梁内力图规律

合集下载

浅谈静定梁内力图的一种简便画法

浅谈静定梁内力图的一种简便画法

维普资讯
物线 。 解 : . 梁 的支 座反 力 1求 4确定控制截面 , 制截面的剪力值 、 . 求控 弯矩值 , 并作图。 取整体为研究对象 , 出受力图( 画 如上a 图示 ) 支座反力大 , 小 为
F AY :
当内力图为水平直线时 , 只要确定一个截 面的内力值就可 以
维普资讯
大 学 时代 ・ 0 6年 0 B2 0 4
浅 谈 静 定 梁 内力 图的 种简便 画法

罗银 燕
( 长沙职 工大学
湖 南 长沙
40 1 ) 10 5
摘 要 : 画单跨静定梁的 内 图是建筑力学和工程力学 的重点和难点, 力 本文介 绍的简便法是运用计算 面积 的方法 来计算控制截 面的内力值 , 从而画 出梁的内力 图。
3作 梁的 剪力 图 . 从左往右作剪力图
二、 举例说明
例5 3一外伸梁如图a — 所示, 试作 出梁的剪力图和弯矩图。

梁的左端点的剪力值等于该处集中力 , 且剪力正负与集中力 方向一致。即集 中力方向向下, 剪力画在基线下方 , 为负值 ; 集中 力方向向上, 剪力画在基线上方 , 为正值。 从左往右作剪力图时,若梁上无荷载 ,剪力图画水平线 , 剪 力值 为左端点剪力大小 ; 若梁上有均布荷载时, 剪力图画斜直线 , 且该段右端点剪力值等于该段左端点剪力值q( l均布荷载向下 , 取 负号 , 均布荷载向上 , 取正号,为该段均布荷载长度)若遇到集 中 l ; 力P 集中力右侧截面剪力值等于左侧剪力值P P , ( 向下取 负值 , 向 上取正值 )若遇到集中力偶 , ; 剪力图无变化 , 梁的右端点剪力值
直接用外力计算截面上内力的规律法 , 具体方法是 : c 截面剪力值等于3 N, K 为负值。c 段上无荷载 , A 剪力图画水 内力进行分析, (】 1 用外力直 接求截 面上 剪 力的规律

梁的内力图—剪力图和弯矩图(23)

梁的内力图—剪力图和弯矩图(23)

6kN
1
1
A 2mΒιβλιοθήκη 6kN m2 q 2kN m 3 4
5
B
2
34
5
C
3m
3m
FQ1 6kN M1 6 2 12kNm FQ2 6 13 7kN M 2 6 2 12kNm
FA 13kN
问题:最大内力的数
FB 5kN
FQ3 6 13 23 1kN
变化的(有的大、有的小)。
一、 梁的内力图—剪力图和弯矩图
1 、剪力方程和弯矩方程
由前面的知识可知:梁的剪力和弯矩是随截面位置
变化而变化的,如果将x轴建立在梁的轴线上,原点取 在梁左端,向右为正向, 坐标x表示截面位置,则FQ和M
就随x的变化而变化,V和M就是x的函数,这个函数式就 叫剪力方程和弯矩方程。
南充职业技术学院土木工程系建筑力学多媒体课件
任课 陈德先 教师
授课 12造价与建 班级 筑
授课 时间
2013/
学 时
4
课 剪力图和弯矩图 题
课型 新授课
教学 方法
讲练结合法
教学 熟练列出剪力方程和弯矩方程、并绘制剪力图和弯矩图; 目的 利用载荷集度、剪力和弯矩间的微分关系绘制剪力图和弯
矩图.
教学 剪力图和弯矩图;剪力、弯矩和荷载集度的微分关系及其 重点 应用.
l,求梁剪力、弯矩方程的微分,并画剪力、弯矩图。
q
解 :1.建立剪力、弯矩方程
A x
B
l
FQ x
ql ql 2/2
FQ (x) qx M (x) qx x qx2
22
2.对剪力、弯矩方程取微分
dM (x) dx

梁弯矩图梁内力图(剪力图和弯矩图)

