土木工程专业英语翻译第七篇
土木工程专业英语翻译
a common way to construct steel truss and prestressed concrete cantilever spans is to counterbalance each cantilever arm with another cantilever arm projecting the opposite direction,forming a balanced cantilever. they attach to a solid foundation ,the counterbalancing arms are called anchor arms /thus,in a bridge built on two foundation piers,there are four cantilever arms ,two which span the obstacle,and two anchor arms which extend away from the obstacle,because of the need for more strength at the balanced cantilever's supports ,the bridge superstructure often takes the form of towers above the foundation piers .the commodore barry bridge is an example of this type of cantilever bridge一种常见的方法构造钢桁架和预应力混凝土悬臂跨度是每一个悬臂抗衡预测相反的方向臂悬臂,形成一个平衡的悬臂。
他们重视了坚实的基础,制约武器被称为锚武器/因此,在两个基础上建一座桥桥墩,有四个悬臂式武器,这两者之间跨越的障碍,和两个锚武器哪个延长距离的障碍,因为为更多的在平衡悬臂的支持力量的需要,桥梁上部结构往往表现为塔墩基础之上形成的准将巴里大桥是这种类型的例子悬臂桥steel truss cantilever support loads by tension of the upper members and compression of the lower ones .commonly ,the structure distributes teh tension via teh anchor arms to the outermost supports ,while the compression is carried to the foundation beneath teh central towers .many truss cantilever bridges use pinned joints and are therefore statically determinate with no members carrying mixed loads钢桁架悬臂由上层成员和下层的紧张压缩支持负载。
土木工程专业英语(带翻译)
State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and thelife of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April 28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof thesetechniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDE techniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection andevaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural system changewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forced vibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, forcehammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3 Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary of the state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibrationmonitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4 Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determinedin an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and condition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers,etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identify and locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked byusing a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters, defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。
土木工程专业英语翻译,雷自学
英译汉Lesson OneSandcrete is a yellow-white building material made from Portland cement and sand in a ratio of circa 1:8.It is the main building material for walls of single-storey buildings (such as houses and schools)in countries such as Ghana and Nigeria. Measured strengths fo commercially available Sandcrete blocks in Nigeria were found to be between 0.5 and 1 N/mm2,which is well below the 3.5 N/mm2that is legally required there. This may be due to the need of the manufacturers to keep the price low,and since the main cost-factor is the Portland cement, they reduce that, which results in a block that starts behaving more like loose sand.翻译:sandcrete是黄白色建筑材料制成的波特兰水泥和沙子的比例大约1:8.it是主要的建筑墙体材料的单层建筑(如房屋和学校)在加纳和尼日利亚等国家。
测量优势的商用sandcrete块在尼日利亚被发现之间的0.5和1牛顿/毫米,这是远远低于3.5牛顿/毫米,是法律所要求的有。
这可能是由于需要的厂家保持价格低,因为主要cost-factor是波特兰水泥,他们减少,从而在一块,开始表现得更像松砂。
土木工程专业英语翻译
第一单元In terms of architecture, the structure of a building is and does much more than that. It is an inseparable part of the building form and to varying degrees is a generator of that form. Used skillfully, the building structure can establish or reinforce orders and rhythms among the architectural volumes and planes. It can be visually dominant or recessive. It can develop harmonies or conflicts. It can be both confining and emancipating. And, unfortunately in some cases, it cannot be ignored. It is physical.从建筑学方面来说,建筑结构并非仅仅如此,它是建筑风格一个不可分割的部分,并且在不同程度上体现了建筑风格。
巧妙熟练地设计建筑结构能够在建筑空间和平面上建立或加强格调和韵律。
它做到直观上的显性和隐形,能够发展和谐体或对照体,同时它是局限的和开放的,并且在(某些情况下)一点是不可忽略的,也就是它的实际性。
