初中数学定理公式汇编(答案)

合集下载

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

(完整版)初中数学常用公式和定理大全

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

初中高中数学定理公式大全(超全)

初中高中数学定理公式大全(超全)

初中高中数学定理公式大全(超全)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,-a的相反数是a。

5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。

如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。

如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。

9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。

10.开平方:求一个数a的平方根的运算,叫做开平方。

11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。

12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。

初中数学定理、公式汇编

初中数学定理、公式汇编

初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数.如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;15.二次根式:(1)定义:式子叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

(完整版)初中数学定理、公式归纳汇总

(完整版)初中数学定理、公式归纳汇总

初中数学定理、公式归纳汇总1、过两点有且只有一条直线。

2、两点之间线段最短。

3、同角或等角的补角相等;同角或等角的余角相等。

4、过一点有且只有一条直线和已知直线垂直。

5、直线外一点与直线上各点连接的所有线段中,垂线段最短。

6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

7、如果两条直线都和第三条直线平行,这两条直线也互相平行。

8、同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

9、两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

10、定理:三角形两边的和大于第三边。

推论:三角形两边的差小于第三边。

11、三角形内角和定理三角形三个内角的和等于180°。

推论1:直角三角形的两个锐角互余。

推论2:三角形的一个外角等于和它不相邻的两个内角的和。

推论3:三角形的一个外角大于任何一个和它不相邻的内角。

12、全等三角形的对应边、对应角相等。

13、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。

14、角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。

15、边边边公理(SSS):有三边对应相等的两个三角形全等。

16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。

17、定理:在角的平分线上的点到这个角的两边的距离相等。

逆定理:到一个角的两边的距离相同的点,在这个角的平分线上。

角的平分线是到角的两边距离相等的所有点的集合。

18、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。

推论2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

推论3:等边三角形的各角都相等,并且每一个角都等于60°。

19、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1:三个角都相等的三角形是等边三角形。

(完整版)初中数学公式、定理大全

(完整版)初中数学公式、定理大全
互相重合(三线合一) 3、等边三角形的各角都相等,并且每一个角都等于 60° 1、 全等三角形的对应边相等、对应角相等 2、 全等三角形的周长相等、面积相等
1、 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
2、 相似三角形对应角相等、对应边成比例 3、 相似三角形周长的比等于相似比 4、 相似三角形面积的比等于相似比的平方 5、 相似多边形周长的比等于相似比 6、 相似多边形面积的比等于相似比的平方 7、 相似多边形对应角相等、对应边成比例
a c ad bc
2、 b d
bd 。
a c ac 3、 b d bd .
m
a
am
5、 b
bm
a c ad 4、 b d bc
A
6、 B
AC ,A = A C ( A,B,C 为整式,且 B 、C≠0)
BC B B C
a aa
7、 b b
b
1、几组勾股数(不含扩大同一倍数的) :
3、4、 5;
5、12、13; 7、24、25; 8、 15、 17。
章节 线 平行线 角 图形对称 三角形
直角三角形 等腰三角形 全等三角形
相似三角形
比例线段
性质 1、过两点有且只有一条直线。 2、两点之间线段最短。 3、过一点有且只有一条直线和已知直线垂直。 4、直线外一点与直线上任意点连接的线段中,垂线段最短 5、线段垂直平分线上的点到这条线段两个端点的距离相等 1、平行公理 经过直线外一点, 有且只有一条直线与这条直
,并且被对称中心平分 1、 定理 三角形两边的和大于第三边 2、 推论 三角形两边的差小于第三边 3、 直角三角形的两个锐角互余 4、 三角形的一个外角等于和它不相邻的两个内角的和 5、 三角形的一个外角大于任何一个和它不相邻的内角 6、 经过三角形一边的中点与另一边平行的直线, 必平分第

(完整版)初中数学公式大全(整理打印版)

(完整版)初中数学公式大全(整理打印版)

