高三数学函数的奇偶性与周期性
高中数学基础之函数的奇偶性与周期性

高中数学基础之函数的奇偶性与周期性函数的奇偶性:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.(偶函数的图象特点:关于y轴对称;奇函数的图象特点:关于原点中心对称.)函数的周期性:一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有□01f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.函数周期性常用结论对f(x)定义域内任一自变量x:①若f(x+a)=-f(x),则T=2a(a≠0).,则T=2a(a≠0).②若f(x+a)=1f(x),则T=2a(a≠0).③若f(x+a)=-1f(x)④若f(x+a)+f(x)=c,则T=2a(a≠0,c为常数).函数图象的对称性①若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a 对称.②若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.③若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.④若对于R上的任意x都有f(2b-x)+f(x)=0,则函数y=f(x)的图象关于点(b,0)中心对称.利用函数奇偶性可以解决的问题(1)求函数值:将待求值利用奇偶性转化为求已知解析式的区间上的函数值.(2)求解析式:将待求区间上的自变量转化到已知解析式的区间上,再利用奇偶性的定义求出.(3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得方程(组),进而得出参数的值.(4)画函数图象:利用函数的奇偶性可画出函数在其关于原点对称区间上的图象. (5)求特殊值:利用奇函数的最大值与最小值之和为零可求一些特殊结构的函数值. 例1 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x 2,则f (2023)=( )A .20232B .1C .0D .-1 答案 D解析 因为f (x +2)=-f (x ),所以f (x +4)=f (x ),所以函数f (x )的周期为4,因为f (x )为R 上的奇函数,且当0≤x ≤1时,f (x )=x 2,所以f (2023)=f (506×4-1)=f (-1)=-f (1)=-1.故选D.例2 已知函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈(1,2)时,f (x )=-3x 2+2,则f ⎝ ⎛⎭⎪⎫143=( )A .-103 B .103 C .-23 D .23答案 B解析 ∵f (x +1)为奇函数,∴f (x +1)=-f (-x +1),∵f (x +2)为偶函数,∴f (x +2)=f (-x +2),∴f ((x +1)+1)=-f (-(x +1)+1)=-f (-x ),即f (x +2)=-f (-x ),∴f (-x +2)=f (x +2)=-f (-x ).令t =-x ,则f (t +2)=-f (t ),∴f (t +4)=-f (t +2)=f (t ),∴f (x +4)=f (x ).故函数f (x )的周期为4.∴f ⎝ ⎛⎭⎪⎫143=f ⎝ ⎛⎭⎪⎫23=-f ⎝ ⎛⎭⎪⎫43=103.故选B.例3 定义在R 上的函数f (x )满足f (x +2)=f (x ),当x ∈[3,5]时,f (x )=1-|x -4|,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫sin π3>f ⎝ ⎛⎭⎪⎫cos π3 B .f (sin 1)>f (cos 1)C .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3 D .f (sin 2)>f (cos 2)答案 C解析 ∵当x ∈[3,5]时,f (x )=1-|x -4|,f (x +2)=f (x ),∴当x ∈[-1,1]时,f (x )=f (x+2)=f (x +4)=1-|x |,当x ∈[0,1]时,f (x )=1-x ,∴函数f (x )在[0,1]上为减函数,又0<cos π3<sin π3<1,∴f ⎝ ⎛⎭⎪⎫sin π3<f ⎝ ⎛⎭⎪⎫cos π3,A 错误;0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),B 错误;f ⎝ ⎛⎭⎪⎫cos 2π3=f ⎝ ⎛⎭⎪⎫-12=12,f ⎝ ⎛⎭⎪⎫sin 2π3=f ⎝ ⎛⎭⎪⎫32=2-32,∴f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3,C 正确;f (sin 2)=1-sin 2,f (cos 2)=1-|cos 2|=1+cos 2,又sin 2π3<sin 2<1,cos 2π3<cos 2<0,∴0<1-sin 2<1-32,12<1+cos 2<1,∴f (sin 2)<f (cos 2),D 错误.故选C.例4 已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________.