The requirement of strength means that the materials selected to resist the stresses generated by the loads and shapers of the structure(s) must be adequate. Indeed, a “factor of Safety” is usually provided so that under the anticipated loads, a given material is not stressed to a level even close to its rupture point. The material property called stiffness is considered with the requirement of strength. Stiffness is different from strength in that it directly involves how much a structure strains or deflects under load. A material that is very strong but lacking in stiffness will deform too much to be of value in resisting the forces applied.强度要求意味着选择合适的材料来承受由荷载引起的应力和保持适当结构形状。
土木工程 外文翻译 外文文献 英文翻译
Stress Limits in DesignHow large can we permit the stresses to be? Or conversely: How large must a part be to withstand a given set of loads what are the overall conditions or limits that will determine the size and material for a part?Design limits are based on avoiding failure of the part to perform its desired function. Because different parts must satisfy different functional requirements, the conditions which limit load-carrying ability may be quite different for different elements. As an example, compare the design limits for the floor of a house with those for the wing of an airplane.If we were to determine the size of the wooden beams in a home such that they simply did not break, we would not be very happy with them; they would be too ‘springy’. Walking across the room would be like walking out on a diving board.Obviously, we should be concerned with the maximum ‘deflection’that we, as individuals, find acceptable. This level will be rather subjective, and different people will give different answers. In fact, the same people may give different answers depending on whether they are paying for the floor or not!An airplane wing structure is clearly different. If you look out an airplane window and watch the wing during turbulentweather, you will see large deflections; in fact you may wish that they were smaller. However, you know that the important issue is that of ‘structural integrity’, not deflection.We want to be assured that the wing will remain intact. We want to be assured that no matter what the pilot and the weather do, that wing will continue to act like a good and proper wing. In fact, we really want to be assured that the wing will never fail under any conditions. Now that is a pretty tall order; who knows what the ‘worst’ conditions might be?Engineers who are responsible for the design of airplane wing structures must know, with some degree of certainty, what the ‘worst’ conditions are likely to be. It takes great patience and dedication for many years to assemble enough test data and failure analyses to be able to predict the ‘worst’case. The general procedure is to develop statistical data which allow us to say how frequently a given condition is likely to be encountered—once every 1000 hours, or once every 10000 hours, etc.As we said earlier, our object is to avoid failure. Suppose, however, that a part has failed in service, and we are asked; Why? ‘Error’ as such can come from three distinctly different sources, any or all of which can cause failure:1. Error in design: We the designers or the design analysts may have been a bit too optimistic: Maybe we ignored some loads; maybe our equations did not apply or were not properly applied; maybe we overestimated the intelligence of the user; may we slipped a decimal point.2. Error in manufacture: When a device involves heavily stressed members, the effective strength of the members can be greatly reduced through improper manufacture and assembly: May the wrong material was used; maybe the heat treatment was not as specified; maybe the surface finish was not as good as called for; may a part was ‘out of tolerance’; may be surface was damaged during machining; maybe the threads were not lubricated at assembly; or perhaps the bolts were not properly tightened.3. Error in use: As we all know, we can damage almost anything if we try hard enough, and sometimes we do so accidentally: We went too fast; we lost control; we fell asleep; we were not watching the gages; the power went off; the computer crashed; he was taking a coffee