水平面内的圆周运动实例分析总结
圆周运动的实例及临界问题
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动的实例分析
物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
水平面内圆周运动临界问题的分析技巧
水平面内圆周运动临界问题的分析技巧1.在水平面内做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的趋势.这时要根据物体的受力情况,判断某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等).2.三种临界情况:(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0.1.(多选) 如图1所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()图1A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg答案AC解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mωa2l,当f a=kmg时,kmg=mωa2l,ωa=kgl;对木块b:f b=mωb2·2l,当f b=kmg时,kmg=mωb2·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚要开始滑动,选项C正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.。
高中物理难点之三--圆周运动的实例分析
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
圆周运动实例分析(圆锥摆类问题)
整理得: 由几何关系有:
③
④
《课时跟踪检测》P77
(8)
(多选)如图,一根细线下端拴一个金属小球P,细 线的上端固定在金属块Q上,Q放在带小孔的水平桌面 上。小球在某一水平面内做匀速圆周运动(圆锥摆)。 现使小球在一个更高一些的水平面上做匀速圆周运动 (图上未画出),两次金属块Q都保持在桌面上静止。 则后一种情况与原来相比较,下面的判断中正确的是 ( ) A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大
1.火车在水平弯道转弯
N
●
2.倾斜弯道转弯
N
051201铁路弯道内外轨高度差.asf
F
G
●
●
h
L
G
θ
01
问题:火车水平轨道转弯
向心力来源? 动力学方程? ①
问题:
当火车转弯速度: ①火车运动轨迹的圆心 ① v > v0 时 是 0 2点? (1 )内外轨道高度差 h ② v < v0 时 ②车轮刚好与内外轨道没 2 / gr h = L v 0 有挤压时,向心力来源?火 车的速度v0=?
N A.h 越高,摩托车对侧壁 的压力将越大 B.h 越高,摩托车做圆周 G 运动的向心力将越大 C.h 越高,摩托车做圆周运动的周期将越小 D.h 越高,摩托车做圆周运动的线速度将越大
-----圆锥摆模型 建立物理模型:
P31 图2-3-2 旋转秋千 L
θ
y
T
h
●
x O
G
动力学方程:
现象观察:?
圆周运动实例总结
5.互成角度的力的合力提供向心力
• 圆锥摆 • 漏斗摆 • 火车转弯
•圆锥摆
•物体受力情况如图所示,G和T的合 力F提供向心力.
•θ
•T
•O •F•F
ω θ •旋转的角速度 越大, 角越大.(0<
θ <π/2 )
合
•G
•漏斗摆
• 把一个小球放在玻璃漏斗里 ,晃动几下漏斗,可以使小球沿光 滑的漏斗壁在某一水平面内做匀速 圆周运动(如图)。小球的向心力 是由什么力提供的?
•依据此公式,你能找出关于N与V间哪些关系?
•1).汽车对桥面的压力随速度的增大而增大;
•2).当V=0时,N= mg ;
••
当V≠0时,N> mg ;
•
当
时,N=2 mg.
•N •V •m
g
•2. 绳 •解: •在最高点: T+ mg = mV2/R
•解得: T = mV2/R- mg •依据此公式,你能找出T与V存在哪些关系?
•解析:A、B、C三物体在转动过程中未
•A
•B
•C
发生滑动,故转台对物体提供的静摩擦
力应等于它们作圆周运动需要的向心力
,即f提供=f需要=fn=Mω2R.三物体绕同一 轴转动,角速度相等,把质量和圆周运
动的半径关系代入上式,比较可知 fA=fC<fB选项D正确.
•扩展
•例: A、B、C三物体放在水平圆台上,
ω, 半径L做匀速圆周运动,求弹簧的原长.
•解:设弹簧的原长为L0 , 则弹簧的形变量为L-L0 .
•据胡克定律: 有 F=K(L-L0 )
•据牛顿第二定律: K(L-L0 ) = M ω2L •解得: L0 = L - M ω2 L/ K .