答案 52解析 因为f (x +2)=-1f (x ),所以f (x +4)=f (x ),所以f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x ,所以f ⎝ ⎛⎭⎪⎫52=52,所以f ⎝ ⎛⎭⎪⎫-112=52. 例5 已知定义域为R 的函数f (x )在区间(-∞,5]上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 答案 C解析 ∵f (5+t )=f (5-t ),∴函数f (x )的图象关于直线x =5对称,∴f (-1)=f (11),∵函数f (x )在区间(-∞,5]上单调递减,∴f (x )在(5,+∞)上单调递增.∴f (9)<f (11)<f (13),即f (9)<f (-1)<f (13).例6 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )得f (x )的图象关于(0,1)对称,而y =x +1x =1+1x 也关于(0,1)对称,∴对于每一组对称点,x i +x i ′=0,y i +y i ′=2,∴∑mi =1 (x i +y i )=∑mi =1x i +∑mi =1y i =0+2×m2=m .例7 已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +3|,-4≤x <0(a >0且a ≠1).若函数f (x )的图象上有且只有两个点关于原点对称,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,14B .⎝ ⎛⎭⎪⎫0,14∪(1,+∞)C .⎝ ⎛⎭⎪⎫14,1∪(1,+∞)D .(0,1)∪(1,4) 答案 C解析 当-4≤x <0时,函数y =|x +3|关于原点对称的函数为-y =|-x +3|,即y =-|x -3|(0<x ≤4),因为函数f (x )的图象上有且只有两个点关于原点对称,则等价为函数f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,作出两个函数的图象如图所示,若a >1,则f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,满足条件,当x =4时,y =-|4-3|=-1,若0<a <1,要使两个函数图象只有一个交点,则满足f (4)<-1,即log a 4<-1,得14<a <1.综上可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫14,1∪(1,+∞).故选C.例8 已知函数g (x )的图象与f (x )=x 2-mx 的图象关于点(-1,2)对称,且g (x )的图象与直线y =-4x -4相切,则实数m =( )A .2B .-4C .4D .-1 答案 C解析 设(x ,y )是函数g (x )的图象上任意一点,则其关于(-1,2)对称的点为(-2-x ,4-y ),因此点(-2-x ,4-y )在f (x )的图象上,所以4-y =(-2-x )2-m (-2-x ),整理得y =-x 2-mx -4x -2m ,即g (x )=-x 2-mx -4x -2m ,又g (x )的图象与直线y =-4x -4相切,所以方程-x 2-mx -4x -2m =-4x -4,即x 2+mx +2m -4=0有两个相等的实数根,则m 2-4(2m -4)=0,可得m =4.故选C.例9 定义在R 上的函数f (x )满足f (2-x )=f (x ),且当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,若对任意的x ∈[t ,t +1],不等式f (2-x )≤f (x +1+t )恒成立,则实数t 的最大值为( )A .-1B .-23 C .-13 D .13 答案 C解析 ∵f (2-x )=f (x ),∴函数f (x )的图象关于直线x =1对称,∵当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,当1≤x <4时,f (x )=3-x 为减函数,且f (x )∈(-1,2];当x ≥4时,f (x )=1-log 2x 为减函数,且f (x )∈(-∞,-1],∴f (x )在[1,+∞)上是减函数,在(-∞,1]上是增函数.若不等式f (2-x )≤f (x +1+t )对任意x ∈[t ,t +1]恒成立,由对称性可得|2-x -1|≥|x +1+t -1|对任意x ∈[t ,t +1]恒成立,即有|x -1|≥|x +t |⇔-2x +1≥2tx +t 2⇔(2t +2)x +t 2-1≤0对任意x ∈[t ,t +1]恒成立,令g (x )=(2t +2)·x +t 2-1,则⎩⎨⎧g (t )≤0,g (t +1)≤0,即⎩⎨⎧2(t +1)t +t 2-1≤0,2(t +1)(t +1)+t 2-1≤0,即⎩⎨⎧3t 2+2t -1≤0,3t 2+4t +1≤0,解得-1≤t ≤-13,∴实数t 的最大值为-13.故选C. 轴对称(1)f (a -x )=f (a +x )⇔f (x )的图象关于直线x =a 轴对称(当a =0时,恰好就是偶函数). (2)f (a -x )=f (b +x )⇔f (x )的图象关于直线x =a +b2轴对称.(3)f (x +a )是偶函数,则f (x +a )=f (-x +a ),进而可得到f (x )的图象关于直线x =a 轴对称. 中心对称(1)f (a -x )=-f (a +x )⇔f (x )的图象关于点(a ,0)中心对称(当a =0时,恰好就是奇函数). (2)f (a -x )=-f (b +x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0中心对称.(3)f (a -x )+f (b +x )=2c ⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,c 中心对称.。