break; she forgot to turn the machine off; you failed to lubricate it, etc.Any of the above can happen: Nothing is designed perfectly; nothing is made perfectly; and nothing is used perfectly. Whenfailure does occur, and we try to determine the cause, we can usually examine the design; we can usually examine the failed parts for manufacturing deficiencies; but we cannot usually determine how the device was used (or misused). In serious cases, this can give rise to considerable differences of opinion, differences which frequently end in court.In an effort to account for all the above possibilities, we design every part with a safety factor. Simply put, the safety factor (SF) is the ratio of the load that we think the part can withstand to the load we expect it to experience. The safety factor can be applied by increasing the design loads beyond those actually expected, or by designing to stress levels below those that the material actually can withstand (frequently called ‘design stresses’).Safety factor=SF=failure load/design load=failure stress/design stress It is difficult to determine an appropriate value for the safety factor. In general, we should use larger values when:1. The possible consequences of failure are high in terms of life or cost.2. There are large uncertainties in the design analyses.Values of SF generally range from a low of about 1.5 to 5 ormore. When the incentives to reduce structural weight are great (as in aircraft and spacecraft), there is an obvious conflict. Safety dictates a large SF, while performance requires a small value. The only resolution involves reduction of uncertainty. Because of extreme care and diligence in design, test, manufacture, and use, the aircraft industry is able to maintain very enviable safety records while using safety factors as low as 1.5.We might not that the safety factor is frequently called the ‘ignorance factor’. This is not to imply that engineers are ignorant, but to help instill in them humility, caution, and care. An engineer is responsible for his or her design decisions, both ethically and legally. Try to learn from the mistakes of others rather than making your own.。
土木工程毕业设计外文翻译原文+翻译
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
土木工程英语对话
工程英语对话1(问候和介绍)1 Welcome to China.欢迎你到中国来。
2 Welcome to our job site.欢迎你到我们工地来。
3 I wish we shall have a friendly cooperation in coming days.希望今后友好合作。
4 Let us work together for our common job.让我们为共同的事业一起工作吧!5 Allow me to introduce myself, my name is yuan...请允许我介绍自己,我的名字叫袁..。
6Please allow me to introduce a fellow of mine, Mr.___.请允许我给你介绍一位我的同事,某先生。
7I am a manager. (project manager, resident construction manager, construction superintendent, controller staff member, engineer, technician, economist, supervisor, foreman, worker)我是经理。
(项目经理、驻工地总代表、工地主任、管理员、职员、工程师、技术员、经济员、检查员、工长、工人)。
8I work in the Second Construction Company of SINOPEC.(Market Department, Engineering Department).我在中国石化集团第二建设公司(市场开发部、工程部)工作。
9My technical specialty is civil engineering.(chemical engineering, process, mechanical equipment ,electrical, instrumentation, piping, welding, furnace building, corrosion prevention, thermal-insulation, heating-ven-tilation, quality control).我的技术专业是土建工程。
专业英语(土木工程路桥方向)李嘉第三版翻译中英对照
Lesson 7 Transportation Systems交通运输系统Transportation system in a developed nation consists of a network of modes that have evolved over many years. The system consists of vehicles, guideways, terminal facilities and control systems: these operate according to established procedures and schedules in the air, on land, and on water. The system also requires interaction with the user, the operator and the environment. The systems that are in place reflect the multitude of decisions made by shippers, carriers, government, individual travelers, and affected nonusers concerning the investment in or the use of transportation. The transportation system that has evolved has produced a variety of modes that complement each other.在发达国家,交通运输系统由网状结构组成的模式已经发展了好多年。
这个系统由交通工具、轨道、站场设施和控制系统组成。
这些依照空中、陆上和水上已制定的程序和计划运转。
这个系统也需要和用户、司机和环境互动。
专业英语(土木工程-路桥方向)李嘉-第三版-翻译-中英对照