梁弯矩图梁内力图(剪力图和弯矩图)
各种荷载作用下双铰抛物线拱计算公式 表2-23
注:表中的K为轴向力变形影响的修正系数。
(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中 Ic——拱顶截面惯性矩;
Ac——拱顶截面面积;
A——拱上任意点截面面积。
当为矩形等宽度实腹式变截面拱时,公式I=Ic/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
简单载荷梁力图(剪力图与弯矩图)
梁的简图
剪力Fs图
弯矩M图
1
2
3
4
5
6
7
8
9
10
ቤተ መጻሕፍቲ ባይዱ注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁
表2 各种载荷下剪力图与弯矩图的特征
某一段梁上的外力情况
剪力图的特征
弯矩图的特征
无载荷
水平直线
斜直线
集中力
突变
转折
集中力偶
无变化
突变
均布载荷
斜直线
抛物线
零点
极值
表3 各种约束类型对应的边界条件
2)三跨等跨梁的力和挠度系数 表2-12
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
3)四跨等跨连续梁力和挠度系数 表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁力和挠度系数 表2-14
注:同三跨等跨连续梁。
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。

分析两跨连续梁内力重分布规律例题[详细]

分析两跨连续梁内力重分布规律例题[详细]

于是
M B P
·l 8.9 5 22.25kN.m
2
2
MBu = MB +MB = 101.23 + 22.25 = 123.48(kN·m)
上面计算说明:当减小跨中截面配筋,使 D 点先出现塑
性铰,MDu = 84 kN·m时,需要增大支座截面配筋使 MBu = 123.48 kN·m,才能使连续梁承受同样的最大外 加荷载Pu = 116.59 kN,如图(h)。
面弯矩MBu 不变。连续梁就像两跨简支梁一样工作.
当跨中截面 D 点也出现塑性铰时,结构形成了可变机构, 这时结构才真正达到其承载能力极限,如图(e)。
MD = MDu-MD = 97.16-80.62 = 16.52(kN·m)
P M D 16.52 13.23kN
1/ 4 ·l 1/ 45
性理论认为,这时连续梁已达到承载力极限,弯矩分布 如图(c)。实际上结构并未丧失继续承载的能力,只 是B点出现了塑性铰,此时
MD = 0.156PeL= 0.156×103.36×5 = 80.62(kN·m) < MDu
说明结构仍能继续承载。
在继续加载时,B 点因形成塑性铰出现转动,并保持截
从上面分析,可以得出如下一些具有普遍意义的结论:
(1)塑性材料构成的超静定结构,达到结构承载能力 极限状态的标志不是一个截面的屈服,而是结构形成了 破坏机构。
(2)塑性材料超静定结构的破坏过程是,首先在一个 或几个截面上出现塑性铰,之后,随着外荷载的增加, 塑性铰在其它截面上陆续出现,直到结构的整体或局部 形成破坏机构为止。
(5)超静定结构的塑性内力重分布,在一定程度上, 可以由设计者通过改变截面配筋来控制。
(6)钢筋混凝土受弯构件在内力重分布过程中,构件 变形及塑性铰区各截面的裂缝开展都较大。为满足使用 要求,通常的作法是控制内力重分布的幅度,使构件在 使用荷载下不发生塑性内力重分布。

材料力学——4梁的弯曲内力

材料力学——4梁的弯曲内力

21
例题1 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图 解: 1.列剪力方程和弯矩方程
FQ ( x) F
(0<x<l ) (0≤x<l)
M ( x) Fx
2.作剪力图和弯矩图 由剪力图和弯矩图可知:
FQ M
max max
F Fl
22
例题 2简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 解:1.求约束反力 由对称关系,可得: 1 FAy FBy ql 2 2.列剪力方程和弯矩方程
Q2 Q1– Q2=P
x
x
梁的内力计算的两个规律:
(1)梁横截面上的剪力FQ,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
FQ
F
yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
12
二、例题
[例1]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
作梁的剪力图 FQB右=4kN/m×2m=8kN,FQD=0
34
35
27
3. 弯矩图与剪力图的关系
(1)任一截面处弯矩图切线的斜率等于该截面 上的剪力。 (2) 当FQ图为斜直线时,对应梁段的M图为二 次抛物线。当FQ图为平行于x轴的直线时,M图 为斜直线。