最经典总结-函数的奇偶性与周期性

最经典总结-函数的奇偶性与周期性函数的奇偶性与周期性函数的奇偶性和周期性是数学中的重要概念,也是高考中常考的知识点。
了解函数的奇偶性和周期性可以帮助我们更好地理解和研究函数。
函数的奇偶性是指函数在定义域内是否满足奇偶性质。
对于一个函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x)成立,则称f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x)成立,则称f(x)为偶函数。
常见题型多以选择、填空题形式出现,且奇偶性多与抽象函数相结合。
函数的周期性是指函数的图像在平移一定距离后与原图像重合。
如果对于函数y=f(x),存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么称函数y=f(x)为周期函数,T为这个函数的周期。
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。
应用简单函数的周期性占4~5分,中档题为主。
在研究函数的奇偶性和周期性时,需要注意以下三个易误点:应用函数的周期性时,应保证自变量在给定的区间内;判断函数的奇偶性,需要注意函数定义域是否关于原点对称;判断奇函数和偶函数时,需要对定义域内的每一个x,均有f(-x)=-f(x)或f(-x)=f(x),而不能说存在x使f(-x)=-f(x)或f(-x)=f(x)。
在实际运用中,可以活用周期性的三个常用结论:对于f(x)定义域内任一自变量的值x,如果函数f(x)为奇函数,则关于原点对称;如果函数f(x)为偶函数,则关于y轴对称。
此外,还可以利用奇、偶函数的三个性质:在奇、偶函数的定义中,f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式;奇函数的图像关于原点对称,偶函数的图像关于y轴对称,反之也成立;在函数的加、减、乘运算中,奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇。
综上所述,了解函数的奇偶性和周期性对于研究和应用函数具有重要意义。
高考数学知识点汇总函数的奇偶性与周期性

高考数学知识点汇总函数的奇偶性与周期性高考数学知识点汇总函数的奇偶性与周期性知识要点:一、函数的奇偶性1.定义:关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=f(x),那么f (x)为偶函数;2.性质:(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;(2) f(x),g(x)的定义域为D;(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;(5)任意一个定义域关于原点对称的函数f(x)总能够表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x) =-[f(x)-f(-x)]为奇函数;(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判定方法:(1)定义法(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:(1)一样地,关于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2 b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;(2)一样地,关于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a -x),则它的图象关于x=a成轴对称。
二、周期性:1.定义:关于函数y=f(x),假如存在一个非零常数T,使得当自变量x 取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
高三数学复习课件【函数的奇偶性及周期性】

f(x)=- x,4x02≤+x2<,1,-1≤x<0, 则 f 32=________. 解析:∵f(x)是定义在 R 上的周期为 2 的函数,
且 f(x)=-x,4x02≤+x2<,1,-1≤x<0, ∴f 32=f -12=-4×-122+2=1. 答案:1
返回 2.已知定义在 R 上的函数满足 f(x+2)=-f1x,x∈(0,2]时,f(x)
关 于 _原__点_ 对称
f(x)就叫做奇函数
返回 2.函数的周期性 (1)周期函数
对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)=f(x) ,那么就称函数 f(x)为周期函数,称 T 为这个函数的周期. (2)最小正周期 如果在周期函数 f(x)的所有周期中存在一个 最小的正数 , 那么这个 最小正数 就叫做 f(x)的最小正周期.