Lesson 7 Transportation Systems交通运输系统Transportation system in a developed nation consists of a network of modes that have evolved over many years. The system consists of vehicles, guideways, terminal facilities and control systems: these operate according to established procedures and schedules in the air, on land, and on water. The system also requires interaction with the user, the operator and the environment. The systems that are in place reflect the multitude of decisions made by shippers, carriers, government, individual travelers, and affected nonusers concerning the investment in or the use of transportation. The transportation system that has evolved has produced a variety of modes that complement each other.在发达国家,交通运输系统由网状结构组成的模式已经发展了好多年。
这个系统由交通工具、轨道、站场设施和控制系统组成。
这些依照空中、陆上和水上已制定的程序和计划运转。
这个系统也需要和用户、司机和环境互动。
土木工程专业英语(苏小卒)课文翻译7~11单元
Unit 7 第七单元Reinforced Concrete Structures钢筋混凝土结构教学目标了解钢筋混凝土的力学性能了解采用混凝土结构的优缺点了解国外建筑规范的发展历史熟悉钢筋混凝土结构中的专业词汇熟悉科技类文献的常用句型熟悉institute、association、society的用法;regulation、specification、code的用法;result in、give rise to、lead to的用法;reinforcing bar、reinforcing steel、steel bar、reinforcement的含义;involve、include、cover的用法;due to、stem from、because of的用法;construction、function、compressive、allow、form的不同含义。
Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant(主要的)structural material in engineered construction(建造的建筑物). The universal(通用的)nature of reinforced concrete construction stems from(归因于)the wide availability of reinforcing bars(钢筋)and the constituents(组成部分)of concrete, gravel,sand, and cement, the relatively simple skills required in concrete construction(施工), and the economy(经济性)of reinforced concrete compared to other form of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts(各种各样), underground structures, water tanks, television towers, offshore oil exploration and production structures(近海石油开采和生产结构), dams, and even in ships. 混凝土与钢筋混凝土作为建筑材料在每个国家被使用着。
土木工程专业英语翻译
第一单元Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration.从根本上,工程是一个以最终产品为导向的行业,它具有创新、成本意识,同时也注意到人为因素。
它与创建新的实体、设备或解决方案有关:新工艺、新材料、一个改进的动力来源、任务的一项更有效地安排,用以完成所需的目标或创建一个新的结构。
工程是也不仅仅关心获得经济的解决方案。
最终,人类安全才是一个最重要的考虑因素。
Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process.工程关心的是,使用抽象的科学方法思考和定义现实世界的问题。
土木工程专业英语课文_翻译_考试必备
土木工程专业英语课文_翻译_考试必备土木工程专业英语课文翻译The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romanssometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.早期时代的主要施工材料,木材和砌体砖,石,或瓷砖,和类似的材料。
这些课程或层密切联系在一起,用砂浆或沥青,焦油一个样物质,或其他一些有约束力的代理人。
希腊人和罗马人有时用铁棍或拍手以加强其建设。
在雅典的帕台农神庙列,例如,在他们的铁钻的酒吧现在已经生锈了孔。
罗马人还使用了天然水泥称为令人费解的,由火山灰制成,变得像石头一样坚硬在水中。
Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen,tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.钢铁和水泥,两个最重要的现代建筑材料,介绍了在十九世纪。
土木工程专业英语完整版本
Contents
The engineers determine pipeline design, the economic and environmental impact of a project on regions it must traverse, the type of materials to be used-steel, concrete, plastic, or combination of various materials installation techniques, methods for testing pipeline strength, and controls for maintaining proper pressure and rate of flow of materials being transported.
结构工程是最重要的一个专业,它包括:将结构的不同部分进行 定位和布置,从而形成一个确定的形式以获得最好的利用;确定结 构必须抵抗的力,结构的自重,风和飓风,使施工材料产生的膨胀 和收缩的温度变化,以及地震力。
Contents
They also determine the combination appropriate materials: steel, concrete, plastic, stone, asphalt, brick, aluminum, or other construction materials.
Structural engineering is the most important specialization, it includes: positioning and arranging the various parts of the structure into a definite form to achieve best utilization; determining the forces that a structure must resist, its own weight, wind and hurricane forces, and temperature change that expand or contract construction materials, and earthquake.
土木工程英语翻译
土木工程英语翻译6 Lateral buckling of beams6.1 IntroductionIn the discussion given in Chapter 5 of the in-plane behaviour of beams, it was assumed that when a beam is loaded in its stiffer principal plane, it deflects only in that plane. If the beam does not have sufficient lateral stiffness or lateral support to ensure that this is so, then it may buckle out of the plane of loading, as shown in Fig. 6.1. The load at which this buckling occurs may be substantially less than the beam's in-plane load carrying capacity, as indicated in Fig. 6.2.6.梁的侧面翘曲6.1 说明在第五章关于梁的平面内机能的评论辩论中,假定梁按刚性主平面放置时,梁仅在该平面内倾斜。