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

建筑力学 材料力学 梁的内力

建筑力学 材料力学 梁的内力

x
②写出内力方程 Q( x ) YO P
M ( x) YO x M O P( x L)
x
③根据方程画内力图。
q
解:①写出内力方程
L Q(x) ○ x – qL
qL2 2
Q( x ) qx
1 M ( x ) qx2 2
②根据方程画内力图
⊕ M(x) x
x
Q(x)
2
106 .30 1.855rad
3.14 1 0.01 7800 9.8 [3.14 0.52 1 0.52(1.855 sin106.3)] 1000 9.8 2
9 (kN/m)
q — 均布力
§4–3 一、弯曲内力:
举例
梁的内力及其求法


§4–1 工程中的弯曲问题 §4–2 梁的荷载和支座反力 §4–3 梁的内及其求法 §4–4 内力图 — 剪力图和弯矩图
§4–5 弯矩、剪力、荷载集度间的关系
§4–1 工程中的弯曲问题 一、弯曲的概念
1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴 线变成了曲线,这种变形称为弯曲。 2. 梁:以弯曲变形为主的 构件通常称为梁。
mB (Fi ) 0 , 1 2 qLx2 M 2 q( x2 a) 0 2
图(a) B M2 x2 Q2
1 M 2 q( x2 a)2 qLx2 2
图(c)
§4–4 内力图 — 剪力图和弯矩图
一、 内力方程:内力与截面位置坐标(x)间的函数关系式。
Q Q( x ) M M (x)
Q Q 图 特 征
水平直线
Q Q
斜直线
Q

梁的内力

梁的内力

MA=0
MC=FA×2=30×2kN·m=60kN·m
CD段:没有均布荷载作用,弯矩图是一条斜直线,需确定MC和MD左 MD左=FA×4-F×2=(30×4-20×2)kN·m=80kN·m
D截面:有逆时针方向的集中力偶M作用,弯矩图向上突变M=40kN·m
MD右=MD左-M=(80-40)kN·m=40kN·m
截面上必有弯矩M,且M=FAC。当左段梁若平衡,横截面 上必有两个内力分量:平行于横截面的竖向内力Fs以及位 于荷载作用面的内力偶M。内力Fs称梁横截面内的剪力, 而内力偶M称为梁横截面内的弯矩。
Fs
C
A
M
FA
x
若以右段梁为研究对象,由作用力与反作用力定律可知,
右段梁横截面上的内力值仍为Fs和M,指向与左段梁横截面
MBF0
F 6 M q 4 2 F A 8 0
解之得:
FA 30kN FB 30kN
(2)画剪力图
从左向右作图,全梁分为A端、AC段、C端、CD段、DB段和B端。
31
FA=30kN AC段:没有均布荷载作用,剪力图为一条水平线:FC左=FA右=30kN C端:有向下的集中力F作用,剪力图向下突变F=20kN
Mx=FA x-qx2/2= 81/32qa2
BC段:没有均布荷载作用,弯矩图是一条斜直线,需确定MB和MC。
MC 0
29
剪力图与弯矩图
30
[例] 如图所示,试画出该梁的剪力图和弯矩图。
F=20kN M=40kN
FA
FB
解:(1)计算支座反力 以整梁为研究对象,由平衡方程得:
MAF0
F B 8 M F 2 q 4 6 0
M144 kNm