关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项
定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数也
不是偶函数. 答案:B
返回
3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b
的值是
()
A.-13
B.13
C.12
D.-12
解ห้องสมุดไป่ตู้:∵f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,∴a-
奇函数,所以 f 121=f -12=-f 12=123=18. 答案:B
返回
5.函数 f(x)在 R 上为奇函数,且 x>0 时,f(x)=x+1,则当 x<0 时,f(x)=________. 解析:∵f(x)为奇函数,x>0 时,f(x)=x+1, ∴当 x<0 时,-x>0,f(x)=-f(-x)=-(-x+1), 即 x<0 时,f(x)=-(-x+1)=x-1. 答案:x-1
函数的奇偶性和周期性(含解析)

函数奇偶性和周期性一、必备知识:1.奇、偶函数的概念 (1)偶函数:一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数. (2)奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数. 2.奇、偶函数的图象特征偶函数的图象关于 对称;奇函数的图象关于 对称. 3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于,即“定义域关于”是“一个函数具有奇偶性”的条件. 4.周期函数的概念 (1)周期、周期函数对于函数f (x ),如果存在一个 T ,使得当x 取定义域内的 值时,都有 ,那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个 的正数,那么这个最小正数就叫做f (x )的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f (x )为奇函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 ; (2)若函数f (x )为偶函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 . 6.奇、偶函数的“运算”(共同定义域上)奇±奇= ,偶±偶= ,奇×奇= ,偶×偶= ,奇×偶= . 7.函数的对称性如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a +x )=f (b -x ),那么函数的图象有对称轴x =a +b2;如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a -x )=-f (b +x ),那么函数的图象有对称中心⎝⎛⎭⎫a +b 2,0.8.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a ,0),B (b ,0)(a <b ),那么函数f (x )是周期函数,且周期T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b ,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |. 自查自纠:1.(1)f (-x )=f (x ) (2)f (-x )=-f (x ) 2.Y 轴 原点3.原点对称 原点对称 必要不充分4.(1)非零常数 每一个 f (x +T )=f (x ) (2)最小 5.(1)增(减)函数 (2)减(增)函数 6.奇 偶 偶 偶 奇二、题型训练题组一 1.函数()2lg 1()22x f x x -=--是_____________函数。
高考数学知识点精讲函数的奇偶性与周期性

高考数学知识点精讲函数的奇偶性与周期性高考数学知识点精讲:函数的奇偶性与周期性在高考数学中,函数的奇偶性与周期性是非常重要的知识点,理解并掌握它们对于解决函数相关问题具有关键作用。
接下来,咱们就一起来详细探讨一下这两个重要的概念。
一、函数的奇偶性1、奇函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数。
比如说,常见的奇函数有 y = sin x ,y = x 等。
我们以 y = x 为例来直观地理解一下奇函数的特点。
当 x 取某个值时,比如 x = 3 ,那么 f(3) = 3 ;而当 x 取-3 时,f(-3) =-3 ,也就是 f(-3) = f(3) ,这就体现了奇函数的性质。
奇函数的图象关于原点对称。
这意味着,如果我们知道了函数在原点一侧的图象,就可以通过原点对称的方式得到另一侧的图象。
2、偶函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数。
像 y = cos x ,y =|x| 等都是偶函数。
以 y =|x| 为例,当 x =3 时,f(3) = 3 ;当 x =-3 时,f(-3) = 3 ,即 f(-3) = f(3) ,这符合偶函数的定义。
偶函数的图象关于 y 轴对称。
同样,如果知道了函数在 y 轴一侧的图象,通过 y 轴对称就能得到另一侧的图象。
判断一个函数是奇函数还是偶函数,通常有以下几种方法:(1)定义法:就是根据奇函数和偶函数的定义,分别计算 f(x) 和f(x) 或者 f(x) ,看是否相等。
(2)图象法:通过观察函数的图象是否关于原点对称(奇函数)或者关于 y 轴对称(偶函数)来判断。
二、函数的周期性1、周期函数的定义对于函数 y = f(x) ,如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x) 都成立,那么就把函数 y = f(x) 叫做周期函数,周期为 T 。
高考数学一轮复习课件23函数的奇偶性与周期性

即 f(-x)+f(x)=2b 是偶数.
∵f lg
1
=f(-lg a),
∴f(lg a)+f lg
1
是偶数,排除 A,B,故 C,D 可能满足条件.故选 CD.
-18-
考点1
考点2
考点3
考点4
思考函数的奇偶性有哪几个方面的应用?
解题心得1.函数奇偶性的应用主要有:利用函数的奇偶性求函数
解析:(1)因为f(x)=x2+g(x),且函数f(x)为偶函数,所以有(-x)2+g(x)=x2+g(x),即g(-x)=g(x),所以g(x)为偶函数,由选项可知,只有选项B
中的函数为偶函数,故选B.