初中数学公式大全a b a b= ⎩⎨- a (a < 0)初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数 实数的性质:1 ①实数 a 的相反数是—a ,实数 a 的倒数是 (a≠0);a②实数 a 的绝对值:⎧a (a > 0)⎪a ⎨0(a = 0)⎪- a (a < 0) ③正数大于 0,负数小于 0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:= ⋅ (a≥0,b≥0);= (a≥0,b >0);②二次根式的性质:= a = ⎧a (a ≥ 0) ⎩ (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m ⋅ a n = a m +n (m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a m ÷ a n = a m -n (a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab )n = a n b n (n 为正整数);④零指数: a 0 = 1 (a≠0);ab a b a 2- b + b 2- 4ac ± ⑤负整数指数: a -n = 1a n(a≠0,n 为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a + b )(a - b ) = a 2 - b 2 ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的 2 倍,即(a ± b )2 = a 2 ± 2ab + b 2 ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整a 式,分式的值不变,即b = a ⨯ m ; a b ⨯ m b ac ac= a ÷ m b ÷ m,其中 m 是不等于零的代数式;②分式的乘法法则: ⋅ = ;b d bda c a d ad③分式的除法法则: ÷b d = ⋅ = bc (c ≠ 0) ; bc ④分式的乘方法则: ( a b )n = a b na b(n 为正整数);a ± b⑤同分母分式加减法则: ± = ;c c ca d ⑥异分母分式加减法则: cb 2. 方程与不等式= ab ± cd ;bc①一元二次方程 ax 2 + bx + c = 0 (a≠0)的求根公式:x = (b 2 2a - 4ac ≥ 0)②一元二次方程根的判别式: ∆ = b 2 - 4ac 叫做一元二次方程ax 2 + bx + c = 0 (a≠0)的根的判别式: ∆ > 0 ⇔ 方程有两个不相等的实数根; ∆ = 0 ⇔ 方程有两个相等的实数根; ∆ < 0 ⇔ 方程没有实数根;③一元二次方程根与系数的关系:设 x 1 、 x 2是方程 ax 2 + bx + c = 0nb c (a≠0)的两个根,那么 x 1 + x 2 = - a, x 1 x 2 = a;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数 y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且 与直线 y=kx 平行的一条直线;一次函数的性质:设 y=kx+b (k≠0),则当 k>0 时,y 随 x 的增大而增大;当 k<0, y 随 x 的增大而减小;正比例函数的图象:函数 y = kx 的图象是过原点及点(1,k )的一条直线。