静定梁和刚架内力分析

静定梁和刚架内力分析

(0<x<l ) (0≤x<l)
M
(-)
(c)
x
2.作剪力图和弯矩图:
由剪力方程可知,当 0 <x <l,时(即 AB 段上),剪力为 常数,因此剪力图为一条水平的直线;由弯矩方程可知,AB 梁段上沿着轴线方向弯矩呈线性变化,因此,弯矩图为一条斜 直线,只需求出两个端截面上
F A FQ x m m l
在列平衡方程求解内力时,需事先确定截面内力的方向, 而此时截面内力为未知力,因此,一般假定截面内力沿其正向 作用,则计算得到的正负号就是该截面内力的正负号。 另外,在利用截面法求解前,通常先确定支座反力,因支 座反力并无正负规定,在求支反力前可任意假设正方向。
若结果为正,则表示支反力实际方向与假设方向相同;
上所有外力对该截面形心的力矩的代数和。
其中外力对横截面形心之矩正负号选取规律为: (1)力——不论横截面左侧还是右侧,只要向上就取正,
反之取负;
(2)力偶——横截面左侧顺时针或右侧逆时针取正,反之 取负。 利用上述结论,可以不画分离体的受力图、不列平衡方 程,直接得出横截面的剪力和弯矩。这种方法称为直接法。 直接法将在以后求指定截面内力中被广泛使用。
2
求梁指定截面上的内力的方法: 剪力:梁任一横截面上的剪力在数值上等于该截面一侧梁段 上所有外力在平行于截面方向投影的代数和。 其中外力正负号选取规律为: 横截面左侧梁段上向上的外力取正,横截面右侧梁段上
向下的外力取正;反之取负。
简记为左上右下取正,反之取负。
弯矩:梁任一横截面上的弯矩在数值上等于该截面一侧梁段
若外力或外力偶矩使所考虑的梁段产生向下凸的变形(即 上部受压,下部受拉)时,等式右方取正号,反之,取负号。 此规律可简化记为“下凸弯矩正”或“左顺,右逆弯矩 正” ,相反为负。

梁 弯矩图 梁 内力图 (剪力图与弯矩图)

梁 弯矩图 梁 内力图  (剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

连续梁的影响线和内力包络图

连续梁的影响线和内力包络图
KK X K KF 0

XK
KF KK
(a)
式中: δKK ——由于XK=1 的作用,基本结构上截面
K沿X的方向所引起的虚位 移,如图c所示,其值与荷 载F=1的位置无关,为一
正值常数;
δFK——由于荷载F=1的作用,基本结构上截面K沿XK的方向 所引起的位移,如图d所示,其值随F=1的位置移动而变化。
X K FK (c)
由此可见,由 δKK =1而产生的梁的虚竖向位移图就代表XK的 影响线,如图e所示。因两者的符号相反,故在影响线中,应取 梁轴线上方的图形为正,下方的为负。
目录
影响线\连续梁的影响线和内力包络图
综上所述,由机动法绘制超静定梁的某量值XK影响线的步 骤如下:
1)去掉与XK相应的约束,并用XK代替其作用。 2)使所得基本结构沿XK的正向产生单位虚位移,由此得 到的梁的虚竖向位移图即代表XK的影响线。 3)在梁轴线上方的图形标注正号,下方的标注负号。
建筑力学
影响线\连续梁的影响线和内力包络图
连续梁的影响线和内力包络图
1.1 连续梁的影响线
连续梁属于超静定梁,欲求影响线方程,必须先解超静定 结构,并且反力、内力的影响线都为曲线,绘制较繁琐。
土木工程中通常遇到的多跨连续梁在活载作用下的计算, 大多是可动均布荷载的情况(如楼面人群荷载)。此时,只 需知道影响线的轮廓,就可确定最不利荷载位置,因此,对 于活载作用下的连续梁,通常采用机动法绘制影响线的轮廓。
目录
影响线\连续梁的影响线和内力包络图
设有一n次超 静定梁,如图a 所示,现绘制某 指定量值XK(例 如MK)的影响 线。
为此,可先去掉与XK相应的约束,并以XK代替其作用,如图 b所示,把这个(n-1)次超静定结构作为基本结构

梁弯矩图梁内力图(剪力图与弯矩图)

梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

梁的内力 剪力弯矩方程 剪力弯矩图

梁的内力 剪力弯矩方程 剪力弯矩图
q=0 FS M q >0 q<0 当q<0,
(3)若某截面处FS=0
dF S dx
q(x)
dM dx
FS
d M dx
2
2
q(x)
则该截面上M取极值:当q>0, M取到极小值 当q<0, M取到极大值 (4)集中力F作用处,FS突变,跳跃值为F,M有尖点; q>0 q<0
集中力偶M作用处,M突变,跳跃值为M, FS不受影响。 F M
例题
例 题 2
2qa
A
§9 变形体静力学概述 及一般杆件内力分析
qa2 q
B C
解: 1.求约束力
FB q 2 a a 2 qa 3 a qa 2a 7 2 qa ( )
2
D
a
3 2 qa
FB a
a
a 2

