。 解 设A={每市有一名运动员}; B={3名运动员集中在一个市里}
P (e1 ) P (e 2 ) P (e n ) nP (e1 )
P ( e1 ) P ( e 2 ) P ( e n ) 1 / n
因此, 若事件A e i1 , e i2 , , e ik 包含了k个基本事件, 则 事件A发生的概率 P ( A) k / n
使 A 发生的基本事件是第一次抽到合格品 , 且第二次也抽到合格品, 共有mA=8×8=64种取法.于是 P(A)= mA/n=64/100 同理B包含的基本事件数mB=2×2=4.所以 P(B)= mB /n=4/100 由于C=A+B,且AB=,所以
1-2(概率的定义、古典概率)
![1-2(概率的定义、古典概率)](https://img.taocdn.com/s3/m/39e172996bec0975f465e2b5.png)
P( AB) P( A) P( B) P( A B)
P( A) P( B) 1 0.3 —— 最小值
最小值在 P( A B) 1 时取得
P( AB) P( A) 0.6
—— 最大值
最大值在 P( A B) P( B) 时取得
三.几何概率
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法.
P( AB ) P( A) P( AB) 0.7 0.1 0.6 (2) P( A B) P( A) P( B) P( AB) 0.8
(1)
(3) P( A B) P( A B) 0.2
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在 何条件下, P(AB) 取得最大(小)值?最大(小) 值是多少? 解 P( A B) P( A) P( B) P( AB)
P ( Ai ) P ( Ai )
i 1 i 1 n n 1 i j n
P( A A )
i j
1 i j k n
P( A A A )
i j k
„ ( 1)
n1
P ( A1 A2 „ An )
例1 小王参加“智力大冲浪”游戏, 他能 答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题”
概率论 2概率的统计定义、古典概型
![概率论 2概率的统计定义、古典概型](https://img.taocdn.com/s3/m/b864fb4069eae009581bec75.png)
个。
• 例8 从1~100的一百个整数中任取一数,试求取到的整数能被 6或8整除的概率。
几何概率( Geometric Probability)
将古典概率中的有限性推广到无限性,而保留等可
能性,就得到几何概率。
特点
有一个可度量的几何图形S 试验E看成在S中随机地投掷一点
事件A就是所投掷的点落在S中的可度量图形A中
投掷两颗骰子,试计算两颗骰子的点数之 和在4和10之间的概率. 解:设A表示点数之和在4和10之间
1 2 5 P( A) 1 2 2 36 36 6
求
P A B, P A B, P A B
设 P A 0.4,
P AB P A B P A AB 0.2
A B 0.4 0.7 0.2 0.9
0.4 0.3 0.2 0.5
古典概率 (Classical Probability)
考察如下几个试验:
抛两枚均匀的硬币,观察它们出现的正反面的情况。 掷骰子一颗,观察其点数。 掷一颗骰子并抛一枚硬币,观察骰子的点数和硬币的 正反面情况。
(2) 事件A,B有包含关系
解 (1) 由于 AB , 因此 A B A, B A B P( A B) P( A) 0.3 P( B A) P( B) 0.6
(2) 由已知条件和性质3,推得必定有
A B
P( A B) P() 0
P( B A) P( B) P( A) 0.3
它们都具备如下特点: (1)每次试验中,所有可能的结果只有有限多个。 (2)每次试验中,每一种可能的结果发生的可能性相同。 满足这些条件的数学模型称作古典概率。
古典概率_精品文档
![古典概率_精品文档](https://img.taocdn.com/s3/m/d19eef153a3567ec102de2bd960590c69fc3d84c.png)
古典概率1. 引言古典概率是概率论的最基本概念之一,研究的是在相互独立、等可能的情况下,事件发生的可能性。
本文将介绍古典概率的定义、计算方法以及应用领域。
2. 古典概率的定义古典概率又叫做经典概率或古典概型概率,是指在一定条件下,根据事件的可能性数量来判断事件发生的概率。
古典概率的定义基于以下两个假设:•事件的发生是等可能的;•不同事件之间是相互独立的。
3. 古典概率的计算方法古典概率的计算方法主要包括以下三个步骤:3.1 确定样本空间首先需要确定事件的样本空间,即可能发生的所有不同结果的集合。
3.2 确定事件集合在确定样本空间的基础上,需要确定事件的集合,即关注的事件发生的结果。
3.3 计算概率根据古典概率的定义,概率等于事件发生的可能性数量除以样本空间的元素数量。
