勾股定理专题
专题 勾股定理及其逆定理【九大题型】
专题2.6勾股定理及其逆定理【九大题型】【浙教版】【题型1勾股定理的运用】 (1)【题型2直角三角形中的分类讨论思想】 (2)【题型3勾股定理解勾股树问题】 (3)【题型4勾股定理解动点问题】 (4)【题型5勾股定理的验证】 (6)【题型6直角三角形的判定】 (8)【题型7勾股数问题】 (9)【题型8格点图中求角的度数】 (10)【题型9勾股定理及其逆定理的运用】 (11)【题型1勾股定理的运用】【例1】(2022•和平区三模)如图,在△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,则AC的长为()A.5B.4C.3D.2【变式1-1】(2022春•上杭县期中)如图在Rt△ABC中,∠B=90°,AB=8,AC=10,AC的垂直平分线DE分别交AB、AC于D、E两点,则BD的长为()A.32B.74C.2D.52【变式1-2】(2022春•汉阳区期中)如图,在△ABC中AB=AC=10,BC=16,若∠BAD=3∠DAC,则CD =.【变式1-3】(2021秋•朝阳区校级期末)如图,在△ABC中,∠C=90°,AB=30,D是AC上一点,AD:CD =25:7,且DB=DA,过AB上一点P,作PE⊥AC于E,PF⊥BD于F,则PE+PF长是.【题型2直角三角形中的分类讨论思想】【例2】(2022春•长沙月考)已知△ABC中,AB=13,AC=15,BC边上的高为12.则△ABC的面积为()A.24或84B.84C.48或84D.48【变式2-1】(2022春•宁津县期中)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或37【变式2-2】(2022春•香河县期中)已知直角三角形两边的长为5和12,则此三角形的周长为()A.30B.119+17C.119+17或30D.36【变式2-3】(2022春•海淀区校级期中)在Rt△ABC中,∠ACB=90°,AC=4,AB=5.点P在直线AC上,且BP=6,则线段AP的长为.【题型3勾股定理解勾股树问题】【例3】(2021秋•南关区期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、B、D的面积依次为6、10、24,则正方形C的面积为()A.4B.6C.8D.12【变式3-1】(2021秋•高新区校级期末)如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=135,S3=49,则S2=()A.184B.86C.119D.81【变式3-2】(2022春•泗水县期中)有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,他将变得“枝繁叶茂”,请你计算出“生长”了2022次后形成的图形中所有正方形的面积之和为()A.2020B.2021C.2022D.2023【变式3-3】(2022春•张湾区期中)如图①,在△ABC中,∠ACB=90°,AC:BC=4:3,这个直角三角形三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作直角边之比为4:3的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形,图③是2次操作后的图形.如果图①中的直角三角形的周长为12,那么10次操作后的图形中所有正方形的面积和为()A.225B.250C.275D.300【题型4勾股定理解动点问题】【例4】(2021秋•开福区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=25cm,AC=7cm,动点P从点B 出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.62596或252B.252或24或12C.62596或24或12D.62596或252或24【变式4-1】(2021秋•宛城区期末)如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B出发沿射线BA以2cm/s的速度运动.则当运动时间t=s时,△BPC为直角三角形.【变式4-2】(2022春•蚌山区校级期中)如图,在△ABC中,∠ACB=90°,AB=10,AC=8,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)BC的长是.(2)当点P刚好在∠BAC的角平分线上时,t的值为.【变式4-3】(2022春•河东区期中)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?【题型5勾股定理的验证】【例5】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a=S△ACD+S△ABC=12b2+12ab.∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a)又∵S四边形ADCB∴12b2+12ab=12c2+12a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【变式5-1】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【变式5-2】(2021秋•朝阳区期末)【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×12ab,即(a+b)2=c2+4×12ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【变式5-3】(2022春•寿光市期中)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【题型6直角三角形的判定】【例6】(2022春•绥宁县期中)若△ABC的三边长分别为a、b、c,下列条件中能判断△ABC是直角三角形的有()①∠A=∠B﹣∠C,②∠A:∠B:∠C=3:4:5,③∠A=90°﹣∠B,④∠A=∠B=12∠C,⑤a2=(b+c)(b﹣c),⑥a:b:c=5:12:13.A.3个B.4个C.5个D.6个【变式6-1】(2022春•赣州月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,若a=35c,b=45c.则△ABC为直角三角形B.三边长的平方之比为1:2:3C.三内角之比为3:4:5D.三边长分别为a,b,c,c=1+n2,a=n2﹣1,b=2n(n>1)【变式6-2】(2022春•汉滨区期中)若△ABC的三边长a,b,c满足(a﹣c)2=b2﹣2ac,则()A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形【变式6-3】(2022春•开州区期中)下列是直角三角形的有()个①△ABC中a2=c2﹣b2②△ABC的三内角之比为3:4:7③△ABC的三边平方之比为1:2:3④三角形三边之比为3:4:5A.1B.2C.3D.4【题型7勾股数问题】【例7】(2022春•滑县月考)在学习“勾股数”的知识时,小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.a68101214…b815243548…c1017263750…则当a=24时,b+c的值为()A.162B.200C.242D.288【变式7-1】(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【变式7-2】(2022春•白云区期末)(1)3k,4k,5k(k是正整数)是一组勾股数吗?