(2)因为函数 y=f(x+1)-2 为奇函数,所以函数 f(x)的图象关于点(1,2)
2-1
解:由题意知函数f(x)的定义域为R,关于原点对称.因为f(-x)=(-x)3(-x)=-x3+x=-(x3-x)=-f(x),所以函数f(x)为奇函数.
-15-
考点1
考点2
考点3
考点4
B
(2)(2019 福建漳州质检二,16)已知函数 y=f(x+1)-2 是奇函
2-1
数,g(x)= -1 ,且 f(x)与 g(x)的图象的交点为(x1,y1),(x2,y2),…,(xn,yn),则
故对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x),即函数f(x)是奇函数.
4- 2 ≥ 0,
(3)∵
| + 3| ≠ 3,
∴-2≤x≤2,且 x≠0.
∴函数的定义域关于原点对称.
高考数学中的函数奇偶性与周期性总结

高考数学中的函数奇偶性与周期性总结在高考数学中,函数的奇偶性与周期性是一个重要的考点,掌握好这些概念对于解决数学问题有非常大的帮助。
在这篇文章中,我们将对函数奇偶性与周期性进行总结,并提供一些实例,以帮助读者更好地理解这些概念。
函数的奇偶性函数的奇偶性是指函数值的对称性质。
如果函数在自变量取相反数的情况下,函数值不变,那么该函数为偶函数;如果函数在自变量取相反数的情况下,函数值变为相反数,那么该函数为奇函数;如果函数在自变量取相反数的情况下,函数值既不变也不变为相反数,那么该函数既不是偶函数也不是奇函数。
举个例子,我们来看一下函数$y=x^2$ 。
当自变量取相反数时,函数值不变,即 $y=(-x)^2=x^2$ ,因此它是偶函数。
再来看一下函数 $y=x^3$ ,当自变量取相反数时,函数值变为相反数,即$y=-x^3$ ,因此它是奇函数。
最后,我们来看一下函数$y=x^2+1$ ,当自变量取相反数时,函数值既不变也不变为相反数,因此它既不是偶函数也不是奇函数。
我们利用函数的奇偶性可以快速求出某些函数的积分、导数和方程的根。
例如,对于偶函数,它的图像在$y$ 轴上具有对称性,因此它在 $(-a,a)$ 内积分的值与 $(-a,a)$ 之外积分的值相等;对于奇函数,它的图像在原点具有对称性,因此在 $(-a,a)$ 内积分的值为 $0$ 。
类似地,对于偶函数,它在 $x=0$ 的导数为 $0$ ;对于奇函数,在 $x=0$ 的导数为非 $0$ 常数。
函数的周期性函数的周期性是指函数图像在一个固定的距离上重复出现。
一个具有周期 $T$ ($T$ 为正实数)的函数 $y=f(x)$ 满足$f(x+T)=f(x)$ ,即在自变量增加 $T$ 时,函数值不变。
我们分以下几种情况来讨论函数的周期性。
1. 正弦函数与余弦函数正弦函数和余弦函数是最常见的周期函数,它们的周期都是$2\pi$ 。
例如, $y=\sin x$ 和 $y=\cos x$ 周期都是 $2\pi$ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案5:函数的奇偶性与周期性
一、课前检测
1. 下列函数中,在其定义域内即是奇函数又是减函数的是( )
A .()3 f x x x R =-∈
B .()sin f x x x R =∈
C .() f x x x R
=∈ D .()1 2x f x x R ⎛⎫=∈ ⎪⎝⎭
答案:A
2. (08辽宁)若函数(1)()y x x a =+-为偶函数,则a =( )
A .2-
B .1-
C .1
D .2 答案:C
3. 已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 ( )
A.2-
B.2
C.-98
D.98
答案:A
二、知识梳理
1.函数的奇偶性:
(1)对于函数)(x f ,其定义域关于原点对称.........
: 如果______________________________________,那么函数)(x f 为奇函数;
如果______________________________________,那么函数)(x f 为偶函数.
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称.
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 .
(4)若奇函数)(x f 在0x =处有定义,则必有...(0)0f =
2.函数的周期性
对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域
内的每一个值时,都有)()(x f T x f =+,则)(x f 为周期函数,T 为这个函数的周期.
