(完整word版)大一期末考试微积分试题带答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期末考试试卷
一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)
1. =→x
x x 1
sin lim 0___0_____.
2. 设1
)1(lim )(2+-=∞→nx x
n x f n ,则)(x f 的间断点是___x=0_____.
3. 已知(1)2f =,4
1
)1('-=f ,则
12
()x df x dx -== _______.
4. ()a
x x '=_______.
5. 函数434)(x x x f -=的极大值点为________.
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写
在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.
2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞
-=,则
lim ()x f x →∞
______.
A.存在且一定等于零
B. 存在但不一定等于零
C.不一定存在
D. 一定存在. 3. 极限=-→x
x x x
e 21lim
0________.
A. 2e
B. 2-e
C. e
D.不存在.
4. 设0)0(=f ,1)0(='f ,则=-+→x
x f x f x tan )
2()3(lim
0________.
A.0
B. 1
C. 2
D. 5.
5. 曲线2
21x
y x
=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求2
0sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)
求2
1
lim(cos )x x x +
→. 五、(请写出主要计算步骤及结果,8分.)
确定常数,a b , 使函数2(sec )0
()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.
六、(请写出主要计算步骤及结果,8分.)
设21
()arctan ln(1)2
f x x x x =-+,求dy .dy=arctanxdx
七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)
列表求曲线52
3
333152
y x x =-+的凹向区间及拐点.
九、证明题(请写出推理步骤及结果,共6+6=12分.)
1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.
2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点
)1,0(∈ξ,使得3'()()0f f ξξξ+=.
第一学期期末考试参考答案与评分
标准
一、填空题(3×5=15)
1、0
2、 0x = 3 、4- 4、()1ln 1a
x a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)
1、C
2、C
3、A
4、B
5、D
三、(8×1=8)
22
0000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822
x x x x x x x x e x e x x x e x x
e x →→→→----=-=+==分
分分
四、(8×1=8)
()2
00ln cos 1
lim
1
sin cos lim 1
1
2
lim (cos )268x x x x x x x x
x e e e
+→+
+
→→-
⋅--
===分
分
分
五、(8×1=8)
因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。……1分 因为
()20
lim (sec )02lim 34x x x x x ax b b
x b
+--→→=+== 分分
f 分
所以 0b =5分
又因为
()()02
00
0l i m (s e c )00l i m 1x x x a x b f a
x
x x f x
-+-→-+→+-'==-'== 所以 1a = ………8分
六、(8×1=8)
()22112arctan 5121arcsin 6arcsin 8x
f x x x x x x dy xdx
'=-⋅-⋅
++==分
分
分
七、(8×1=8)