假如梁没有足够的侧向刚度或侧面支撑,梁会产生平面外愚蠢,如图6.1所示。
如图6.2所示,当产生平面外愚蠢时梁的承载才能会大年夜大年夜减小。
For an idealized perfectly straight elastic beam, there are no out-of-plane deformations until the applied moment M reaches the elastic buckling moment M0b, when the beam buckles by deflecting laterally and twisting, as shown in Fig. 6.1. These two deformations are interdependent: when the beam deflects laterally, the applied moment has a component which exerts a torque about the deflected longitudinal axis which causes the beam to twist. This behaviour, which is important for long unrestrained I-beams whose resistances to lateral bending and torsion are low, is called elastic flexural-torsional buckling.作为一个幻想的弹性直梁,当施加弯矩达到弹性愚蠢弯矩时,梁才会产生侧向曲折和扭改变形,产生平面外愚蠢,如图6.1所示。
土木工程专业英语翻译
1.1 许多天然物质,如粘土、砂子和岩石,甚至树枝和树叶都已经被用作建筑材料。
Many naturally occurring substances, such as clay, sand, wood and rocks, even twigs and leaves have been used to construct buildings.1.2 砖块是由窑中烧制材料作成的块体,通常由粘土或页岩制成,但也可由炉渣制成。
A brick is a block made of kiln-fired material, usually clay or shale, but also maybe of lower quality mud.1.3 与水混合后,水泥便发生水化反应,并最终形成像石头一样的材料。
After mixing, the cement hydrates and eventually hardens into a stone-like material.1.4 金属可用作大型结构的框架,也可用来装饰建筑物外表。
Metal is used as structural framework for larger buildings such as skyscrapers, or as an external surface covering.1.5 明亮的窗户不但能使光线进入建筑物,而且也能将恶劣气候隔绝于建筑物之外。
Clear windows provided humans with the ability to both let light into rooms while at the same time keeping inclement weather outside.2.1 材料的抗拉强度是一种广延性质,因此它并不因试件尺寸的不同而改变。
Tensile strength is an intensive property and, consequently, does not depend on the side of the test specimen.2.2 屈服强度是材料从弹性变形到塑性变形转化时的应力。
土木工程类专业英文文献及翻译
土木工程类专业英文文献及翻译第一篇:土木工程类专业英文文献及翻译PAVEMENT PROBLEMS CAUSEDBY COLLAPSIBLE SUBGRADESBy Sandra L.Houston,1 Associate Member, ASCE(Reviewed by the Highway Division)ABSTRACT: Problem subgrade materials consisting of collapsible soils are com-mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation.Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils.A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented.Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used.INTRODUCTION When a soil is given free access to water, it may decrease in volume,increase in volume, or do nothing.A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil.The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting.Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be-ginning of the professional practice and have cost many millions of dollars in roadway repairs.The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing withthese problem subgrade materials.Each project will have different design considerations, economic con-straints, and risk factors that will have to be taken into account.However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made.For example, typical techniques for dealing with expansive clays include:(1)In situ treatments with substances such as lime, cement, or fly-ash;(2)seepage barriers and/ or drainage systems;or(3)a computing of the serviceability loss and a mod-ification of the design to “accept” the anticipated expansion.In order to make the most economical decision, the amount of volume change(especially non-uniform volume change)must be accurately estimated, and the degree of road roughness evaluated from these data.Similarly, alternative design techniques are available for any roadway problem.The emphasis here will be placed on presenting economical and simple methods for:(1)Determining whether the subgrade materials are collapsible;and(2)estimating the amount of volume change that is likely to occur in the 'Asst.Prof., Ctr.for Advanced Res.in Transp., Arizona State Univ., Tempe, AZ 85287.Note.Discussion open until April 1, 1989.To extend the closing date one month,a written request must be filed with the ASCE Manager of Journals.The manuscriptfor this paper was submitted for review and possible publication on February 3, 1988.This paper is part of the Journal of Transportation.Engineering, Vol.114, No.6,November, 1988.ASCE, ISSN 