圆周运动实例分析
质量为m的汽车以速度 通过半径为 的凹型桥。 质量为 的汽车以速度V通过半径为 的凹型桥。它经桥 的汽车以速度 通过半径为R的凹型桥 的最低点时对桥的压力为多大?比汽车的重量大还是小? 的最低点时对桥的压力为多大?比汽车的重量大还是小? 速度越大压力越大还是越小? 速度越大压力越大还是越小?
解: 根据牛顿第二定律
N
v F合 = N − m = m g R
2
v N= m +m g R
2
mg
的增大, 如何变化? 随V的增大,N如何变化? N逐渐增大
拓展:汽车以恒定的速率 通过半径为 的凹型桥面, 拓展 汽车以恒定的速率v通过半径为 的凹型桥面,如图 汽车以恒定的速率 通过半径为r的凹型桥面 所示,求汽车在最底部时对桥面的压力是多少? 所示,求汽车在最底部时对桥面的压力是多少?
V2 F向=N1 G =m R V2 N1 =m +G R 由上式和牛顿第三定律可知 由上式和牛顿第三定律可知 牛顿第三定律 汽车对桥的压力N ( 1 )汽车对桥的压力 1´= N1 (2)汽车的速度越大 R
O
N1
V
G
汽车对桥的压力越大
比较三种桥面受力的情况
N
G N
v N = G- m r
2
v N = G+ m r
N
Fn
mg
竖直平面内的变速圆周运动
1、竖直平面内圆周运动的类型: (1)、拱形桥问题:
(2)、轻杆支撑型的圆周运动:
(3)、轻绳牵拉型的圆周运动:
黄 石 长 江 大 桥
N
桥面的圆心在无穷远处
mg
v F 心 = m −N= m = 0 g 向 R
N=mg
2
专题:水平面内的圆周运动
水平面内的圆周运动一、水平圆盘问题例1、水平圆盘以角速度ω匀速转动,距转动轴L的位置有一小物块与圆盘相对静止,小物块的向心加速度多大所受摩擦力多大对接触面有什么要求离轴近的还是远的物体容易滑动练习:质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段和AB段对小球的拉力之比;O A例2、中心穿孔的光滑水平圆盘匀速转动,距转动轴L的位置有一质量为m的小物块A通过一根细线穿过圆盘中心的光滑小孔吊着一质量为M的物体B,小物块A与圆盘相对静止,求盘的角速度;°变式:若圆盘上表面不光滑,与A的动摩擦因数为μ,则圆盘角速度的取值范围是多少例3、在半径为r的匀速转动的竖直圆筒内壁上附着一物块,物块与圆筒的动摩擦因数为μ,要使物块不滑下来,圆筒转动的角速度应满足什么条件例4、长为L的细线悬挂质量为M的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求1小球的角速度;2小球对细线的拉力大小;变式:一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m的小球沿着筒的内壁在水平面内做匀速圆周运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h,1小球的向心加速度为多少2对圆锥面的压力为多大3小球的角速度和线速度各为多少·θ思考:小球的向心加速度与小球质量有关吗与小球的高度有关吗若有两个小球在同一光滑的圆锥形筒内转动,A球较高而B球较低,试比较它们的向心加速度、对圆锥面的压力、线速度、角速度大小;二、临界问题例5:如图所示,洗衣机内半径为r 的圆筒,绕竖直中心轴OO ′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下落,则圆筒转动的角速度ω至少为A .r g /μB .g μC .r g /D .r g μ/例6:如图所示,细绳一端系着质量M =的物体,静止在水平桌面上,另一端通过光滑的小孔吊着质量m =的物体 m,已知M 与圆孔距离为,M 与水平面间的最大静摩擦力为2N;现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态g =10m /s 2例7、如图所示,两根相同的细线长度分别系在小球和竖直杆M 、N 两点上,其长度分别为L 、R 且构成如图一个直角三角形,小球在水平面内做匀速圆周运动,细线能承受的最大拉力为2mg,当两根细线都伸直时,若保持小球做圆周运动的半径不变,求:小球的角速度范围变式、如图所示,两根相同的细线长度分别系在质量为m 的小球和竖直杆M 、N 两点上;小球在水平面内做匀速圆周运动,当两根细线都伸直时,小球到杆的距离为R,且细线与杆的夹角分别为θ和α,承受的最大拉力为2mg,若保持小球做圆周运动的半径不变,求:小球的角速度范围三、两个或多个物体的圆周运动例4:如图所示,A 、B 、C 