初中数学定理公式汇编

初中数学定理公式汇编

初中数学定理公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数 a 的相反数是—a,实数 a 的倒数是 a 1 (a≠0);②实数a 的绝对值:⎪⎩⎪⎨⎧-<=>= ( 0) 0( 0) ( 0) a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:ab = a ⋅ b (a≥0,b≥0);b a b a =(a≥0,b>0);②二次根式的性质:⎩⎨⎧-<≥== ( 0) ( 0) 2 a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即m n m n a a a +⋅=(m、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(a≠0,m、n 为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n (ab) = a b (n 为正整数);④零指数:1 0 a =(a≠0);⑤负整数指数:n n a a 1 =-(a≠0,n 为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即2 2 (a + b)(a - b) = a - b ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍,即2 2 2 (a ± b) = a ± 2ab + b ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即b m a m b a ⨯⨯=;b m a m b a ÷÷=,其中m 是不等于零的代数式;②分式的乘法法则:bd ac d c b a ⋅=;③分式的除法法则:÷=⋅= (c ≠ 0) bc ad c d b a d c b a ;④分式的乘方法则:n n n b a b a ( ) =(n 为正整数);⑤同分母分式加减法则:c a b c b c a ±±=;⑥异分母分式加减法则:bc ab cd b d c a ±±=;2.方程与不等式① 一元二次方程0 2 ax + bx + c =(a ≠ 0 )的求根公式:( 4 0) 2 4 2 2 -≥-+-=b ac a b b ac x ② 一元二次方程根的判别式:b 4ac 2 ∆=-叫做一元二次方程0 2 ax + bx + c =(a≠0)的根的判别式:∆> 0 ⇔方程有两个不相等的实数根;∆= 0 ⇔方程有两个相等的实数根;∆< 0 ⇔方程没有实数根;③一元二次方程根与系数的关系:设1 x 、2 x 是方程0 2 ax + bx + c =(a≠0)的两个根,那么1 x + 2 x = a b -,1 x 2 x = a c ;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k、b 是常数,k≠0)的图象是过点(0,b)且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b(k≠0),则当k>0 时,y 随x 的增大而增大;当k0 时,y 随x 的增大而增大;②当k0,则当x>0 时或x0 时或x0 时,抛物线开口向上,当a0 时,如果a b x 2 ≤-,则y 随x 的增大而减小,如果a b x 2 >-,则y 随x 的增大而增大;当ar,反之也成立;圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;圆的确定:不在一直线上的三个点确定一个圆;垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;平行弦夹等弧:圆的两条平行弦所夹的弧相等;圆心角定理:圆心角的度数等于它所对弧的度数;圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;圆周角定理:圆周角的度数等于它所对的弧的度数的一半;圆周角定理的推论:直径所对的圆周角是直角,反过来,︒ 90 的圆周角所对的弦是直径;切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径;切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;弧长计算公式:180 n R l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l为弧长)扇形面积:2 360 R n S扇形=π或S lR 2 1 扇形=(R 为半径,n 是扇形所对的圆心角的度数,l为扇形的弧长)弓形面积=±∆ S弓形S扇形S (6)尺规作图(基本作图、利用基本图形作三角形和圆)作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线的垂线;(7)视图与投影画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);基本几何体的展开图(除球外)、根据展开图判断和设别立体模型; 2.图形与变换图形的轴对称轴对称的基本性质:对应点所连的线段被对称轴平分;等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;图形的平移图形平移的基本性质:对应点的连线平行且相等;图形的旋转图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形;图形的相似比例的基本性质:如果 d c b a =,则ad = bc,如果ad = bc ,则= (b ≠ 0, d ≠ 0) d c b a 相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;相似多边形的性质:①相似多边形的对应角相等;②相似多边形的对应边成比例;③相似多边形的面积之比等于相似比的平方;图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;Rt△ABC 中,∠C= ︒ 90 ,SinA= 斜边∠ A的对边,cosA= 斜边∠A的邻边, tanA= 的邻边的对边A A ∠∠ , CotA= 的对边的邻边A A ∠∠特殊角的三角函数值:︒ 30 ︒ 45 ︒ 60 sinα 2 1 2 2 2 3 cosα 2 3 2 2 2 1 tanα 3 3 1 3 cotα 3 1 3 3 三、概率与统计1.统计数据收集方法、数据的表示方法(统计表和扇形统计图、折线统计图、条形统计图)(1)总体与样本所要考察对象的全体叫做总体,其中每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体数目叫做样本的容量。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初中数学公式大全

初中数学公式大全

初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

初中数学几何公式定理汇编整理

初中数学几何公式定理汇编整理
36、等腰梯形的判定:
(1)同一条底边上的两个内角相等的梯形是等腰梯形; (2)两条对角线相等的梯形是等腰梯形.
37、等腰梯形的性质:
(1)等腰梯形的同一条底边上的两个内角相等;
(2)等腰梯形的两条对角线相等.
38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.
四、相似形与全等形
39、全等多边形的对应边、对应角分别相等.
(4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.
30、矩形的性质:
(1)具有平行四边形的所有性质
(2)矩形的四个角都是直角;
(3)矩形的对角线相等且互相平分.
31、矩形的判定:
(1)有一个角是直角的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形.
(3)对角线相等的平行四边形是矩形。
20、三角形外角的性质:
①三角形的一个外角等于与它不相邻的两个内角的和;
②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360°
21、三边关系:
(1)两边之和大于第三边;
(2)两边之差小于第三边
22、三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
23、三角形的三边的垂直平分线交于一点(外心), 这点到三个顶点的距离(外接圆半径)相等。
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.
(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形
26、直角三角形:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.