4. 古典概率的应用古典概率广泛应用于各个领域,以下是一些常见的应用场景:4.1 丢硬币当我们丢一枚公平的硬币时,硬币正面朝上和硬币反面朝上的概率都是 0.5,这是根据古典概率计算出来的。
在概率的计算中,我们可以使用古典概率来预测硬币出现某一面朝上的可能性。
4.2 扑克牌在一副扑克牌中,每个花色有13个不同的牌面,共有52张牌。
如果从一副完整的扑克牌中随机抽取一张牌,不同花色的概率都是 1/4,而每个花色内具体牌面的概率都是 1/13。
这种概率计算方法也是基于古典概率的思想。
4.3 假设检验假设检验是统计学中常用的推理方法之一,通过对已有数据的分析,判断某个假设的合理性。
在假设检验中,我们可以使用古典概率来计算出在不同假设下观察到特定结果的概率,从而判断该假设的可信程度。
5. 结论古典概率作为概率论的基础概念之一,研究的是在相互独立、等可能的情况下,事件发生的可能性。
通过确定样本空间、事件集合以及计算概率,可以使用古典概率来预测和推断各种事件的概率。
古典概率在丢硬币、扑克牌以及假设检验等领域都有广泛的应用。
古典概型知识点总结
![古典概型知识点总结](https://img.taocdn.com/s3/m/73e8a68d48649b6648d7c1c708a1284ac850059b.png)
古典概型知识点总结在概率论中,古典概型是一个基础且重要的概念。
它为我们理解和解决许多概率问题提供了简单而直观的方法。
接下来,让我们一起深入探讨古典概型的相关知识点。
一、古典概型的定义古典概型是指试验中所有可能出现的基本事件是有限的,并且每个基本事件出现的可能性相等的概率模型。
例如,掷一枚均匀的硬币,出现正面和反面就是两个基本事件,且它们出现的可能性相等,这就是一个古典概型的例子。
二、古典概型的概率计算公式如果一个古典概型中,一共有 n 个基本事件,事件 A 包含的基本事件数为 m,那么事件 A 发生的概率 P(A) = m / n 。
这个公式是古典概型计算概率的核心,通过确定基本事件总数和事件 A 包含的基本事件数,就可以计算出事件 A 的概率。
三、古典概型的特点1、有限性:试验中所有可能出现的基本事件是有限的。
2、等可能性:每个基本事件出现的可能性相等。
这两个特点是判断一个概率模型是否为古典概型的关键。
四、计算古典概型概率的步骤1、确定试验的基本事件总数 n 。
2、确定所求事件 A 包含的基本事件数 m 。
3、代入公式 P(A) = m / n 计算概率。
例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
基本事件总数 n = 8 (5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数 m = 5 ,所以取出红球的概率 P =5 / 8 。
五、古典概型的常见题型1、摸球问题比如,一个袋子里有若干个不同颜色的球,从中摸出特定颜色球的概率。
2、掷骰子问题计算掷出特定点数或特定点数组合的概率。
3、抽奖问题在抽奖活动中,计算中奖的概率。
4、排列组合问题与古典概型的结合通过排列组合的方法确定基本事件总数和事件包含的基本事件数。
六、古典概型的应用1、决策分析在面临不确定性的决策时,可以通过计算不同结果的概率来辅助决策。
2、风险评估评估某些事件发生的可能性和风险程度。
2、概率的几种定义(古典概型).
![2、概率的几种定义(古典概型).](https://img.taocdn.com/s3/m/0b43db03a76e58fafab003dd.png)
性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率
《随机事件与概率》概率(古典概型)
![《随机事件与概率》概率(古典概型)](https://img.taocdn.com/s3/m/11d0bb7466ec102de2bd960590c69ec3d5bbdb9f.png)
概率在金融中的应用
投资组合优化
根据不同资产的历史回报率和 风险,计算投资组合的预期收 益和风险,以选择最优的投资
组合。
保险产品设计
根据历史数据和风险概率,设计不 同费率和保障范围的保险产品。
信用评估
通过分析借款人的历史信用记录和 还款情况,评估借款人违约的概率 。
概率在医学中的应用
临床试验
通过随机对照试验,评估新药的 有效性和副作用发生的概率。
疾病诊断
根据患者的临床表现和医学检查 数据,医生可以初步判断患者患
某种疾病的概率。
遗传疾病风险评估
根据家族病史和基因检测结果, 评估个体患遗传疾病的风险概率
。
04
概率与统计
概率与统计的联系
概率是统计的基础
概率论是研究随机现象的数学理论,为统计推断提供了基础。统计是通过收集、整理和分析数据来推断未知的信 息,而概率提供了对数据进行推断的数学方法。
概率论的公理化
目前,概率论的公理化仍然是一个活跃的研究领域。未来,概率论的公 理化将进一步完善,以更好地描述和解释随机现象。
ቤተ መጻሕፍቲ ባይዱ
思考题与练习题
思考题
请举例说明古典概型在实际生活中的应用。
练习题
请计算以下事件的概率:在一个包含 5 个 白球和 3 个黑球的盒子里,随机抽取一个
白球的概率是多少?