如果是,请证明;如果不是,请说明理由;(2)如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?如果是,请证明;如果不是,请说明理由.【变式7-3】(2022•石家庄三模)已知:整式A=n2+1,B=2n,C=n2﹣1,整式C>0.(1)当n=1999时,写出整式A+B的值(用科学记数法表示结果);(2)求整式A2﹣B2;(3)嘉淇发现:当n取正整数时,整式A、B、C满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.【题型8格点图中求角的度数】【例8】(2021秋•伊川县期末)如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是.【变式8-1】(2022•惠山区一模)如图所示的网格是由相同的小正方形组成的网格,点A,B,P是网格线的交点,则∠PAB+∠PBA=°.【变式8-2】(2022春•武侯区校级期末)如图,在正方形网格中,每个小正方形的边长均为1,点A,B,C,D,P都在格点上,连接AP,CP,CD,则∠PAB﹣∠PCD=.【变式8-3】(2022春•孝南区期中)如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BCA+∠DCE=.【题型9勾股定理及其逆定理的运用】【例9】(2021秋•蓝田县校级期末)如图,在△ABC中,AB=AC,D是CA的延长线上一点,连接BD.(1)若AC=8,AD=17,BD=15,判断AB与BD的位置关系,并说明理由;(2)若∠D=28°,∠DBC=121°,求∠DAB的度数.【变式9-1】(2022春•陵城区期中)如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【变式9-2】(2021春•当涂县期末)如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.【变式9-3】(2022春•汉阳区校级月考)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=10,AD=102.(1)求四边形ABCD的面积.(2)求对角线BD的长.。
勾股定理专题
ABC勾股定理专题例1.如图,在四边形ABCD 中,∠BAD=90o,∠DBC=90o,AD=3,AB=4,BC=12,求CD.例2.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是什么三角形?例3.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.例4.如图,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长. 例5.如图,在长方体ABCD-A 1B 1C 1D 1中,AB=BB 1=2,AD=3,一只蚂蚁从A 点出发,沿长方体表面爬到C 1点,求蚂蚁怎样走路程最短,最短路程是多少?例6.如图,折叠长方形(四个角都是直角,对边相等)的一边AD,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm,求EC 的长; 练习1.如图,AD =4,CD =3,∠ADC =90o,AB =13,BC =12,求该图形的面积.2.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC 是什么三角形?3.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.4.已知,如图,在Rt △ABC 中,∠C=90o ,∠1=∠2,CD=1.5,BD=2.5,求AC 的长.5.如图,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A 爬到点B 处吃食,从圆侧面爬行的最短路程是多少?(π取3)6.已知,如图,长方形ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF,则△ABE 的面积为多少?C DABA CD DAABCD AB EFDBADE13cmm5mD CBA AAOBAB CD检测题 一.填空题:1.在Rt △ABC 中,斜边AB=2,则AB 2+BC 2+CA 2= ;2.如图1,图1中正方形A 的面积是_______,图2中正方形B 的面积是 ;3.在Rt ⊿ABC 中,斜边AB 上的高为CD,若AC=3,BC=4,则CD=_______;4.在高5m,长13m 的一段台阶上铺上地毯,台阶的剖面图如图,地毯的长度至少需要___________m.5.在Rt △ABC 中,∠C=90o,①若a=5,b=12,则c=_____;②若a=15,c=25,则b=_____;③若c=61,b=60,则a=_____;④若a:b=3;4,c=10则S Rt△ABC =____.6.在△ABC 中,AC=17cm,BC=10cm,AB=9cm,这是一个 三角形(按角分).7.直角三角形两直角边长分别为5和12,则它斜边上的高为__________.8.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边, 花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m.9.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 10.有一个长为12c m,宽为4c m,高为3c m 的长方体形铁盒,在其内部要放一根笔直的铁丝,则铁丝最长达到 c m.11.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为______cm 2. 二.选择题:1.一直角三角形的斜边比直角边大2,另一直角边为6,则斜边长为( )A.4 B.8 C.10 D.122.CD 是直角三角形ABC 斜边AB 上的高,若AB=10,AC:BC=3:4,则这个直角三角形的面积是( )A.6 B.8 C.12 D.243.斜边为17cm,一条直角边长为15cm 的直角三角形的面积是( )A.60 B.30 C.90 D.1204.下列数组中,是勾股数的是( )A.1,1,3 B.5,3,2 C.0.2,0.3,0.5 D.514131,,5.下列各组数中,以a,b,c 为边的三角形不是Rt △的是( )A.a=1.5,b=2,c=3 B.a=7,b=24,c=25 C.a=6,b=8,c=10 D.a=3,b=4,c=56.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25 B.14 C.7D.7或257.若线段a,b,c 组成Rt △,则它们的比可以是( )A.2:3:4 B.3;4;6 C.5;12:13 D.4:6;78.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A.121 B.120 C.132 D.不能确定 9.等腰三角形底边长10cm,腰长为13,则此三角形的面积为( )A.40 B.50 C.60 D.70 10.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里 B.30海里 C.35海里 D.40海里 三.解答题:1.如图,一根旗杆在离地面9m 处断裂,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前有多高?2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?3.如图,一个长方形的操场,今不绕长方形操场的两邻边(即不A →B →C)走,而取捷径沿对角线(A →C)走,省去21长方形长边的距离,求长方形的短边和长边的比是多少?4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处.另一只爬到树顶D ,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?5.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90o,试求∠A 的度数.6.如图,沿OA 将圆锥侧面剪开,展开成平面图形是扇形OAB.(1)扇形的弧AB 和 点B 在圆锥的侧面上是怎样的位置关系?(2)若角∠AOB=90o ,则圆锥底面圆半径r 与扇形OAB 的半径R ? (3)若点A 在圆锥侧面上运动一圈后又回到原位,则点A 运动的最短路程应该怎样设计?若r 2=0.5,且∠动的最短路程.B 22581图2A225400图19m12m北 南 A东D BA AB CD7c。