三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘静止,则A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用B .C 的向心加速度最大 C .B 的摩擦力最小D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动例5:在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如右图所示,此时两小球到转轴的距离r 1与r 2之比为A .1∶1B .1∶2C .2∶1D .1∶2四、课后作业1.在水平面上转弯的汽车,提供向心力的是A .重力与支持力的合力B .静摩擦力Mr o mgR v ≤μC .滑动摩擦力 D .重力、支持力、牵引力的合力 2.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么A .两个小球以相同的线速度运动时,长绳易断B .两个小球以相同的角速度运动时,长绳易断C .两个球以相同的周期运动时,短绳易断D .不论如何,短绳易断3.在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是A .v gR ≤μ B . C .v gR ≤2μ D .v gR ≤μ 4.如图所示,A 、B 、C 三个小物体放在水平转台上,m A =2m B =2m C ,离转轴距离分别为2R A =2R B =R C ,当转台转动时,下列说法正确的是A .如果它们都不滑动,则C 的向心加速度最大B .如果它们都不滑动,则B 所受的静摩擦力最小C .当转台转速增大时,B 比A 先滑动D .当转台转速增大时,C 比B 先滑动5.如图所示,甲、乙两名滑冰运动员,M 甲=80kg,M 乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,两人相距,弹簧秤的示数为600N,下列判断中正确的是A .两人的线速度相同,约为sB .两人的角速度相同,约为5rad/sC .两人的运动半径相同,都是D .两人的运动半径不同,甲为,乙为6.汽车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r ,则汽车完全不靠摩擦力转弯的速率是设转弯半径水平A .θsin grB .θcos grC .θtan grD .θcot gr7.一辆质量为1t 的赛车正以14m/s 的速度进入一个圆形跑道,已知跑道半径为50m,最大静摩擦力约等于滑动摩擦力,则:1此赛车转弯所需的向心力是多大2当天气晴朗时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道3在雨天时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道8.水平圆盘绕竖直轴以角速度ω匀速转动;一个质量为50kg 的人坐在离轴r=m/3处随盘一起转动;设人与盘的最大静摩擦力均为体重的倍,g取10 m/s2,求:1ω为多大时,人开始相对盘滑动;2此时离中心r′= m处的质量为100kg的另一个人是否已相对滑动请简述理由;。
水平面内的圆周运动经典案例
水平面内的圆周运动一、锥摆与类锥摆1、锥摆题1、长为L的细线,拴一质量为m的小球,一端固定于O点。
让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示。
当摆线L与竖直方向的夹角是α时,求:(1) 线的拉力F;(2) 小球运动的线速度的大小;(3) 小球运动的角速度及周期。
题2、如图,已知绳长a=0.2m,水平杆长b=0.1m,小球质量m=0.3kg,整个装置可绕竖直轴转动。
(1)要使绳子与竖直方向成450角,试求该装置必须以多大的角速度旋转?(2)此时绳子对小球的拉力为多大?题3、如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为θ,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求:这时男运动员对女运动员的拉力大小及两人转动的角速度?题4、如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内作匀速圆周运动,则它们的( ).