FD
F D 4 qa
7 2
qa
1 2
qa ( )
D
FD
FD
F Ax 1 2 2 ( kN )( )
A
FAx
FAy
2m
F Ay 5 3 2 kN ( )
例题
例 题 4
5kN B
§9 变形体静力学概述 及一般杆件内力分析
4kN· m C
2.作内力图 D 3kN 轴力图: AB段 F N 2 kN
1m
1m
(F S )
1 qa
2
2.作内力图
1 2 qa
M
7 2
1 4 qa
2
B
2 qa
2
2qa (M)
qa
8

第四章 梁的内力

第四章 梁的内力

q=2kN/m MC B
M C ( F ) 0
l ql 2 M C FB 4.5kN m 2 8
l/4 FSC
FSC
l/2
FB
图4.11
三、用直接法求剪力、弯矩 F=5kN
直接法:梁任一横
截面上的剪力在数 值上等于该截面一
(a)
q=2kN/m
F=5kN
A C l/4 FA l/4
F
A
B
x
例题:作悬臂梁的剪
x
l FS
x
力图和弯矩图。
解:建立坐标系,将坐 标原点取在梁的左端, 写出梁的剪力方程和弯 矩方程 :
FS图
F
FS (x) F
x
(0 x l) (0 x l)
M(x) Fx
M
M图
x 0时,M(0) 0 x l时, M(l) Fl
FRA
A
x
q
FRB
例题:作如图简支梁
的剪力图和弯矩图。
解:先求两个支反力
FRA FRB ql 2
B
l
FRA
A
q
M(x) FS (x)
建立坐标系,梁的剪力
x
方程和弯矩方程为:
ql FS (x) FRA qx qx (0 x l) 2 x qlx qx 2 M(x) FRA x qx (0 x l) 2 2 2
FRA
A
x
q
FRB
由弯矩方程得弯矩图为一 条二次抛物线。
B
l
x 0,
M 0
ql 2
x =l ,
解:1、求截面C的剪力和弯矩

梁弯矩图梁内力图

梁弯矩图梁内力图

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:m axy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