0733-947X/88/0006-0673/$1.00 + $.15 per page.Paper No.22902.673field for the collapsible soils.Then this information will place the engineerin a position to make a rational design decision.Collapsible soils are fre-quently encountered in an arid climate.The depositional process and for-mation of these soils, and methods for identification and evaluation of theamount of volume change that may occur, will be discussed in the followingsections.COLLAPSIBLE SOILSFormation of Collapsible SoilsCollapsible soils have high void ratios and low densities and are typicallycohesionless or only slightly cohesive.In an arid climate, evaporation greatlyexceeds rainfall.Consequently, only the near-surface soils become wettedfrom normal rainfall.It is the combination of the depositional process andthe climate conditions that leads to the formation of the collapsible soil.Although collapsible soils exist in nondesert regions, the dry environment inwhich evaporation exceeds precipitation is very favorable for the formationof the collapsible structure.As the soil dries by evaporation, capillary tension causes the remainingwater to withdraw into the soil grain interfaces, bringing with it soluble salts,clay, and silt particles.As the soil continues to dry, these salts, clays, andsilts come out of solution, and “tack-we ld” the larger grains together.Thisleads to a soil structure that has high apparent strength at its low, naturalwater content.However, collapse of the “cemented” structure may occurupon wetting because the bonding material weakens and softens, and the soilis unstable at any stress level that exceeds that at which the soil had beenpreviously wetted.Thus, if the amount of water made available to the soilis increased above that which naturally exists, collapse can occur at fairlylow levels of stress, equivalent only to overburden soil pressure.Additionalloads, such as traffic loading or the presence of a bridge structure, add tothe collapse, especially of shallow collapsible soil.The triggering mechanismfor collapse, however, is the addition of water.Highway Problems Resulting from Collapsible SoilsNonuniform collapse can result from either a nonhomogeneous subgradedeposit in which differing degrees of collapse potential exist and/or fromnonuniform wetting of subgrade materials.When differential collapse ofsubgrade soils occurs, the result is a rough, wavy surface, and potentiallymany miles of extensively damaged highway.There have been several re-ported cases for which differential collapse has been cited as the cause ofroadway or highway bridge distress.A few of these in the Arizona and NewMexico region include sections of 1-10 near Benson, Arizona, and sectionsof 1-25 in the vicinity of Algadonas, New Mexico(Lovelace et al.1982;Russman 1987).In addition to the excessive waviness of the roadway sur-face, bridge foundations failures, such as the Steins Pass Highway bridge,1-10, in Arizona, have frequently been identified with collapse of foundationsoils.Identification of Collapsible SoilsThere have been many techniques proposed for identifying a collapsiblesoil problem.These methods range from qualitative index tests conducted on4disturbed samples, to response to wetting tests conducted on relatively un-disturbed samples, to in situ meausrement techniques.In all cases, the en-gineer must first know if the soils may become wetted to a water contentabove their natural moisture state, and if so, what the extent of the potentialwetted zone will be.Most methods for identifying collapsible soils are onlyqualitative in nature, providing no information on the magnitude of the col-lapse strain potential.These qualitative methods are based on various func-tions of dry density, moisture content, void ratio, specific gravity, and At-terberg limits.In situ measurement methods appear promising in some cases, in that manyresearchers feel that sample disturbance is greatly reduced, and that a morenearly quantitative measure of collapse potential is obtainable.However,in situ test methods for collapsible soils typically suffer from the deficien-cy of an unknown extent and degree of wetting during the field test.Thismakes a quantitative