初中数学公式大全

初中数学公式大全

初中数学定理公式汇编1. 数与式(1) 实数 实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

例1求下列各数的相反数及绝对值: (1)3 -64; (2)3-π. 分析:(1)题根据3-a=-3a(a >0),求一个负数的立方根,可以先求出这个负数的绝对值的立方根,再取它的相反数.(2)题中先判断3与π的大小,再求3-π的绝对值.解 (1)因为3-64=-3 64=-4,所以3 -64的相反数是4,|3 -64|=4. (2)3-π的相反数是-(3-π)=π-3.因为π>3所以3-π<0,因此|3-π|-(3-π)=-3+π=π-3. 例2已知一个数的绝对值是3,求这个数.解:设这个数为a ,根据题意,有|a |=3.因为|3|=3,|-3|=3,所以a=±3,即绝对值是3的数为±3. 例3求下列各式中的实数x(1)|x |=3 64 125; (2)|x |=|-π|; (3)求满足|x |<421的整式x. 分析:根据实数的绝对值的意义求x. 解(1)3 64 125=45.这是因为|45|=45,|-45|=45,所以绝对值为3 64 125的数为±45. (2)|π|=|-π|=π.因为|π|=π,|-π|=π.所以绝对值等于|-π|的数是±π. (3)因为|x |<421的整数x 的几何意义是,在数轴上到原点的距离小于412的点所表示的所在整数,如图可以用数轴上的点表示已知条件|x |<412,所以满足|x |<412的整数x 为-4,-3,-2,-1,0,1,2,3,4. 2.二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b >0);例1 化简:aa 1-. 分析:善于挖掘题目中的隐藏条件往往是解题的关键. 此题中,由被开方数a1-0≥, 及分母a 不为零,可得0<a .法一:把根号外的因式移到根号内.aa 1-=a a 1)(---=)1()(2a a ---=a --.法二:aa 1-=2a a a -=2)(a a a --=a a a --=a -- 例2判断下列各式是否成立: 1、9494--=--; 2、323)2(2-=⨯-;3、1581722=-;4、b a b a +=+22.分析:1题不成立,∵4-,9-无意义,该题的错误在于对商的算术平方根的性质的条件不理解,正确解法为:329494==--. 2题不成立,该式左边是非负数,右边是负数,该题的错误在于对2a 化简的条件理解不透,正确解法为:32323)2(22=⨯=⨯-.3题成立,∵15925)817)(817(81722=⨯=-+=-.4题不成立,因为只存在积(商)的算术平方根的性质,不存在和(差)的算术平方根的性质,所以被开方数是和(差)的形式,不能直接开方. 在化简二次根式时,被开方数如果能分解因式化为积的形式,才能据二次根式的性质化简. 此题中22b a +不能再化简. 例3要使ab 在实数范围内有意义,b a ,应满足( ).A 、b a ,均为非负数.B 、0>ab .C 、0,0==b a .D 、0≥ab .分析:ab 的被开方数为ab 这个整体,所以0≥ab ,答案为D. 0≥ab 又可以分为三种情况:0,0>>b a 或0,0==b a 或0,0<<b a ②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a 例1比较大小:112,53.分析:要比较两个二次根式的大小,就要把它们化为系数(或被开方数)相同的形式,再比较被开方数(或系数)的大小.解:112=114⨯=44,53=59⨯=45.∵44<45, ∴112<53.例2把下列各根式化为最简二次根式:()()(),()(),19600224750325121003234a b a b a b ca b ≥≥≥≥分析:依据最简二次根式的概念进行化简, (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。

(完整版)初中数学公式大全(整理打印版)

(完整版)初中数学公式大全(整理打印版)

初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

初中高中数学定理公式大全(超全)

初中高中数学定理公式大全(超全)

初中高中数学定理公式大全(超全)1 过两点有且只有一条直线过两点有且只有一条直线2 两点之间线段最短两点之间线段最短3 同角或等角的补角相等同角或等角的补角相等4 同角或等角的余角相等同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行同位角相等,两直线平行10 内错角相等,两直线平行内错角相等,两直线平行11 同旁内角互补,两直线平行同旁内角互补,两直线平行12 两直线平行,同位角相等两直线平行,同位角相等13 两直线平行,内错角相等两直线平行,内错角相等14 两直线平行,同旁内角互补两直线平行,同旁内角互补15 定理三角形两边的和大于第三边定理 三角形两边的和大于第三边16 推论三角形两边的差小于第三边推论 三角形两边的差小于第三边17 三角形内角和定理三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)即等边对等角)等腰三角形的性质定理 等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形36 推论推论 2 有一个角等于60°的等腰三角形是等边三角形°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形43 定理定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理勾股定理 直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a 2+b 2=c 247 勾股定理的逆定理勾股定理的逆定理 如果三角形的三边长a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形,那么这个三角形是直角三角形 48 定理定理 四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理多边形内角和定理 n 边形的内角的和等于(n-2)×180°51 推论推论 任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等平行四边形的对边相等54 推论推论 夹在两条平行线间的平行线段相等夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a ×b )÷2 67 菱形判定定理1 四边都相等的四边形是菱形四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理1 关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称对称74 等腰梯形性质定理等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等等腰梯形的两条对角线相等76 等腰梯形判定定理等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形对角线相等的梯形是等腰梯形78 平行线等分线段定理平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b )÷2 S=L ×h 83 (1)比例的基本性质比例的基本性质比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质合比性质合比性质 如果a /b=c /d,那么(a ±b)/b=(c ±d)/d 85 (3)等比性质等比性质等比性质 如果a /b=c /d=…=m /n(b+d+…+n ≠0),那么(a+c+…+m)/(b+d+…+n)=a /b 86 平行线分线段成比例定理平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,所得的对应线段成比例 88 定理定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例比例90 定理定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA )92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS )94 判定定理3 三边对应成比例,两三角形相似(SSS )95 定理定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理定理 不在同一直线上的三点确定一个圆。