THANKS
设定参数
为模拟程序设定所需的参数,如模拟次数、事件 发生条件等。
模拟结果的统计分析
数据收集
运行模拟程序,收集模拟产生的数据。
统计分析
对收集到的数据进行统计分析,如计算平均值、中位数、标准差等 。
结果展示
以图表或报告的形式展示分析结果,如频率分布图、直方图、饼图 等。
古典概型 课件
![古典概型 课件](https://img.taocdn.com/s3/m/24825b1a814d2b160b4e767f5acfa1c7aa0082a1.png)
特点
01
样本空间是有限的。
02
每个基本事件发生的概率是相等的。
每个基本事件都是互斥的。
03
与几何概型的区别
样本空间的差异
古典概型的样本空间是有限的,而几何概型的样本空间是无限的 。
概率计算方式的差异
古典概型中每个基本事件发生的概率是相等的,而几何概型中基本 事件发生的概率与长度、面积或体积等几何量有关。
总结词
如果一个随机试验的所有可能结果只有 有限个,则称为试验结果的有限性。
VS
详细描述
在古典概型中,试验的所有可能结果必须 是有限的,即存在一个正整数$n$,使得 试验有$n$个可能的结果。这是古典概型 的一个基本条件,也是概率论中一个重要 的前提。
试验结果的等可能性
总结词
如果一个随机试验的所有可能结果发生的概率相等,则称为试验结果的等可能性。
要点一
总结词
等可能、无限
要点二
详细描述
在生日问题中,每个人在一年中任意一天出生的可能性是 等可能的,并且有无限多个可能的结果(365天),但因 为一年只有365天,所以实际上是有限的。因此,这是一 个古典概型。
06
古典概型与概率统计 的意义
在决策论中的应用
风险评估
古典概型概率统计可以帮助决策者评估不同方案的风险,从而选择 最优方案。
总结词
等可能、有限
详细描述
在抛掷一枚骰子的试验中,每个可能的结果是等可能的,并且只有有限个可能的结果( 1、2、3、4、5、6),因此这是一个古典概型。
抽签问题
总结词
等可能、有限
详细描述
在抽签问题中,每个可能的结果是等可能的 ,并且只有有限个可能的结果(例如,红球
2、概率的几种定义(古典概型)
![2、概率的几种定义(古典概型)](https://img.taocdn.com/s3/m/40f0a18fd0d233d4b14e696e.png)
3)
61
b)无放回 1) 2)
3)
62
例 在1~2000的整数中随机的取一个数, 问取到的整数既不能被6整除,又不能被8 整除的概率是多少?
解:设 A:取到的数能被6整除 B:取到的数能被8整除 由题意,所求概率为
63
P ( AB ) P ( A B ) 1 P ( A B ) 1 [ P ( A) P ( B ) P ( AB)]
44
3)对任何事件A有
45
4)若 则 且 证:由
,
而 S
46
A B
故
移项即得:
又 故
47
5)对任意两事件 证: 且
与
有丶
S
48
B
A
推广到三个事件的情形丶
P ( A) P ( B ) P (C ) P ( BC ) P ( AB ) P ( AC ) P ( ABC )
23
所以事件
包含的样本点数为
所以
24
二、 概率的几何定义 古典概率局限于试验结果的有
限性,对许多试验结果无限的情况,
有时可用几何的方法来解决(注意
这里也要求等可能性)。
25
几何概型 向某一可度量的区域 内投一 点,如果所投的点落在 中任意区
域 内的可能性大小与
正比,而与 试验。
26
的度量成
的位置和形状无关,
验,
是
的样本空间,对于
E的每一事件A,赋于一实数, 称为事件A的概率,记为 并规定 公理:
41
必须满足下列三条
1)非负性:
2)规范性:
3)可列可加性:若事件 两两互不相容即 则
42
《古典概率》课件
![《古典概率》课件](https://img.taocdn.com/s3/m/aed018f11b37f111f18583d049649b6649d70955.png)
从n个不同元素中取出m个元素(m≤n),不按照顺序,叫做从n个元素中取出 m个元素的一个组合。所有组合的个数记作C(n,m),计算公式为 C(n,m)=P(n,m)/m!。
概率的加法公式
• 概率的加法公式:如果事件A和B是互斥的,那么 P(A∪B)=P(A)+P(B)。如果事件A和B不是互斥的 ,那么P(A∪B)=P(A)+P(B)-P(A∩B)。
贝努里概型
贝努里概型是一种特殊的概率模型,它涉及到n次独立重复试验中某一事件A发生 的次数。在贝努里概型中,我们可以通过古典概率计算出事件A发生的概率。
例如,在遗传学中,贝努里概型可以用来计算某一遗传特征在后代中出现的概率 。通过古典概率的计算,我们可以了解这一特征在后代中的分布情况,从而更好 地解释和预测遗传现象。
统计学
在统计分析中,古典概率常用于 假设检验和置信区间的计算。
决策理论
在决策分析中,基于等可能性和 互斥性的决策准则常被采用。
随机事件是指在一次 试验中可能发生也可 能不发生的事件。
概率的公理化定义
概率的公理化定义是指通过公 理来描述概率的性质和运算规 则。
公理化定义包括三个公理:概 率的加法公理、概率的乘法公 理和概率的可数可加性公理。
这些公理为概率论的发展奠定 了基础,使得概率论成为一个 严谨的数学分支。
概率的基本性质
识别二
避免代表性谬误
识别三
避免过度自信和确认性偏误
05
古典概率与现代概率的关系
古典概率与现代概率的区别与联系
古典概率
基于等可能性和互斥性, 计算事件发生的可能性。
现代概率
基于样本空间和事件定义 ,引入概率空间和随机变 量等概念。
联系
第二讲(古典概型与概率的定义)
![第二讲(古典概型与概率的定义)](https://img.taocdn.com/s3/m/beca111b6edb6f1afe001f04.png)
由
(1 x )
m n
m n
(1 x ) (1 x )
m
n
运用二项式展开 有