measurement difficult because the zone of materialbeing influenced is not well-known, and, therefore, the actual strains, in-duced by the addition of stress and water, are not well-known.In addition,the degree of saturation achieved in the field test is variable and usuallyunknown.Based on recently conducted research, it appears that the most reliablemethod for identifying a collapsible soil problem is to obtain the best qualityundisturbed sample possible and to subject this sample to a response to wet-ting test in the laboratory.The results of a simple oedometer test will indicatewhether the soil is collapsible and, at the same time, give a direct measureof the amount of collapse strain potential that may occur in the field.Potentialproblems associated with the direct sampling method include sample distur-bance and the possibility that the degree of saturation achieved in the fieldwill be less than that achieved in the laboratory test.The quality of an undisturbed sample is related most strongly to the arearatio of the tube that is used for sample collection.The area ratio is a measureof the ratio of the cross-sectional area of the sample collected to the cross-sectional area of the sample tube.A thin-walled tube sampler by definitionhas an area ratio of about 10-15%.Although undisturbed samples are bestobtained through the use of thin-walled tube samplers, it frequently occursthat these stiff, cemented collapsible soils, especially those containing gravel,cannot be sampled unless a tube with a much thicker wall is used.Samplershaving an area ratio as great as 56% are commonly used for Arizona col-lapsible soils.Further, it may take considerable hammering of the tube todrive the sample.The result is, of course, some degree of sample distur-bance, broken.bonds, densification, and a correspondingly reduced collapsemeasured upon laboratory testing.However, for collapsible soils, which arecompressive by definition, the insertion of the sample tube leads to localshear failure at the base of the cutting edge, and, therefore, there is lesssample disturbance than would be expected for soils that exhibit general shearfailure(i.e., saturated clays or dilative soils).Results of an ongoing studyof sample disturbance for collapsible soils indicate that block samples some-times exhibit somewhat higher collapse strains compared to thick-walled tubesamples.Block samples are usually assumed to be the very best obtainableundisturbed samples, although they are frequently difficult-to-impossible toobtain, especially at substantial depths.The overall effect of sample distur-bance is a slight underestimate of the collapse potential for the soil.675译文:湿陷性地基引起的路面问题作者:...摘要:在干旱环境中,湿陷性土壤组成的路基材料是很常见的,干旱环境中的气候条件、沉积以及风化作用都有利于湿陷性土的形成。
(完整版)土木工程专业英语课文原文及对照翻译
Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。
此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。
Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑与人类密切相关,它为人们提供工作和居住所必要的活动空间。
依据使用性质建筑主要分为两类:工业建筑和民用建筑。工业建筑用于各类工厂或工业生产,而民用建筑是指那些供人们居住、工作、教育培训和进行其它社会活动的建筑。
工业建筑是适用于各行各业进行加工生产和制造的工业厂房,如采矿业、冶金工业、机械制造业、化学工业和纺织业。工业厂房可分为两类:单层工业厂房和多层工业厂房。工业建筑与民用建筑的结构相同但是它们所使用的建筑材料及其用途则有所不同。
民有建筑分为两大类型:住宅和公共建筑。住宅应适合家庭生活的需要,每套房屋至少要包括三个必须的房间:起居室、厨房和洗潄室。公共建筑用于行政、文化活动、经营管理和其它社会服务,如学校、办公楼、托儿所、公园、医院、商店、车站、剧院、体育馆、旅馆、展览馆、浴池等等。所有这些公共建筑都具有不同的功能,因此各自也都需要设计成不同的类型。
住宅是人类生活居住之处,其基本功能是提供遮风避雨的场所,但是现在人们对住房的要求不只是限于此。一个将要乔迁新居的家庭不但要了解新居是否满足他们安全、健康和舒适的要求标准,还要了解新居到粮食商店、食品店、学校、商店、图书馆、影剧院和社区活动中心的距离。
十九世纪60年代中期一个最重要的住房价值观念是具有充足的室内外空间。大多数人喜欢一个家庭要拥有大约半英亩的占地面积,从而有足够的空间用于闲暇活动。在高度工业化的国家,尽管远离工作地点,许多家庭还是喜欢居住在离市中心尽可能远的地方,甚至有相当数量的家庭为了远离噪声、拥挤和混乱更喜欢住在乡村而不是市郊。多数人可以驱车上班因此公共交通的便捷性已不再是选定住宅的决定性因素。人们主要对房间的布局和大小以及卧室的个数感兴趣。
从各个房间眺望室外景色也是一个要考虑的基本问题,多数情况下应该使房屋尽可能朝南。然而同时考虑环境和道路的位置时,要充分满足这方面的要求通常是十分困难。要解决这些复杂的问题,还必须要遵循当地的城市规划,它涉及到公众的舒适度、人口容积、建筑高度、绿化率、建筑红线、新建筑与既有建筑的协调、等等。
工业建筑标准化程度低还必须遵守地方法规。现代的趋势是厂房要通风透光并附带有办公室、接待室、电话交换房等,低层建筑房屋可眺望出入道路,车间同样通风透光但不易与公共场所通视。通常只有钢筋混凝土或钢结构的厂房才能做成向北的锯齿型天窗以便得到均匀的采光从而避免眩目的阳光直射。
任何建筑在施工之前,必须绘出建筑图从而展示其造型、进行建筑定位和绘制其它各专业施工图。
房屋设计的关键Βιβλιοθήκη 平面布置,它应能最大限度地满足预期目的要求。对于住宅,平面布置可以从三个方面来考虑:“公共空间”、“私密空间”和“设备”。必须注意的是还要确保这些区域之间的交通便利。公共空间通常包括餐厅、起居室和厨房,还有其它如书斋以及大厅。客厅一般最大通常也可兼作为餐厅,或者厨房兼作餐厅。私密空间主要是卧室。而设备则包括厨房、浴室 、储藏室和洗潄室。厨房和储藏室将设备区与公共空间相联。