初中数学定义、定理、公理、公式汇编

初中数学定义、定理、公理、公式汇编

初中数学定义、定理、公理、公式汇编一、空间与图形(一)图形的认识★(1)直线、线段、射线、角1. 过两点有且只有一条直线.(简:两点确定一直线)2.两点之间线段最短垂线的性质:1.过一点有且只有一条直线和已知直线垂直2. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)线段垂直平分线的性质、判定1. 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 .2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.角1.同角或等角的补角相等.2.同角或等角的余角相等.3.对顶角的性质:对顶角相等角的平分线的性质、判定性质:在角的平分线上的点到这个角的两边的距离相等.判定:到一个角的两边的距离相同的点,在这个角的平分线上.★(2)相交线与平行线平行线的判断1.平行公理经过直线外一点,有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)3.同位角相等,两直线平行.4.内错角相等,两直线平行.5.同旁内角互补,两直线平行.平行线的性质1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.★(3)三角形三角形三边的关系三角形两边的和大于第三边、三角形两边的差小于第三边.三角形角的关系1. 三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的两个锐角互余.3.三角形的一个外角等于和它不相邻的两个内角的和.4. 三角形的一个外角大于任何一个和它不相邻的内角.全等三角形的性质、判定(至少要找一条边)1.全等三角形的对应边、对应角相等.2.边角边公理(SAS)3. 角边角公理( ASA)4.推论(AAS)5. 边边边公理(SSS)6. 斜边、直角边公理(HL).等腰三角形的性质①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)③推论3:等边三角形的各角都相等,并且每一个角都等于60° .等腰三角形判定1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)2.三个角都相等的三角形是等边三角形.3.有一个角等于60°的等腰三角形是等边三角形.直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中︒30角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a、b 、c有下面关系222cba=+,那么这个三角形是直角三角形(勾股定理的逆定理)。

初中数学公式定理大集合_(详细)

初中数学公式定理大集合_(详细)

实 数考点一、实数的概念及分类1、实数的分类 正整数整数 零有理数 负整数 正实数实数 分数 实数 零负实数无理数(无限不循环小数)2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数一个实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