勾股定理专题
专题复习 勾股定理(郑默言)本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为:3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。
5、三条边分别是5,12,13的三角形的面积是。
6、如果一个三角形的三边长分别为a,b,c 且满足:a2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?l321S 4S 3S 2S 18、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。
10、如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.专题二、勾股定理与折叠1、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
《勾股定理》数学专题训练(完整版)
《勾股定理》专题训练一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S14、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
5、在直线l上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。
勾股定理专题总结
勾股定理专题总结一、勾股定理考点:利用勾股定理进行运算二、勾股定理的逆定理考点:利用勾股定理的逆定理判定直角三角形判断勾股数注意:利用勾股定理的逆定理时,可以先求出两条较短的线段的平方和,在与较长的线段的平方进行比较,最后做出判断。
三、勾股定理的应用考点:求立体图形中最短距离(将立体图形表面展开)利用勾股定理解决实际生活中的问题注意:解决实际问题时,如果题目中没有出现直角三角形,可以先构造出直角三角形,再利用勾股定理解题。
特别注意勾股定理应用的前提是在直角三角形中。
题型一:利用勾股定理求三角形的边长或图形面积例1:在ABC ∆中,C B A B ∠∠∠=∠︒,,90,所对的边分别为c b a ,,。
(1)若c b a 求,15,9==;(2)若a c b a 求,8,25:7:==。
1、如图,在ABD ∆中,︒=∠90D ,BD C 是上一点,已知91017===BC AC AB ,,,求AD 的长。
2、如图,275490====∠=∠︒AF AB BC FAC B ,,,,求正方形CDEF 的面积。
3、在ABC ∆中,BC cm AC cm AB ,20,13==边上的高为12cm ,则ABC ∆的面积为cm.题型二:利用勾股定理说明图形面积之间的关系例2:(1)如图1,分别以ABC Rt ∆三边为边向外作三个正方形,其面积分别用321S S S ,,表示,那么321S S S ,,之间有什么关系?(2)如图2,分别以ABC Rt ∆三边为边向外作三个半圆,其面积分别用321S S S ,,表示,那么321S S S ,,之间有什么关系?4、如图,如果正方形A 的面积是25,正方形C 的面积是169,则正方形B 的面积是。
5、如图是“赵爽弦图”,DAE CDF BCG ABH ∆∆∆∆和,,是四个全等的直角三角形,四边形EFGH ABCD 和都是正方形,如果210==EF AB ,,那么AH 等于。
勾股定理的培优专题
勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。
2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。
3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。
4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。
巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。
2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。
4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。
5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。
6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。
7.写出下列命题的逆命题,并判断逆命题的真假。
1) 两直线平行,同位角相等。
逆命题为:同位角相等,则两直线平行。
真。
2) 若 a>b,则 a>b。
逆命题为:若a≤b,则a≤b。
假。
二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。
求证:△ABC 是直角三角形。
训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。
试判断△ABC 的形状。
例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。
勾股定理专题
二、典型例题与强化练习
题型一关于勾股定理的考察
例1(1)在Rt△ABC中,∠C=90°,AC=5,BC=12,求AB;
(2)在Rt△ABC中,∠C=90°,AB=25,AC=20,求BC的长;
例2如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在
△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,
S1=81、S3=225,则S2=_________.
强化练习
1、一个直角三角形两直角边长分别为3和4,下列说法正确的是( )
A、斜边长为25 B、三角形的周长为25ቤተ መጻሕፍቲ ባይዱ
C、斜边长为5 D、三角形面积为20
2、若直角三角形两直角边长分别为8和15,则其斜边长是____.
且∠A=90°,求四边形ABCD的面积。
强化练习
1、强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米的地方,请问旗杆折断之前有多长?
2、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.
课后作业
4、如图,64、400分别为所在正方形的面积,则图中字母 所代表的正方形面积是。
5、下列三条线段不能组成直角三角形的是()
A、a=8,b=15,c=17B、a=9,b=12,c=15
C、a=9,b=40,c=41D、a:b:c=2:3:4
6、若正整数a、b、c是一组勾股数,则下列各组数仍是勾股数的是()
9、有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?