(A)运动周期相同(B)运动线速度一样(C)运动角速度相同(D)向心加速度相同θωrab2、类锥摆题5、如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确()A.A球的线速度必定大于B球的线速度B.A球的角速度必定小于B球的线速度C.A球的运动周期必定小于B球的运动周期D.A球对筒壁的压力必定大于B球对筒壁的压力题6、沿半径为R的半球型碗底的光滑内表面,质量为m的小球正以角速度ω,在一水平面内作匀速圆周运动,试求此时小球离碗底的高度二、转台与转筒题7、如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是:( )A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.以上均不正确题8、如图所示水平转盘上放有质量为m的物快A,物块和转盘间最大静摩擦力是正压力的 倍,当物块A到转轴的距离为r时,若要保持物块始终相对转盘静止,求转盘转动的最大角速度是多大?题9、如图所示,用同样材料做成的A、B、C三个物体放在匀速转动的水平转台上随转台一起绕竖直轴转动.已知三物体质量间的关系m A=2m B=3m C,转动半径之间的关系是r C=2r A=2r B,那么以下说法中错误的是:( )A.物体A受到的摩擦力最大B.物体B受到的摩擦力最小C.物体C的向心加速度最大D.转台转速加快时,物体B最先开始滑动ABθRh题10、如图所示,半径为r的圆桶绕中心轴OO‘匀速转动,角速度为ω,一小块质量为m的小滑块,靠在圆桶内壁与圆桶保持相对静止,求小滑块对桶的摩擦力和压力大小各为多少?三、车辆转弯1、汽车转弯题11、一质量为m汽车,轮胎和地面的摩擦因数为µ,汽车在水平路面出转弯,已知转弯半径为R,则汽车转弯是的最大安全速度为多少?2、火车转弯动力学分析:动力学分析:题12、火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是( ).①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力③当火车速度大于v时,轮缘挤压外轨④当火车速度小于v时,轮缘挤压外轨A、①③B、①④C、②③D、②④水平轨道倾斜轨道。
高中物理【圆周运动】章末小结与素养评价
二、圆周运动中的连接体问题
圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同
一转轴做圆周运动的问题。这类问题的一般解题思路是,分别隔离物体,准确地
进行受力分析,正确画出受力示意图,确定轨道平面和半径,注意约束关系。在
连接体的圆周运动问题中,角速度相同是一种常见的约束关系。常见实例如下:
3gμ 5L <
23gLμ时,两物体相对圆盘均保持静止,对物体 A 有 μmg+FT=
mω2·2L,对物体 B 有 FfB-FT=mω2L,解得 B 受到的摩擦力为 FfB=45μmg, 故 C 正确。
答案:ACD
[答案] C
三、竖直面内的圆周运动
典例 3 如图 6-3 所示,轻杆长 3L,在杆两端分别固定质量
均为 m 的球 A 和 B,光滑水平转轴穿过杆上距球 A 为 L 处的 O
点,外界给系统一定能量后,杆和球在竖直平面内转动,球 B 运
动到最高点时,杆对球 B 恰好无作用力。忽略空气阻力,则球 B
在最高点时
()
A.若三个物体均未滑动,则C物体的向心加速度最大
B.若三个物体均未滑动,则B物体受到的摩擦力最大
C.转速增加,A物体比B物体先滑动
D.转速增加,C物体先滑动
图6-1
[解析] 三个物体均未滑动时,做圆周运动的角速度相同,均为ω,根据a= ω2r知,半径最大的向心加速度最大,故A正确。三个物体均未滑动时,静摩擦力 提供向心力fA=2mω2r,fB=mω2r,fC=2mω2r,B物体受到的摩擦力最小,故B错 误 。 转 速 增 加 时 , 角 速 度 增 加 , 当 三 个 物 体 分 别 刚 要 滑 动 时 , 对 A 有 2μmg = 2mωA2r,对B有μmg=mωB2r,对C有μmg=2mωC2r,ωA=ωB>ωC,即C物体的静 摩擦力提供向心力首先达到不足,C物体先滑动,A与B一起滑动,故C错误,D 正确
高考物理 专题集锦(一)圆周运动实例分析与临界问题
圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。
一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。