m n j j x j 0 m j1 n n j2 j x j x j1 0 1 j2 0 2
每个盒子容球数无限, 求下列事件的概率:
(1)某指定的 k 个盒子中各有一球;
(2)某指定的一个盒子恰有 m 个球( m k ) (3)某指定的一个盒子没有球; (4)恰有 k 个盒子中各有一球; (5)至少有两个球在同一盒子中; (6)每个盒子至多有一个球.
解 nN 设 (1) ~ (6)的各事件分别为
P ( A) A中的样本点数 S中的样本点数
4
古典概率的性质
1 0 P( A) 1 、
非负性
规范性
A , A2 , , An 1
2、P ( ) 1
3、对于互不相容的事件
n
有
P( A k ) P( A k )
k 1 k 1
n
有限可加性
这样就把求概率问题转化为计数问题 . 排列组合是计算古典概率的重要工具 . 这里我们先简要复习一下计算古典概率 所用到的 基本计数原理 1. 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 第二种方式有n2种方法, …; 第m种方式有nm种方法, 则完成这件事总共 有n1 + n2 + … + nm 种方法 .
的每个基本事件出现一定要是等可能的。
上述古典概型的计算,只适用具有等可能性的 有限样本空间。若试验结果无限,则它显然已经不 适合。为了克服有限的局限性,利用几何方法,可 将古典概型的计算加以推广。
精品高中数学专题:概率
![精品高中数学专题:概率](https://img.taocdn.com/s3/m/df06a42a69eae009581bec7d.png)
第二讲 概 率1. 基本事件的定义一次试验中可能出现的结果都是随机事件,这类随机事件称为基本事件. 基本事件的特点:(1)任何两个基本事件是互斥的; (2)任何事件都可以表示成基本事件的和. 2. 古典概型(1)古典概型我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,以上两个特点的概率模型称为古典概率模型,简称古典概型. (2)古典概率模型的概率求法如果一次试验中基本事件共有n 个,那么每一个基本事件发生的概率都是1n ,如果某个事件A 包含了其中的m 个基本事件,那么事件A 发生的概率为P (A )=mn .3. 几何概型(1)几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. (2)几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4. 互斥事件与对立事件的关系(1)对立是互斥,互斥未必对立;(2)如果事件A ,B 互斥,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和,即P (A +B )=P (A )+P (B ).这个公式称为互斥事件的概率加法公式.(3)在一次试验中,对立事件A 和A 不会同时发生,但一定有一个发生,因此有P (A )=1-P (A ).1. (2013·安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910答案 D解析 由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.2. (2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78 答案 C解析 设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎨⎧0≤X ≤40≤y ≤4|x -y |≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P (|x -y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.3. (2013·福建)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________.答案 13解析 由3a -1<0得a <13.由几何概型概率公式得P =13.4. (2012·广东改编)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.答案 19解析 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.5. (2012·安徽改编)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率是________.答案 25解析 设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共6个.∴其概率为615=25.题型一 古典概型例1 (1)(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.(2)设集合P ={a 1,a 2,a 3,…,a 10},则从集合P 的全部子集中任取一个,取出含有3个元素的子集的概率是( )A.310B.112C.4564D.15128审题破题 (1)利用古典概型概率的计算公式求解;(2)利用集合知识求出P 的全部子集个数和含3个元素的子集个数.答案 (1)2063(2)D解析 (1)P =4×57×9=2063.(2)集合P 的全部子集个数为210=1 024,含三个元素的子集个数为10×9×86.∴P =10×9×86×210=15128.反思归纳 古典概型是最基本的概率问题,可以直接利用公式P (A )=mn 求出事件的概率,解题关键是求基本事件总数和事件A 所包含的基本事件个数.变式训练1 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种. 