第03讲 勾股定理易错易混淆专题集训(解析版)
第03讲勾股定理易错易混淆专题集训一.勾股定理(共12小题)1.(2022秋•清苑区期末)如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8C.3﹣D.【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【解答】解:如图,连接AD,则AD=AB=3,由勾股定理可得,Rt△ADE中,DE==,又∵CE=3,∴CD=3﹣,故选:C.2.(2023秋•东阳市期中)如图,Rt△ABC的两条直角边BC=6,AC=8.分别以Rt△ABC的三边为边作三个正方形.若四个阴影部分面积分别为S1,S2,S3,S4,则S2+S3﹣S1的值为()A.4B.3C.2D.0【分析】依据题意,证明△EAD≌△CAB(SAS),得出S4=S△ABC=24,证明△ABK≌△BGH(ASA),=S△BGH,证出S△ABC=S1,设S四边形ADHC=x,S△BCK=y,由勾股定理及由全等三角形的性质得出S△ABK正方形的性质可得出S2+S3=S1,则可得出答案.【解答】解:由题意得,∵AE=AC,∠EAD=∠CAB,AD=AB,∴△EAD≌△CAB(SAS).∴S4=S△ABC.又∵∠ABK=∠BGH,∠KAB=∠HBG,AB=BG,∴△ABK≌△BGH(ASA).=S△BGH.∴S△ABK+S△BCK=S1+S△BCK.∴S△ABC=S1=S4.∴S△ABC=x,S△BCK=y,又由题意可设S四边形ADHC∴,,.∵AC2+BC2=AB2,∴S3+S4+x+S2+y=S1+x+y+S△ABC.∴S3+S4+S2=S1+S△ABC.=S1=S4,又∵S△ABC∴S3+S2=S1.∴S2+S3=S1.∴S2+S3﹣S1=0.故选:D.3.(2023秋•海曙区期中)如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【分析】依据题意,过E作BC的垂线交ED于D,连接EM,通过证明S1+S2+S3=Rt△ABC的面积×2,依此即可求解.【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.4.(2023春•渠县校级期末)如图①,在△ABC中,∠ACB=90°,AC:BC=4:3,这个直角三角形三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作直角边之比为4:3的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形,图③是2次操作后的图形.如果图①中的直角三角形的周长为12,那么10次操作后的图形中所有正方形的面积和为()A.225B.250C.275D.300【分析】根据勾股定理、三角形的周长公式分别求出AC=4,BC=3,AB=5,根据勾股定理计算得出规律,根据规律解答即可.【解答】解:设AC=4x,则BC=3x,由勾股定理得:AB==5x,∵△ABC的周长为12,∴3x+4x+5x=12,解得:x=1,∴AC=4,BC=3,AB=5,第1次操作后的图形中所有正方形的面积和为:32+42+32+42+52=25+50,第2次操作后的图形中所有正方形的面积和为:32+42+32+42+32+42+52=25×2+50,第3次操作后的图形中所有正方形的面积和为:32+42+32+42+32+42+32+42+52=25×3+50,……第10次操作后的图形中所有正方形的面积和为:25×10+50=300,故选:D.5.(2023秋•龙华区期中)如图,以Rt△ABC的三边长向外作等边三角形,若,则图中阴影部分的面积是.【分析】过点F作FG⊥AB,垂足为G,根据勾股定理可得BC2+AC2=AB2=3,然后利用等边三角形的性质可得∠AFB=60°,AF=BF=AB,从而可得∠BFG=∠AFB=30°,BG=AB,进而可得FG=AB,然后进行计算可得△ABF的面积=AB2,同理可得:等边三角形DBG的面积=BC2,等边三角形ACE的面积=AC2,最后根据图中阴影部分的面积=等边三角形DBG的面积+等边三角形ACE的面积+等边△ABF的面积,进行计算即可解答.【解答】解:过点F作FG⊥AB,垂足为G,∵∠ACB=90°,AB=,∴BC2+AC2=AB2=3,∵△ABF是等边三角形,∴∠AFB=60°,AF=BF=AB,∴∠BFG=∠AFB=30°,BG=AB,∴FG=BG=AB,∴△ABF的面积=AB•FG=AB•AB=AB2,同理可得:等边三角形DBG的面积=BC2,等边三角形ACE的面积=AC2,∴图中阴影部分的面积=等边三角形DBG的面积+等边三角形ACE的面积+等边△ABF的面积=BC2+AC2+AB2,=(BC2+AC2+AB2)=×(3+3)=,故答案为:.6.(2023春•长沙期中)如图,在Rt△ABC,∠ACB=90°,以△ABC的三边为边向外作正方形ACDE,正方形CBGF,正方形AHIB,P是HI上一点,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=16,S2=25,则四边形ACBP的面积等于18.5.【分析】根据正方形的面积公式可得:AC=4,AB=AH=5,然后在Rt△ABC中,利用勾股定理求出BC 的长,最后根据四边形ACBP的面积=△ABC的面积+△ABP的面积,进行计算即可解答.【解答】解:∵正方形ACDE和正方形AHIB的面积分别为S1,S2,S1=16,S2=25,∴AC=4,AB=AH=5,∵∠ACB=90°,∴BC===3,∴四边形ACBP的面积=△ABC的面积+△ABP的面积=AC•BC+AB•AH=×4×3+×5×5=6+12.5=18.5,故答案为:18.5.7.(2023春•潜江月考)已知a是的整数部分,,其中b是整数,且0<c<1,那么以a、b 为两边的直角三角形的第三边的长度是2或2.【分析】先估算出的值的范围,从而可得a=2,再估算出2+的值的范围,从而可得b=4,c=﹣1,然后分两种情况:当b=4为直角边时;当b=4为斜边时,分别利用勾股定理进行计算,即可解答.