设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmg B.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足gr μω≤D.转台的角速度一定满足23grμω≤【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,g rμω=,所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是g rμω≤;对于本题,物体C 需要满足的条件23grμω≤,物体A 和B 需要满足的条件均是g rμω≤所以, 要使三个物体都能够随转台转动,转台的角速度一定满足23grμω≤, C 项错误,D 项正确。
【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。
常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度cos g lθω>,b 绳将出现弹力 D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得cot g lθω=,可知当角速度cot g lθω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。
水平面内的圆周运动实例分析总结
水平面内的圆周运动实例分析总结水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
在生活中这样的例子很多,其运动的分析在高中物理中也是比较重要的,对学生来说也存在着一定的难度。
其实做这方面的习题时,关键是找出是什么力来提供的向心力,将受力分析所得的实际力与理论公式中的向心力联立,就可以得到所需要求的物理量。
现将常见的水平面内的圆周运动归结如下:一、水平面内汽车转弯、物体随转盘转动:某个力提供向心力在上述两个问题中,物体都处于水平接触面上,竖直方向的支持力和重力两者互相抵消,而物体作圆周运动时都有着被向外甩出的趋势,所以向心力都是由静摩擦力提供,即f静=Fn=。
从公式还可以看出,r一定时,v越大,所需的Fn 就会越大,当所需的Fn>Fmax时,物体将不能再作圆周运动。
临界Fmax=≈F动=μmg,所以v临=μgr。
当v>v临,物体将被甩出。
二、火车转弯、漏斗内物体的圆周运动、圆锥摆类,向心力由几个力的合力提供虽然这几种情况描述的物体运动形式不同,但从受力分析上看非常相似,都是除受到竖直向下的重力之外,再受到一个倾斜的支持力或拉力。
因为物体在水平面上作圆周运动需要水平方向的向心力,所以支持力或拉力与重力的合成后的合力提供向心力,向心力大小可以通过三角形三边关系解得。
练习:1.一辆质量为2t的汽车正在水平路面上行驶,要经过一个水平转弯,已知弯道的转弯半径为20米,汽车轮子与路面的动摩擦因数为0.2,若汽车最大静摩擦力与动摩擦力相等,则汽车行驶的最大速度为()。
A.210m/sB.2m/sC.4m/sD.22m/s2.如图所示,有A、B两个完全相同的小球,在同一光滑漏斗中作匀速圆周运动,则下列说法中正确的是()。
A、两物体的线速度的大小相同B、两物体的角速度相同C、两物体的向心力的大小相同D、两物体的向心加速度大小相同3.一列火车正在行驶,发现前方有一转弯,已知在转弯处的内外轨的高度差为h,内外轨道间距为L,弯道半径为r,则火车要想通过此弯道时不受内外轨道的挤压,应以速度_____转弯。
圆周运动实例分析水平+坚直方向
时,F=F向,内
ghR 时,F〈F向,外 〈 L ghR 〉 L 时,F〉F向,内
二、 汽车过拱桥
黄石长江大桥
二、汽车过桥
1:汽车静止在桥顶与通过桥顶时情况有何不同? :汽车静止在桥顶与通过桥顶时情况有何不同? 2:汽车过拱桥桥顶的向心力如何产生?方向如何? :汽车过拱桥桥顶的向心力如何产生?方向如何?
汽车刚好对桥顶的压力为零 汽车对桥顶有压力 汽车飞离桥顶
v0 > gr
思考: 如图汽车对桥底的压力? 如图汽车对桥底的压力?
N
V
r G 结论: 结论:车速越大对桥的压力就越大
应用: 应用:所以桥修成拱形的比凹形的好
三、竖直圆周运动的临界问题
如图要水流星刚巧能经过最高点, 如图要水流星刚巧能经过最高点 在最高点时至少需要多大速度 需要多大速度? 在最高点时 需要多大速度
v0
最 高 点
临界条件: 临界条件 v0 = gr
v 当过最高点的速度: 当过最高点的速度:0 > gr 水流星节目一定成功
其他类似的临界问题: 其他类似的临界问题:
线或绳 刚好过最高 点的速度特 征和条件? 征和条件? 刚好过最高 点的速度特 征和条件? 征和条件?