建筑力学5内力内力图

建筑力学5内力内力图
总结词
弯曲内力是指由于外力作用导致杆件发生弯曲变形而产生的内力,是建筑结构中最常见 的受力形式之一。
详细描述
在建筑结构中,弯曲内力通常用于描述梁、柱等杆件在受到垂直或水平外力作用时发生 的弯曲变形。弯曲内力的分析对于评估结构的承载能力和稳定性至关重要。例如,在桥 梁和高层建筑的梁和柱设计中,弯曲内力的计算和分析是确定截面尺寸、配筋等参数的
重要依据。
03 内力图的绘制方法
轴力图的绘制
总结词
轴力图用于表示杆件在受力过程中沿其轴线方向的受力情况。
详细描述
轴力图是通过将杆件沿轴线方向进行分段,并在每个分段上标出该段的轴力值, 然后将这些值连接起来形成的图形。绘制轴力图时,需要先对杆件进行受力分析 ,确定各段的受力情况,然后根据受力情况计算出各段的轴力值。
内力计算与优化
内力图绘制
根据建筑的使用功能和 设计要求,施加适当的
荷载。
计算各杆件的内力分布, 优化结构布置,降低内
力峰值。
根据计算结果,绘制各 杆件的内力图,为结构
设计提供依据。
06 结论
内力图在建筑力学中的重要性
1 2 3
揭示结构内部பைடு நூலகம்力状态
内力图能够清晰地表示出结构在不同受力情况下 的内部应力分布,有助于设计人员了解结构的受 力特性,从而优化设计。
规律二
规律三
在连续梁的支座处,内力图呈现向上 凸出的形状,表示该处的剪力和轴力 较大。
在连续梁的跨中,内力图呈现向下凸 出的形状,表示该处的弯矩最大。
内力图与外力的关系
01
内力图上的内力是由外力引起的 ,外力的作用点、方向和大小决 定了内力的分布和大小。
02
内力图上的内力分布规律反映了 结构的刚度和承载能力,是判断 结构安全性和稳定性的重要依据 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.弯矩图与荷载的关系
• (1)在均布荷载作用的区段,M图为抛物 线。
(2)当q(x)朝下时,M图为上凹下凸 当q(x)朝上时,M图为上凸下凹。
(3) 在集中力作用处,M图发生转折。如果集中 力向下,则M图向下转折;反之,则向上转折。
(4) 在集中力偶作用处,M图产生突变,顺时针 方向的集中力偶使突变方向由上而下;反之, 由下向上。突变的数值等于该集中力偶矩的大小。
3. 弯矩图与剪力图的关系
•(1)当FS图为斜直线时,对应梁段的M图为 二次抛物线。当FS图为平行于x轴的直线时, M图为斜直线。
(2) 剪力等于零的截面上弯矩具有极值;反之, 弯矩具有极值的截面上,剪力不一定等于零。 左右剪力有不同正、负号的截面,弯矩也具有极值。
不同载荷类型对应内力图的特点
无均布载荷 均布载荷
q=0
q≠0
集中力 F
集中力偶 M
剪力图 水平直线 斜直线
剪力图 有突变
无特殊 变化
弯矩图
斜直线
二次抛物线
弯矩图 有尖角
弯矩图 有突变
• 例题1 简支梁如图所示, • 试用剪力和弯矩的规律作
此梁的剪力图和弯矩图。
解: 1. 求约束反力 FAY=FBY=15KN
2. 画FS图 各控制点处的FS值如下:
• 作业 P163 6-7
ห้องสมุดไป่ตู้
BD段: 段内有向下均布荷载,M图为下凸抛物线,
MB=-8KN.m,ME=-4×1×0.5=-2KN.m, MD=0
小结
• 运用内力图规律作剪力图和弯矩图的步骤 是:1求支座反力。
• 2 将梁按荷载作用情况分分成几段,初 步分析各段的内力图形,并画出大致图形。
• 3 计算各控制截面的内力大小,并把计 算结果标在图形中。
•FSA右=FSC左=15kN
•FSC右=FSD=15 kN -10kN=5kN
•FSD=5kN
FSB左=-15kN
3. 画M图
MA = 0, MC =15kN×2m=30 kN.m MD = 15kN×4m-10kN×2m=40kN.m M-D右= 15kN×4m-5kN×4m×2m=20 kN.m MB=0
•ME=15 KN× 3m-5 KN× 3m× 1.5m=22.5KN.m
• 例题9.8 一外伸梁如图示。试用试用剪力 和弯矩的规律作此梁的剪力图和弯矩图。
解:1.求约束力
FAY=5KN FBY=13KN
2.画内力图 (1)剪力图 ACB段:FS图为一水平直线 FSA右=FSC=FSB左=-5kN BD段:FS图为右下斜直线。
FSB右=4kN/m×2m=8kN,FSD=0
作梁的剪力图 (2) 弯矩图
AC段:FS<0,故M图为一右上斜直线 MA=0,MC左=-5kN×2m=-10kN.m
CB段:FS<0,故M图为一右上斜直线,在C处弯矩有
突变。 MC右=-5kN×2m+12kN.m MB=-4kN/m×2m×1m=-8kN.m
1.剪力图与荷载的关系
(1)在均布荷载作用的区段,当x坐标自左向右取时, 若q方向向下,则FS图为下斜直线; 若q方向向上,FS图为上斜直线
(2)无荷载作用区段,即q(x)=0, FS图为平行x轴的直线。 (3)在集中力作用处,FS图有突变,突变方向与外力一致, 且突变的数值等于该集中力的大小。 (4)在集中力偶作用处,其左右截面的剪力FS图是连续无 变化。
相关文档
最新文档