【解答】解:∵4<6<9,∴2<<3,∴的整数部分是2,∴a=2,∵2<<3,∴4<2+<5,∵,其中b是整数,且0<c<1,∴b=4,c=2+﹣4=﹣2,分两种情况:当b=4为直角边时,∴第三边的长度===2;当b=4为斜边时,∴第三边的长度===2;综上所述:第三边的长度是2或2,故答案为:2或2.8.(2023春•江门校级期中)两根木条的长度分别是4cm和5cm,再添加一根木条,钉成一个直角三角形木架,则所添加木条的长度可以是cm或3cm.【分析】分两种情况分别利用勾股定理列式计算即可:添加的木条作为斜边;添加的木条作为直角边.【解答】解:如果第三边为斜边,则其长度为:=(cm);如果第三边为直角边,则其长度为:=3(cm)故答案为:cm或3cm.9.(2023春•鄂州期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则图中所有正方形的面积的和是192cm2.【分析】设图中正方形的面积分别为A,B,C,D,E,F,根据勾股定理得A+B=E,C+D=F,E+F=82=64,从而解决问题.【解答】解:如图,设图中正方形的面积分别为A,B,C,D,E,F,由勾股定理得,A+B=E,C+D=F,E+F=82=64,∴图中所有正方形的面积的和64×3=192(cm2),故答案为:192.10.(2022秋•鄞州区期末)在平面直角坐标系中,O为坐标原点,点A(﹣4,4﹣5a)位于第二象限,点B (﹣4,﹣a﹣1)位于第三象限,且a为整数.(1)求点A和点B的坐标;(2)若点C(m,0)为x轴上一点,且△ABC是以BC为底的等腰三角形,求m的值.【分析】(1)根据坐标系的特点得出不等式组解答即可;(2)根据等腰三角形的性质解答即可.【解答】解:(1)∵点A(﹣4,4﹣5a)位于第二象限,点B(﹣4,﹣a﹣1)位于第三象限,且a为整数,∴,∴﹣1<a<,∵a为整数,∴a=0,∴A(﹣4,4),B(﹣4,﹣1);(2)∵A(﹣4,4),B(﹣4,﹣1),∴AB=5,∵点C(m,0)为x轴上一点,且△ABC是以BC为底的等腰三角形,∴AC=AB=5,∵AC=,∴(m+4)2+16=25,解得m1=﹣1,m2=﹣7.∴m的值为﹣1或﹣7.11.(2023春•福州期中)定义:若某三角形的三边长a,b,c满足ab+a2=c2,则称该三角形为“类勾股三角形”.请根据以上定义解决下列问题:(1)判断等边三角形是否为“类勾股三角形”,并说明理由;(2)若等腰三角形ABC是“类勾股三角形”,其中AC=BC,AB>AC,求∠A的度数;(2)如图,在△ABC中,∠C=2∠A,且∠B>∠A.证明:△ABC为“类勾股三角形”.【分析】(1)先设等边三角形的三边长分别为a,b,c,则a=b=c,然后进行计算可得:ab+a2=a2+a2=2a2>c2,即可解答;(2)根据已知和“类勾股三角形”的定义可得AC•BC+AC2=AB2,从而可得BC2+AC2=AB2,进而可得△ABC是直角三角形,且∠ACB=90°,然后利用等腰直角三角形的性质,即可解答;(3)过点B作BG⊥AC,垂足为G,在GA上截取GD=GC,连接BG,可得BG是CD的垂直平分线,从而可得BD=BC=a,进而可得∠C=∠BDC=2∠A,再利用三角形的外角性质可得∠A=∠ABD,从而可得DA=BD=a,进而可得CD=b﹣a,DG=CG=,然后利用线段的和差关系可得AG=,最后分别在Rt△ABG和Rt△BGC中,利用勾股定理进行计算即可解答.【解答】(1)解:等边三角形不是“类勾股三角形”,理由:设等边三角形的三边长分别为a,b,c,则a=b=c,∴ab+a2=a2+a2=2a2>c2,∴等边三角形不是“类勾股三角形”;(2)解:∵等腰三角形ABC是“类勾股三角形”,AC=BC,AB>AC,∴AC•BC+AC2=AB2,∴BC2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵AC=BC,∴∠A=∠B=45°,∴∠A的度数为45°;(3)证明:过点B作BG⊥AC,垂足为G,在GA上截取GD=GC,连接BD,∴BG是CD的垂直平分线,∴BD=BC=a,∴∠C=∠BDC,∵∠C=2∠A,∴∠BDC=2∠A,∵∠BDC=∠A+∠ABD,∴∠A=∠ABD,∴DA=BD=a,∴CD=AC﹣AD=b﹣a,∴DG=CG=CD=,∴AG=AD+DG=a+=,在Rt△ABG中,BG2=AB2﹣AG2=c2﹣()2,在Rt△BGC中,BG2=BC2﹣CG2=a2﹣()2,∴c2﹣()2=a2﹣()2,∴a2+ab=c2,∴△ABC为“类勾股三角形”.12.(2023春•德州期中)下面是小敏写的数学日记的一部分,请你认真阅读,并完成相应的任务.2023年3月22日天气:晴无理数与线段长.今天我们借助勾股定理,在数轴上找到了一些特殊的无理数对应的点,认识了“数轴上的点与实数一一对应”这一事实.回顾梳理:要在数轴上找到表示±的点,关键是在数轴上构造线段OA=OA′=.如图1,正方形的边长为1个单位长度,以原点O为圆心,对角线长为半径画弧与数轴上分别交于点A,A',则点A对应的数为,点A′对应的数为﹣.类似地,我们可以在数轴上找到表示±,±,…的点.拓展思考:如图2,改变图1中正方形的位置,用类似的方法作图,可在数轴上构造出线段OB与OB',其中O仍在原点,点B,B'分别在原点的右侧、左侧,可由线段OB与OB′的长得到点B,B′所表示的无理数!按照这样的思路,只要构造出特定长度的线段,就能在数轴上找到无理数对应的点!任务:(1)“拓展思考”中,线段OB的长为1+,OB'的长为﹣1;点B表示的数为1+,点B'表示的数为﹣+1.(2)请从A,B两题中任选一题作答,我选择A题.A.请在图3所示的数轴上,画图确定表示±的点M,N;B.请在图3所示的数轴上,画图确定表示2﹣的点M.【分析】(1)利用勾股定理计算出正方形的对角线长为,从而得到OB、OB′的长,然后利用数轴表示数的方法得到点B和点B′表示的数;(2)选择A题,构建直角三角形OAB,OA=2,AB=1,则利用勾股定理得到OB=,然后以点O 为圆心,OB的长为半径作圆交数轴于M、N,则M点表示的数为,N点表示的数为﹣;选择B题,构建直角三角形CDE,C点表示的数为2,使CD=3,DE=1,则利用勾股定理得到CD=,然后以点C为圆心,CD的长为半径作圆交数轴的负半轴于M,则M点表示的数为2﹣.【解答】解:(1)∵线段OB的长为1+,OB'的长为﹣1,∴点B表示的数为1+,点B'表示的数为﹣+1;故答案为:1+,﹣1,1+,﹣+1;(2)A题:如图,M点表示的数为,N点表示的数为﹣.B题:如图,M点表示的数为2﹣.