从中选出的2名教师性别相同的结果为:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种.所以选出的2名教师性别相同的概率为49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出的2名教师来自同一学校的结果为:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种.所以选出的2名教师来自同一学校的概率为615=25.题型二 几何概型例2 (1)在区间[-1,1]上随机取一个数x ,cosπx 2的值介于0到12之间的概率为 ( )A.13B.2π C.12 D.23(2)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 ( )A.π4B.π-22C.π6 D.4-π4审题破题 (1)将cos π2x 的条件转化为x 的条件;(2)D 为正方形区域,点满足的条件为D内的一个圆外. 答案 (1)A (2)D解析 (1)在区间[-1,1]上随机取一个实数x ,cosπx 2的值位于[0,1]区间,若使cos πx 2的值位于⎣⎡⎦⎤0,12区间,取到的实数x 应在区间⎣⎡⎦⎤-1,-23∪⎣⎡⎦⎤23,1内,根据几何概型的计算公式,可知P =2×132=13.(2)如图,不等式⎩⎨⎧0≤x ≤2,0≤y ≤2表示的区域D 为正方形OABC .以O 为圆心,以2为半径作圆弧AMC ,则阴影部分内的点到原 点O 的距离大于2,∴P =S 阴影S 正方形=2×2-14·π·222×2=4-π4.反思归纳 几何概型中基本事件总数是无限的,计算几何概型要抓住问题的测度(长度、面积、体积),利用公式计算.变式训练2 (1)如图,在单位圆O 的某一直径上随机的取一点Q ,过点Q 且与该直径垂直的弦长长度不超过1的概率为______.答案 1-32解析 弦长不超过1, 即|OQ |≥32,而Q 点在直径AB 上是随机的, 事件A ={弦长超过1}.由几何概型的概率公式得P (A )=32×22=32.∴弦长不超过1的概率为1-P (A )=1-32.(2)在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率为________.答案 23解析 ∵V S —ABC V S —APC =S △ABC S △APC =ABAP ,∴V S —APC =AP AB ·V >V 3,AP >13AB ,所以所求概率为23.题型三 互斥事件、对立事件的概率例3 班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的编号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.审题破题 “不全是男生”包括“二个女生”,“一男一女”两种情况,将所求事件分解为两个互斥事件的和.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典概型.用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P (A )=525=15=0.2.反思归纳 运用互斥事件的概率公式时,一定要首先确定各事件是否彼此互斥,然后分别求出各事件发生的概率,再求和.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解. 变式训练3 一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求 (1)取出的小球是红球或黑球的概率; (2)取出的小球是红球或黑球或白球的概率.解 方法一 (1)从12个球中任取1球是红球有5种取法,是黑球有4种取法,是红球或黑球共有5+4=9种不同取法,而任取1球共有12种取法.∴任取1球是红球或黑球的概率为P 1=912=34.(2)从12个球中任取1球是红球有5种取法,是黑球有4种取法,是白球有2种取法, ∴任取1球是红球或黑球或白球的概率P 2=5+4+212=1112.方法二 记事件A ={任取1球为红球}, B ={任取1球为黑球},C ={任取1球为白球}, D ={任取1球为绿球},则P (A )=512,P (B )=13,P (C )=16,P (D )=112.(1)取出1球为红球或黑球的概率为P 1=P (A )+P (B )=512+13=34.(2)取出1球为红球或黑球或白球的概率为P 2=P (A )+P (B )+P (C )=512+13+16=1112.(或P 2=1-P (D )=1-112=1112).典例 (12分)(2012·湖南)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14.[9分]因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件, 所以P (A )=P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3) =320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]评分细则 (1)x ,y 计算正确得2分;若只有x ,y 的值而无计算过程得1分;(2)将事件A 正确拆分得1分;P (A 1)、P (A 2)、P (A 3)少一个扣0.5分;(3)没有指明A 1、A 2、A 3互斥扣1分.阅卷老师提醒 (1)对复杂事件概率的计算要对事件进行拆分,转化为几个互斥事件的和;(2)事件拆分要不重不漏,否则易造成失分;(3)求概率时步骤要完备,每个小事件的概率要计算出来.1. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34 答案 A解析 甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3种.