(完整版)初中数学常用拓展公式定理汇总,推荐文档

(完整版)初中数学常用拓展公式定理汇总,推荐文档

(x - x ) + ( y - y ) 2 2 1 2 1 2k 2 + 1初中数学实用拓展公式定理汇总一、解析几何直线斜率公式已知 A (x 1 , y 1 ) 、 B (x 2 , y 2 ) 是直线 l 上两点,是直线 l 的倾斜角,k 是它的斜率,则k = tan =y 1 - y 2.x 1 - x 2两点之间的距离公式已知 A (x 1, y 1) 、 B (x 2 , y 2 ) ,则AB = . 点到直线的距离公式已知直线l : y = kx + b , A (x 0 , y 0 ) ,l 到点 A 的距离是 d ,则d =kx 0 - y 0 + b .平行直线的距离公式已知直线l 1 : y = kx + b 1 、l 2 : y = kx + b 2 ,l 1 到 l 2 的距离是 d ,则d = b 1 - b 2 .k 2 +1两直线位置关系的判定已知直线 l 1、l 2 的斜率是 k 1、k 2,则l 1∥l 2 ⇔ k 1 = k 2 ; l 1 ⊥ l 2 ⇔ k 1k 2 = -1 .二、三角函数已知 α、β 是任意角,则下列公式成立:和差角正弦公式和差角余弦公式sin(± )= sin cos ± cos sin ;cos(±)= coscossinsin;tan ± tan和差角正切公式 tan(± )=;1 tantan倍角正弦公式 sin 2= 2 sin cos;倍角余弦公式cos 2= 2 cos 2-1 ;1+ cos 倍角正切公式tan 2=2 tan.1- tan2当0︒ << 180︒ 时,则下列公式成立:半角正弦公式sin= 1- cos ;2 2半角余弦公式cos = ;2 2 半角正切公式tan= 1- cos .2 1+ cos三、几何定理正弦定理 在任意△ABC 中,∠A 、∠B 、∠C 所对的边分别为 a 、b 、c ,则a sin A =b sin B =c . sin C这一定理适合解已知两角及一边(AAS 或 ASA )的三角形.余弦定理 在任意△ABC 中,∠A 、∠B 、∠C 所对的边分别为 a 、b 、c ,则a 2 =b 2 +c 2 - 2bc cos A ;b 2 = a 2 +c 2 - 2ac cos B ;c 2 = a 2 + b 2 - 2ab cos C .这一定理适合解已知两边及一角或三条边(SAS 或 SSS )的三角形. 梅涅劳斯定理 如图,一条直线与△ABC 相交,与 AB 、BC 延长线、AC 分别交于 D 、E 、F 三点,则AD ⋅ BE ⋅ CF = 1 .DB EC FA塞瓦定理 如图,在△ABC 中任取一点 O ,延长 AO 、BO 、CO 交 BC 、AC 、AB 于D 、E 、F 三点,则AF ⋅ BD ⋅ CE = 1.FB DC EA相交弦定理 如图,圆的两条弦 AB 、CD 相交于一点 P ,则 AP ⋅ BP = CP ⋅ DP .切割线定理如图,过圆外一点P 作圆的切线AT 与圆相切与点T,作圆的割线PA 交圆于点A、B,则PT 2 =PA ⋅PB .割线定理如图,过圆外一点P 作圆的两条割线PA、PB 与圆相交于点A、B、C、D ,作圆的割线PA 交圆于点A、B,则PA ⋅PC =PB ⋅PD .相交弦定理、切割线定理、割线定理统称圆幂定理.托勒密定理圆内接四边形两组对边乘积之和等于对角线乘积.四点共圆判定一对角互补的四边形一定有外接圆.判定二外角等于内对角的四边形有外接圆.判定三若C、D 在线段AB 的同侧,且∠ACD=∠ADB,则A、B、C、D 四点共圆.判定四若线段AB、CD 交于点P,且AP ⋅BP =CP ⋅DP ,则A、B、C、D 四点共圆.判定五若线段AB、CD 的延长线交于点P,且AP ⋅BP =CP ⋅DP ,则A、B、C、D 四点共圆.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

_________________________________________________________________________ _____.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)4的平方根是士2,误认为4平方根为士2,应知道4=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式. 16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

单独一个数或一个字母也是代数式。

(2)同类项:是指所含字母相同,并且相同字母的指数也相同的项。

合并同类项的法则:系数相加作系数,字母和字母的指数不变。

三.整式1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); 2.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项. ③多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.⑤平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+; ⑥完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.⑶分解不彻底,如保留中括号形式,还能继续分解等四.分式1.分式:整式A除以整式B,可以表示成AB的形式,如果除式B中含有字母,那么称AB为分式.注:(1)若B≠0,则AB有意义;(2)若B=0,则AB无意义;(2)若A=0且B≠0,则AB=02.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,第二节方程与不等式一、一元一次方程1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax+b=0(a≠0)3.解一元一次方程的一般步骤及注意事项:二、二元一次方程(组)1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.三、分式方程1.分式方程:分母中含有未知数的方程叫做分式方程.2.解分式方程的步骤:①去分母,化为整式方程;②解整式方程;③验根;④下结论. 3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根.四、一元二次方程1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1 ,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.五、一元一次不等式(组)1.不等式:用不等号(“<”“≤”“>”“≥”)表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.8.解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为19.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a<b).14.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。

相关文档
最新文档