故答案为:A(或B)答案不唯一.二.勾股定理的证明(共6小题)13.(2023•杭州模拟)如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是()A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=24【分析】根据勾股定理解答即可.【解答】解:根据题意可得:x2+y2=25,故B错误,∵(x+y)2=49,∴2xy=24,故D错误,∴(x﹣y)2=1,故A错误,∴x2﹣y2=7,故C正确;故选:C.14.(2023秋•泰山区期中)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A.49B.25C.12D.10【分析】根据大正方形的面积是25,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.【解答】解:如图,∵大正方形的面积是25,小正方形的面积是1,∴直角三角形的面积是(25﹣1)÷4=6,又∵直角三角形的面积是ab=6,∴ab=12.故选:C.15.(2023秋•绿园区期末)如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成.如果大正方形的面积是16,直角三角形的直角边长分别为a,b,且a2+b2=ab+10,那么图中小正方形的面积是()A.2B.3C.4D.5【分析】根据大正方形的面积为16结合a2+b2=ab+10得出ab的值,再由小正方形的面积=(b﹣a)2即可求解.【解答】解:∵大正方形的面积是16,∴a2+b2=16,又a2+b2=ab+10,∴ab=6,∴(b﹣a)2=a2+b2﹣2ab=16﹣2×6=4,即小正方形的面积是4,故选:C.16.(2023春•莒南县期末)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【分析】延长AB交KL于P,延长AC交LM于Q,可得△ABC、△PFB、△QCG全等,根据全等三角形对应边相等可得PB=AC,CQ=AB,然后求出IP和DQ的长,再根据长方形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.17.(2022秋•长春期末)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【分析】通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.18.(2023秋•二道区期末)如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【分析】由题意得:BD=7cm,AB=CD=3cm,求出BC=4cm,由勾股定理求出AC=5cm,即可求出阴影的周长=4(AB+AC)=32(cm).【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.三.勾股定理的逆定理(共10小题)19.(2023春•禹州市期中)在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+c)(a﹣c)=b2,则()A.∠A为直角B.∠B为直角C.∠C为直角D.∠A是锐角【分析】根据勾股定理的逆定理,进行计算逐一判断即可解答.【解答】解:∵(a+c)(a﹣c)=b2,∴a2﹣c2=b2,∴a2=b2+c2,∴△ABC是直角三角形,∴∠A为直角,故选:A.20.(2023春•汕尾期末)如图,在正方形方格中,每个小正方形的边长都为1,则∠ABC是()A.锐角B.直角C.钝角D.无法确定【分析】连接AC,根据勾股定理的逆定理可证△ABC是直角三角形,从而可得∠ABC=90°,即可解答.【解答】解:连接AC,由题意得:AB2=12+22=5,CB2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∴∠ABC=90°,故选:B.21.(2023春•东丽区期末)已知△ABC的三边长分别为a,b,c,且满足(a﹣3)2+|b﹣4|+=0,则△ABC()A.不是直角三角形B.是以a为斜边的直角三角形C.是以b为斜边的直角三角形D.是以c为斜边的直角三角形【分析】先根据绝对值,偶次方,算术平方根的非负性可得a﹣3=0,b﹣4=0,c﹣5=0,从而可得a =3,b=4,c=5,然后利用勾股定理的逆定理进行计算,即可解答.【解答】解:∵(a﹣3)2+|b﹣4|+=0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,∴△ABC是直角三角形,∴△ABC是以c为斜边的直角三角形,故选:D.22.(2023秋•沈河区校级期中)如图所示,小正方形的边长均为1,A、B、C三点均在正方形格点上,则下列结论错误的是()A.B.S△ABC=4.5C.点A到直线BC的距离为2D.∠BAC=90°【分析】根据勾股定理,勾股定理的逆定理,三角形的面积进行计算逐一判断即可解答.【解答】解:由题意得:AB2=22+42=20,∴AB=2,故A不符合题意;由题意得:AC2=22+12=5,CB2=32+42=25,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴∠BAC=90°,故D不符合题意;∵AC=,AB=2,∴△ABC的面积=AC•AB=××2=5,故B符合题意;设点A到直线BC的距离为h,∵△ABC的面积为5,BC=5,∴BC•h=5,∴h=2,∴点A到直线BC的距离为2,故C不符合题意;故选:B.23.(2023春•蒙城县校级期中)已知a,b,c是三角形的三边长,且满足+(b﹣3)2+|c﹣4|=0,则三角形的形状是()A.等边三角形B.钝角三角形C.底与腰不相等的等腰三角形D.直角三角形【分析】先根据绝对值,偶次方,算术平方根的非负性可得a﹣5=0,b﹣3=0,c﹣4=0,从而可得a =5,b=3,c=4,然后利用勾股定理的逆定理,进行计算即可解答.