3.与函数周期有关的结论:
①已知条件中如果出现)()(x f a x f -=+、或m
x f a x f =+)()((a 、m 均为非零常数,0>a ),都可以得出)(x f 的周期
为 ;
②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图
象关于直线b x a x ==,轴对称,均可以得到)(x f 周期
三、典型例题分析
例1.判断下列函数的奇偶性:
(1)()(
1f x x =- (定义域不关于原点对称,非奇非偶) (2)()(2lg 122x f x x -=--
解:定义域为:()()2101,00,1220
x x ⎧->⎪⇒-⋃⎨--≠⎪⎩ 所以()()()22lg 1lg 122x x f x x x
--==--- ,是奇函数。
(3)()()()
2200x x x f x x x x ⎧+<⎪=⎨->⎪⎩ 解法一:当0x <,0x ->,()()()()2
2f x x x x x f x -=---=+= 当0x >,0x -<,()()()()22f x x x x x f x -=-+-=-= 所以,对()(),00,x ∀∈-∞⋃+∞,都有()()f x f x -=, 所以()f x 是偶函数
解法二:画出函数图象
解法三:()f x 还可写成()2f x x x =-,故为偶函数。
(4)(
)f x = 解:定义域
为{x ∈,
对{x ∀∈,都有()()()f x f x f x -==-, 所以既奇又偶
变式训练:判断函数()22f x x x a =--+的奇偶性。
解:当0a =时,()f x 是偶函数
当0a ≠时,
()()222,22f a a f a a a =+-=-+,即
()()f a f a ≠-,
且()()()2
217222022f a f a a a a ⎛⎫+-=-+=-+≠ ⎪⎝⎭, 所以非奇非偶
小结与拓展:几个常见的奇函数:
(1)2121x x y +=- (2)11212x y =+- (3)1lg 1x y x
+=- (4))
lg y x = 小结与拓展:定义域关于原点对称是函数具有奇偶性的必要条件 例2.已知定义在(),-∞+∞上的函数()y f x =,当()0,x ∈+∞时,()()12x f x x =+
(1)若函数()y f x =是奇函数,当(),0x ∈-∞时,求函数()y f x =的解析式;
(2)若函数()y f x =是偶函数,当(),0x ∈-∞时,求函数()y f x =的解析式;
解:(1)()112x f x x ⎛⎫=+ ⎪⎝⎭ (2)()112x f x x ⎛⎫=-+ ⎪⎝⎭
变式训练:已知奇函数()f x ,当0x >时,()()51f x x x =-+,求函数()f x 在R 上的解析式;
解:函数()f x 是定义在R 上的奇函数,
()()()00,f f x f x ∴=-=-,
当0x <时,0x ->,()()51f x x x ∴-=-++
()()()()510f x f x x x x ∴=--=+-<,
()()()()()()
51000510x x x f x x x x x -+>⎧⎪∴==⎨⎪+-<⎩
小结与拓展:奇偶性在求函数解析式上的应用
例3.设函数)(x f 是定义在R 上的奇函数,对于,x R ∀∈都有3322f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭
成立。
(1)证明)(x f 是周期函数,并指出周期;
(2)若(1)2f =,求()(2)3f f +的值。
证明:(1)()()33
,22f x f x f x f x ⎛⎫⎛⎫+=---= ⎪ ⎪⎝⎭⎝⎭ ()()3333(3)2222
f x f x f x f x f x ⎡⎤⎡⎤
⎛⎫⎛⎫∴+=++=--+=--= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 所以,)(x f 是周期函数,且3T =
(2)()00,(1)2,3f f T ===,()(1)12f f ∴-=-=- ()()()(2)3102f f f f ∴+=-+=-
变式训练1:设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,
则)5.47(f 等于 ( ) A . 0.5 B. 5.0- C. 1.5 D. 5.1- 答案:B
变式训练2:(06安徽)函数()f x 对于任意实数x 满足条件
()()
12f x f x +=,若()15,f =- 则()()5f f =__________。
解:由()()12f x f x +=得()()
14()2f x f x f x +==+,所以(5)(1)5f f ==-,
则()()115(5)(1)(12)5
f f f f f =-=-=
=--+。
小结与拓展:只需证明()()f x T f x +=,即()f x 是以T 为周期的周期函数
四、归纳与总结(以学生为主,师生共同完成)
1.知识:
2.思想与方法:
3.易错点:
4.教学反思(不足并查漏):。