故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.2. 某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1的离心率e >32的概率是( )A.118B.536C.16D.13答案 C 解析 e = 1-b 2a 2>32⇒b a <12⇒a >2b ,符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况:当b =2时,有a =5,6两种情况,总共有6种情况.所以概率为66×6=16.3. 盒子内装有红球、白球、黑球三种,其数量分别为3、2、1,从中任取两球,则互斥而不对立的两个事件为 ( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个 答案 D解析 红、黑球各取一个,则一定取不到白球,故“至少有一个白球;红、黑球各一个”为互斥事件,又任取两球还包含其他事件,所以不对立.4. 盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.答案 35解析 红色球分别用A 1,A 2,A 3表示,黄色球分别用B 1,B 2表示.从中随机取出2个球:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),(A 1,A 2),(A 2,A 3),(A 1,A 3)共10种取法.2个球颜色不同共6种,故所求概率为610=35.5. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 答案 1316解析 ∵去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116,∴不在家看书的概率为P =34+116=1316.6. 在集合A ={m |关于x 的方程x 2+mx +34m +1=0无实根}中随机地取一元素x ,恰使式子lg x 有意义的概率为________.答案 45解析 由于Δ=m 2-4⎝⎛⎭⎫34m +1<0,得-1<m <4,若使lg x 有意义,必须使x >0. 在数轴上表示为,故所求概率为45.专题限时规范训练一、选择题1. 某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为 ( )A .0.5B .0.3C .0.6D .0.9答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 2. 从数字1,2,3,4,5中随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率是( )A.13B.16125C.18125D.19125答案 D解析 个位数字依次为1,2,3,4,5时,前两位数字之和依次为8,7,6,5,4,且依次有3,4,5,4,3种结果,故组成的三位数各位数字之和等于9的概率P (A )=3+4+5+4+3125=19125.3. 一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.9100B.350C.3100D.29 答案 A解析 任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种,故所求概率为9100.4. 在集合{(x ,y )|0≤x ≤5,0≤y ≤4}内任取一个元素,能使不等式x 5+y2-1≤0成立的概率为( )A.14B.34C.13D.23 答案 A解析 集合{(x ,y )|0≤x ≤5,0≤y ≤4}在直角坐标系中表示的区域是一个由直线x =0,x=5,y =0,y =4所围成的长为5,宽为4的矩形,而不等式x 5+y2-1≤0和集合{(x ,y )|0≤x ≤5,0≤y ≤4}表示的公共区域是以5为底、2为高的一个直角三角形,由几何概型公式可以求得概率为12×5×25×4=14.5. 口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.32答案 D解析 摸出红球的概率为45100=0.45,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为1-0.45-0.23=0.32.6. 任意抛掷两颗骰子,得到的点数分别为a ,b ,则点P (a ,b )落在区域|x |+|y |≤3中的概率为( ) A.2536B.16C.14D.112答案 D解析 P (a ,b )落在区域|x |+|y |≤3中的有(1,1),(1,2),(2,1),∴P =36×6=112. 7. 记集合A ={(x ,y )|x 2+y 2≤16}和集合B ={(x ,y )|x +y -4≤0,x ≥0,y ≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为( )A.12πB.1πC.14D.π-24π答案 A解析 区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P =SΩ2SΩ1=816π=12π,故选A. 8. A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },则A ∩B =B 的概率是 ( )A.29B.13C.89D .1 答案 C解析 有序实数对(a ,b )的取值情形共有9种,满足A ∩B =B 的情形有①(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),此时B =∅;②(2,1),此时B ={1};③(3,2),此时B ={1,2}.