【解答】解:∵+(b﹣3)2+|c﹣4|=0,∴a﹣5=0,b﹣3=0,c﹣4=0,∴a=5,b=3,c=4,∴b2+c2=32+42=25,a2=52=25,∴b2+c2=a2,∴三角形是直角三角形,故选:D.24.(2023春•贵州期末)如图,在△ABC中,AB=5,BC=4,AC=3,I为△ABC各内角平分线的交点,过点I作AB的垂线,垂足为H,则IH的长为()A.1B.C.2D.【分析】过点I作IE⊥AC,垂足为E,过点I作ID⊥BC,垂足为D,连接CI,AI,BI,先利用角平分线的性质可得IE=IH=ID,再利用勾股定理的逆定理证明△ABC是直角三角形,从而可得∠ACB=90°,然后利用面积法进行计算,即可解答.【解答】解:过点I作IE⊥AC,垂足为E,过点I作ID⊥BC,垂足为D,连接CI,AI,BI,∵I为△ABC各内角平分线的交点,ID⊥BC,IE⊥AC,IH⊥AB,∴IE=IH=ID,∵AB=5,BC=4,AC=3,∴AC2+BC2=32+42=25,AB2=52=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∵△ABC的面积=△ACI的面积+△BCI的面积+△ABI的面积,∴AC•BC=AC•EI+BC•DI+AB•IH,∴AC•BC=AC•EI+BC•DI+AB•IH,∴3×4=3IE+4DI+5IH,解得:IH=1,故选:A.25.(2023春•鞍山期末)如图,学校在校园围墙边缘开垦一块四边形菜地ABCD,测得AB=9m,BC=12m,CD=8m,AD=17m,且∠ABC=90°,这块菜地的面积是()A.48m2B.114m2C.122m2D.158m2【分析】连接AC,先在Rt△ABC中,利用勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD是直角三角形,从而可得∠ACD=90°,最后根据四边形ABCD的面积=△ABC的面积+△ACD的面积,进行计算即可解答.【解答】解:连接AC,∵∠ABC=90°,AB=9m,BC=12m,∴AC===15(m),∵CD=8m,AD=17m,∴AC2+CD2=152+82=289,AD2=172=289,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴∠ACD=90°,∴四边形ABCD的面积=△ABC的面积+△ACD的面积=AB•BC+AC•CD=×9×12+×15×8=54+60=114(m2),∴这块菜地的面积为114m2,故选:B.26.(2023春•凤山县期末)在△ABC中,AC=3,AB=4,当BC=5或时,△ABC是直角三角形.【分析】分两种情况:当BC是斜边时;当AB是斜边时;然后分别进行计算即可解答.【解答】解:分两种情况:当BC是斜边时,则BC===5;当AB是斜边时,则BC===;综上所述:当BC=5或时,△ABC是直角三角形,故答案为:5或.27.(2023秋•鼓楼区校级月考)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,A,B,C是小正方形的顶点,则∠ABC=45°.【分析】连接AC,先根据勾股定理的逆定理证明△ABC是直角三角形,从而可得∠ACB=90°,再根据AC=BC=,从而可得△ABC是等腰直角三角形,即可解答.【解答】解:连接AC,由题意得:AC2=12+22=5,BC2=12+22=5,AB2=12+32=10,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∵AC=BC=,∴∠ABC=∠CAB=45°,故答案为:45.28.(2023秋•南关区校级期中)已知在△ABC中,AB=m2+n2,BC=2mn,AC=m2﹣n2(m>n>0).试问△ABC是直角三角形吗?若是,请说明理由.【分析】利用勾股定理的逆定理进行计算,即可解答.【解答】解:△ABC是直角三角形,理由:∵AB2=(m2+n2)2=m4+2m2n2+n4,BC2+AC2=(2mn)2+(m2﹣n2)2=4m2n2+m4﹣2m2n2+n4=m4+2m2n2+n4,∴AB2=BC2+AC2,∴△ABC是直角三角形.四.勾股数(共2小题)29.(2023秋•市北区期中)满足a2+b2=c2的三个正整数a、b、c,被称为勾股数.下列各组数是勾股数的是()A.7,24,25B.32,42,52C.1.5,2,2.5D.【分析】依据勾股数的定义进行判断.满足a2+b2=c2的三个正整数,称为勾股数.【解答】解:A.7,24,25是满足a2+b2=c2的三个正整数,故本选项符合题意;B.32,42,52是不满足a2+b2=c2的三个正整数,故本选项不符合题意;C.1.5,2,2.5不全是正整数,故本选项不符合题意;D.,,不全是正整数,故本选项不符合题意;故选:A.30.(2023•泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a,b,c的计算公式:a=(m2﹣n2),b=mn,c=(m2+n2),其中m>n>0,m,n是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是()A.3,4,5B.5,12,13C.6,8,10D.7,24,25【分析】根据题目要求逐一代入符合条件的m,n进行验证、辨别.【解答】解:∵当m=3,n=1时,a=(m2﹣n2)=(32﹣12)=4,b=mn=3×1=3,c=(m2+n2)=×(32+12)=5,∴选项A不符合题意;∵当m=5,n=1时,a=(m2﹣n2)=(52﹣12)=12,b=mn=5×1=5,c=(m2+n2)=×(52+12)=13,∴选项B不符合题意;∵当m=7,n=1时,a=(m2﹣n2)=(72﹣12)=24,b=mn=7×1=7,c=(m2+n2)=×(72+12)=25,∴选项D不符合题意;∵没有符合条件的m,n使a,b,c各为6,8,10,∴选项C符合题意,故选:C.五.勾股定理的应用(共3小题)31.(2023春•怀柔区期末)如图,在我军某次海上演习中,两艘航母护卫舰从同一港口O同时出发,1号舰沿东偏南60°方向以9节(1节=1海里/小时)的速度航行,2号舰沿南偏西60°方向以12节的速度航行,离开港口2小时后它们分别到达A,B两点,此时两舰的距离是()A.9海里B.12海里C.15海里D.30海里【分析】根据题意可得:AO=18海里,BO=24海里,∠AOE=60°,∠COB=60°,∠EOC=90°,从而可得∠AOC=30°,然后利用角的和差关系可得∠AOB=90°,从而在Rt△AOB中,利用勾股定理求出AB的长,即可解答.