杆
圆心0 圆心
为了使铁轨不容易损坏, 为了使铁轨不容易损坏,在转弯处使外轨略 高于内轨,受力图如下, 高于内轨,受力图如下,重力和支持力的 合力提供了向心力;这样, 合力提供了向心力;这样,外轨就不受轮缘 的挤压了。 的挤压了。
同理:汽车转弯做圆周运动时, 同理:汽车转弯做圆周运动时,也需要 向心力, 向心力,是由地面给的摩擦力提供向心 力的,所以汽车在转弯的地方, 力的,所以汽车在转弯的地方,路面也 是外高内低,靠合力提供向心力。 是外高内低,靠合力提供向心力。
水平面内的圆周运动解析版
突破16水平面内的圆周运动水平面内的圆周运动是指圆周运动的圆形轨迹在水平面内,出题多以生活中常见实例或水平圆周运动模型为例分析向心力及临界条件问题。
1.水平面内圆周运动的“摩擦力模型”是指依靠静摩擦力提供物体在水平面内做圆周运动的向心力。
2.水平面内圆周运动的“弹力模型”是指依靠弹力提供物体在水平面内做圆周运动的向心力。
3.水平面内圆周运动的“圆锥摆模型”是指依靠弹力(细线拉力或倾斜面弹力)和物体重力的合力使物体在水平面内做匀速圆周运动。
解题技巧水平面内圆周运动临界问题的分析技巧在水平面内做圆周运动的物体,当转速变化时,物体有远离或向着圆心运动的趋势半径有变化),通常对应着临界状态的出现。
这时要根据物体的受力情况,判断某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
【典例1】铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为6(如图所示),弯道处的圆弧半径为凡若质量为m的火车转弯时速度小于”,则()A.内轨对内侧车轮轮缘有挤压;B .外轨对外侧车轮轮缘有挤压;C.这时铁轨对火车的支持力等于mg/cos 6;D.这时铁轨对火车的支持力大于mg /cos 6.【答案】A【典例2】如图所示,内壁光滑的弯曲钢管固定在天花板上,一根结实的细绳穿过钢管,两端分别拴m 1着一个小球A和5。
小球A和B的质量之比m*=5。
当小球A在水平面内做匀速圆周运动时,小球A到管m B2口的细绳长为l,此时小球B恰好处于平衡状态。
钢管内径的粗细不计,重力加速度为g。
求:⑴拴着小球*的细绳与竖直方向的夹角6;(2)小球A 转动的周期。
【答案】 ⑴60° (2)n g!~【典例3】如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO' 的距离为l ,b 与转轴的距离为21.木块与圆盘的最大静摩擦力为木块所受重力的左倍,重力加速度大小为g . 若圆盘从静止开始绕转轴缓慢地加速转动,用/表示圆盘转动的角速度,下列说法正确的是()A. b 一定比a 先开始滑动B. a 、b 所受的摩擦力始终相等C.①=•、卷 是b 开始滑动的临界角速度D.当①=飞.J 等 时,a 所受摩擦力的大小为kmg【答案】 AC【解析】因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为,木块随圆盘转动时,其受到的 静摩擦力的方向指向转轴,两木块转动过程中角速度相等,则根据牛顿第二定律可得片m^2R ,由于小木块 b 的轨道半径大于小木块a 的轨道半径,故小木块b 做圆周运动需要的向心力较大,B 项错误;因为两小木 块的最大静摩擦力相等,故b 一定比a 先开始滑动,A 项正确;当b 开始滑动时,由牛顿第二定律可得kmg =mcDb2 1,可得%=、弱,C 项正确;当a 开始滑动时,由牛顿第二定律可得kmg =m ⑴21,可得%= 播, 而转盘的角速度、;2k g〈'『牛,小木块a 未发生滑动,其所需的向心力由静摩擦力来提供,由牛顿第二定 律可得f = mrn 21=3kmg ,D 项错误。
向心力实例分析
知识回顾