所以A ∩B =B 的概率为P =89. 二、填空题9. 抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y为整数的概率是________. 答案 12解析 将抛掷甲、乙两枚质地均匀的正四面体所得的数字x ,y 记作有序实数对(x ,y ),共包含16个基本事件,其中x y为整数的有 (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求的概率为816=12. 10.在区间[-6,6]内任取一个元素x 0,若抛物线y =x 2在x =x 0处的切线的倾斜角为α,则α∈⎣⎡⎦⎤π4,3π4的概率为________.答案 1112解析 当α∈⎣⎡⎦⎤π4,3π4时,斜率k ≥1或k ≤-1,又y ′=2x ,所以x 0≥12或x 0≤-12,所以P =1112. 11.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.答案 23解析 如图可设l AB=1,则由几何概型可知其整体事件是其周长3,则其概率是23. 12.已知函数f (x )=-x 2+ax -b .若a ,b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.答案 932解析 f (1)=-1+a -b >0,即a -b >1,如图,A (1,0),B (4,0),C (4,3),S △ABC =92, P =S △ABC S 矩=924×4=932. 三、解答题13.已知集合A ={x |x 2+3x -4<0},B ={x |x +2x -4<0}. (1)在区间(-4,5)上任取一个实数x ,求“x ∈A ∩B ”的概率;(2)设(a ,b )为有序实数对,其中a ,b 分别是集合A ,B 中任取的一个整数,求“a -b ∈A ∪B ”的概率.解 (1)由已知得A ={x |x 2+3x -4<0}={x |-4<x <1},B ={x |x +2x -4<0}={x |-2<x <4}, 显然A ∩B ={x |-2<x <1}.设事件“x ∈A ∩B ”的概率为P 1,由几何概型的概率公式得P 1=39=13. (2)依题意,得(a ,b )的所有可能的结果一共有以下20种:(-3,-1),(-3,0),(-3,1),(-3,2),(-3,3),(-2,-1),(-2,0),(-2,1),(-2,2),(-2,3),(-1,-1),(-1,0),(-1,1),(-1,2),(-1,3),(0,-1),(0,0),(0,1),(0,2),(0,3),又A ∪B ={x |-4<x <4},因此“a -b ∈A ∪B ”的所有可能的结果一共有以下14种:(-3,-1),(-3,0),(-2,-1),(-2,0),(-2,1),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(0,3).所以“a -b ∈A ∪B ”的概率P 2=1420=710. 14.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解 (1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3; 从中学中抽取的学校数目为6×1421+14+7=2; 从大学中抽取的学校数目为6×721+14+7=1. 故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出现是等可能的,样本点总数为(a+b)!, 下面求事件A所包含的样本点个数,由于第k 次摸 得红球有a种取法,而另外(a+b-1)次摸 球相当于a+b-1个球进行全排列,有(a+b-1)! 种方法,故事件A所包含的样本点个数为 a×(a+b-1)!。于是
C a b
称超几 何分布
不放回地逐次取 m 个球, 与一次任取 m 个 球算得的结果相同.
(2)放回 情形 E2: 球编号, 任取一球, 记下颜色, 放回去,
重复 m 次
2:
k k
n (a b)
2
m
记 B 为取出的 m 个球中有 k 个白球, 则
P( B) Cm a b
mk m
P n(n 1)(n 2)(n k 1) n
k
n! (n k )!
k = n时称全排列
An pn n(n 1)(n 2)2 1 n!
n
第1次选取
第2次选取
B
第3次选取 C 例如:n=4,
D B D B
k =3
A
C D
C
B
P4 4 3 2 24
第二讲
古典概型与概率的定义
1
一、 古典概型
设 随机试验E 具有下列特点: 1) 样本点个数有限——有限性 2) 每个样本点发生的可能性相等 ——等可能性
概率的 古典定义
则称 E 为 古典(等可能)概型 古典概型中概率的计算:
记 n 中所包含的样本点的 个数
k 组成 A的样本点的个数
k n
则
P ( A)
概率的古典定义与统计定义是一致的:
由概率的统计定义
n
1 P ( ) P { e1 , e 2 , , e n } P ( { e i } )
n
i 1
i1
P {ei } nP {ei }
1 n
1 n
i
故
P {ei }
( i 1,2,, n).
( a b)
k
a b Cm a b a b
k
k
mk
记p
a ab
P( B) Cm p (1 p)
k
mk
k 1,2,, min( a, m)
称二项分布
设有 k 个不同的球, 每个 例2 (分房模型)
球等可能地落入 N 个盒子中(k N ), 设
每个盒子容球数无限, 求下列事件的概率:
(1)某指定的 k 个盒子中各有一球;
(2)某指定的一个盒子恰有 m 个球( m k ) (3)某指定的一个盒子没有球; (4)恰有 k 个盒子中各有一球; (5)至少有两个球在同一盒子中; (6)每个盒子至多有一个球.