• 物体做圆周运动时,需要 受到指向圆心的等效力的 作用 • 向心力的特点
–方向:总是指向圆心
F向 m v
2
r
m r
2
向心力公式的理解
提供物体做圆 周运动的力
F
=m
v
2
r
物体做圆周 运动所需的 向心力
“供”、“需”平衡 物体做圆周运动
向心力实例分析
N
外高 F向 θ
O
内低 θ
r
V= gr tanθ
(弯道设计速度)
G
V设计= g rtanα
当V实际> V设计时: 路面对车轮有沿斜面 向内侧的静摩擦力 当V实际<V设计时: 路面对车轮有沿斜面 向外侧的静摩擦力 外高
N
O
F向
θ 内低 θ
G
赛道的设计
观看图片
注意观察 铁轨弯道的特点
火车水平转弯时情况分析
又因为 F向 m v
2
小球运动
v G T r T1
v
2
所以 T m
r
mg
点
G
所以要使小球经过最高 小球速度 v
2
r
gr
小球又如何呢
即 :G
T m
v
r
游乐场的过山车
v r
过山车分析:
可见,v越大时,N越大,v越小时,N
越小
当v很小并趋近于零时,则
很小并趋近于 零,由于重力一定,重力大于小球所需向心力, 小球偏向圆心方向,不能达到最高点,在到最高 点之前已做斜抛运动离开圆轨道。 当N=0时,
汽车
受力分析
N
f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平面内的圆周运动实例分析总结
发表时间:2012-06-18T10:45:17.500Z 来源:《中小学教育》2012年8月总第107期供稿作者:曹刘芳[导读] 水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
曹刘芳河南省三门峡实验高中 472000 水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
在生活中这样的例子很多,其运动的分析在高中物理中也是比较重要的,对学生来说也存在着一定的难度。
其实做这方面的习题时,关键是找出是什么力来提供的向心力,将受力分析所得的实际力与理论公式中的向心力联立,就可以得到所需要求的物理量。
现将常见的水平面内的圆周运动归结如下:
一、水平面内汽车转弯、物体随转盘转动:某个力提供向心力
在上述两个问题中,物体都处于水平接触面上,竖直方向的支持力和重力两者互相抵消,而物体作圆周运动时都有着被向外甩出的趋势,所以向心力都是由静摩擦力提供,即f静=Fn= 。
从公式还可以看出,r一定时,v越大,所需的Fn就会越大,当所需的Fn>Fmax时,物体将不能再作圆周运动。
临界Fmax= ≈F动=μmg,所以v临= μgr。
当v>v临,物体将被甩出。
二、火车转弯、漏斗内物体的圆周运动、圆锥摆类,向心力由几个力的合力提供
虽然这几种情况描述的物体运动形式不同,但从受力分析上看非常相似,都是除受到竖直向下的重力之外,再受到一个倾斜的支持力或拉力。
因为物体在水平面上作圆周运动需要水平方向的向心力,所以支持力或拉力与重力的合成后的合力提供向心力,向心力大小可以通过三角形三边关系解得。
练习:
1.一辆质量为2t的汽车正在水平路面上行驶,要经过一个水平转弯,已知弯道的转弯半径为20米,汽车轮子与路面的动摩擦因数为
0.2,若汽车最大静摩擦力与动摩擦力相等,则汽车行驶的最大速度为()。
A.210m/s
B.2m/s
C.4m/s
D.2 2m/s
2.如图所示,有A、B两个完全相同的小球,在同一光滑漏斗中作匀速圆周运动,则下列说法中正确的是()。
A、两物体的线速度的大小相同
B、两物体的角速度相同
C、两物体的向心力的大小相同
D、两物体的向心加速度大小相同
3.一列火车正在行驶,发现前方有一转弯,已知在转弯处的内外轨的高度差为h,内外轨道间距为L,弯道半径为r,则火车要想通过此弯道时不受内外轨道的挤压,应以速度_____转弯。
答案:1.A 2.CD 3.。