解 nN 设 (1) ~ (6)的各事件分别为
n n n n n 2 0 1 2 n
令 a=-1,b=1
n n n n n ( 1) 0 0 1 2 n
r1个 元素
r2个 元素
…
r k个 元素
n个元素
因为 C r1 C r2 C rk n n r r
1 k
n! r ! r2! rk ! 1
例1 袋中有a 只白球,b 只红球,从袋中按
m 不放回与放回两种方式取m个球( a b ), 求其中恰有 k 个 (k a, k m)白球的概率
由
(1 x )
m n
m n
(1 x ) (1 x )
m
n
运用二项式展开 有
m n j j x j 0 m j1 n n j2 j x j x j1 0 1 j2 0 2
即任意基本事件{ e } 发生的概率均为
。
3
若事件 A 包含
k 个基本事件,即 A { e
k
i1
, ei , , ei }
2 k
(1 i1 i 2 i k n ) , 则有
P ( A) P{ei , ei
1
2
,,
ei } P ({ei })
k j
j 1
k
又常称为二项式系数,因为
它出现在下面的二项式展开的公式中:
n k n k ( a b) a b k 0 k
n n
n k n k ( a b) a b k 0 k
n n
利用该公式,可得到许多有用的组合公式:
令 a=b=1,得
2、几何概率的计算
( ) 其中 ( ), ( A) 分别表示区域Ω ,区域A的度量。
P ( A)
( A)
例5 (会面问题)两人相约 7 点到 8 点在某 地会面,先到者等候另一个人 20 分钟,过时
就可离去,试求这两个人能会面的概率。
解:以 x , y 分别表示两个人到达时刻,则会 面的充要条件为 x y 20 即: 20 x y 20 y
k
A1 A6
mA n
m
1
则
2
m A k!
1
P( A1 )
k m
k! N
k
mA Ck ( N 1)
m
P ( A2 )
P ( A3 )
Ck ( N 1) N
( N 1) N
k
k m
k
mA ( N 1)
3
k
k
mA C N k!
k
4
P ( A4 )
k
3、排列、组合的几个简单公式 排列和组合的区别:
顺序不同是 不同的排列 而组合不管 顺序
3把不同的钥匙的6种排列
C3 3
2
从3个元素取出2个 的排列总数有6种
P3 6
2
从3个元素取出2个 的组合总数有3种
排列、组合的几个简单公式 (1)排列: 从n个不同元素取 k个
(1 k n)的不同排列总数为:
所求概率为
P
A的面积 S的面积
l sin d
0
a
2l
a
如果 l 和 a 已知,则以 值代入上式就可以算得 P 。
反之,也可以利用上式去求 的近似值,如果投针
N 次,其中针与平行线相交 n 次,以频率值
表示 M 点到最近平行线的距离,以 表示针与此 直线的交角(见图)易知有 0 x a ,0 。
l
x a
x l sin
2a
M
x
由于这两式确定出Ox 平面上的一个矩形 S ,
针与最近的一条平行线相交的充分必要条件是:
x l sin
由这个不等式表示的区域 A 是图中的阴影部分,
的每个基本事件出现一定要是等可能的。
上述古典概型的计算,只适用具有等可能性的 有限样本空间。若试验结果无限,则它显然已经不 适合。为了克服有限的局限性,利用几何方法,可 将古典概型的计算加以推广。
27
二、几何概型 (等可能概型的推广) 1、几何概型
向一个可度量的有限区域 内投一点, 若该点落入 内任何子区域 A 中的可能 性大小只与该区域A的度量成正比, 而与 其位臵和形状无关,则称这个随机试验 为几何型随机试验,或几何概型。
P ( A) a ( a b 1)! ( a b)! a ab .
第 1 章随机事件及其概率§3 等可能概型(古典概型)
CheckBox1
注意:计算等可能概型中事件概率时:
首先要弄清随机试验是什么?即判断有限性和等可能 性是否满足。 其次要弄清样本空间是怎样构成的,构成样本空间
m
比较两边 xk 的系数,可得
m n k m n i k i i 0
k
(4)、n个不同元素分为k组,各组元素 数目分别为r1,r2,…,rk的分法总数为
n! r1! r2! rk ! , r1 r2 rk n
a!
b!
则 P ( A)
C m Pa Pb
m Pa b
k
k
mk
k a, k m
又解 E1: 球编号, 一次取 m 个球,记下颜色
1:
n Ca b
m
1
记事件 A 为m个球中有k个白球,则
n A Ca Cb
k mk
因此
P ( A)
Ca Cb
m
k
mk
k a, k m
4
4
4
(2)、组合: 从n个不同元素取 k个 (1k n)的不同组合总数为:
Cn
k
Pn
k
n k
n! ( n k )!k!
k!
C n 常记作
k
k
,称为组合系数。
Pn Cn k!
k
(3)、组合系数与二项式展开的关系
组合系数
n k
C N k! N
k
k
mA N C N k!
k