【解答】解:如图:由题意得:AO=2×9=18(海里),BO=2×12=24(海里),∠AOE=60°,∠COB=60°,∠EOC=90°,∴∠AOC=∠EOC﹣∠EOA=30°,∴∠AOB=∠AOC+∠BOC=90°,在Rt△AOB中,AB===30(海里),∴此时两舰的距离是30海里,故选:D.32.(2023秋•杏花岭区校级月考)如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,甲、乙两人相距6千米时,最短用时是()A.0.4小时B.0.5小时C.0.6小时D.0.8小时【分析】设最短用时t小时,分别将BC和CD用含t的代数式表示出来,在Rt△BCD中运用勾股定理列方程并求解即可.【解答】解:设最短用时t小时,甲、乙两人相距6千米.根据题意,得BC=(10﹣16t)km,CD=12t km,在Rt△BCD中,由勾股定理,得BC2+CD2=BD2,即(10﹣16t)2+(12t)2=62,整理得(5t﹣2)2=0,解得t=,即t=0.4.故选:A.33.(2023秋•沈阳月考)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,“远航”号以每小时12n mile的速度沿北偏东60°方向航行,“海天”号以每小时16n mile的速度沿北偏西30°方向航行.2小时后,“远航”号、“海天”号分别位于M,N处,则此时“远航”号与“海天”号的距离为40n mile.【分析】根据题意可得:MP=24海里,NP=32海里,∠APM=60°,∠APN=30°,从而可得∠NPM =90°,然后在Rt△NPM中,利用勾股定理进行计算即可解答.【解答】解:如图:由题意得:MP=12×2=24(海里),NP=16×2=32(海里),∠APM=60°,∠APN=30°,∴∠NPM=∠APN+∠APM=90°,。
勾股定理专题知识点+常考题型+重难点题型
勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。
注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。
若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。
《勾股定理》专题复习(含答案)
第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。
勾股定理专题复习及题型讲解
勾股定理复习一、要点精练 (一)勾股定理1、(填空题)已知在Rt △ABC 中,∠C=90°。
①若a=3,b=4,则c=________;②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______; ④若c=25,b=15,则a=________。
2、(填空题)已知在Rt △ABC 中,∠C=90°,AB=10。
①若∠A=30°,则BC=______,AC=_______;②若∠A=45°,则BC=______,AC=_______。
3、 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )(A )1,2,3 (B )2,3,4 (C )3,4,5 (D )4,5,64、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A )22d S d + (B 2d S d - (C )222d S d + (D )22d S d + 解:设两直角边分别为,a b ,斜边为c ,则2c d =,12S ab =. 由勾股定理,得222a b c +=.所以()222222444a b a ab b c S d S +=++=+=+. 所以22a b d S +=+所以a b c ++=222d S d ++. 故选(C )5、直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )(A )61 (B )71 (C )81 (D )91 解:因为a b a a b +>>-.根据题意,有()()222a b a b a +=-+. 整理,得24a ab =.所以4a b =. 所以3,5a b b a b b -=+=.即该直角三角形的三边长是3,4,5b b b . 因为只有81是3的倍数.故选(C )6、在Rt ABC ∆中,3,5a c ==,则边b 的长为______.7、直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )(A )61 (B )71 (C )81 (D )91(二)勾股定理的验证及其验证过程的相关应用1、下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗?参考答案①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形,(2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形.②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a +b )2减去四个Rt △ABC 的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.2、(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72?参考答案(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC=(3+4)2-4×21×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+72 3、如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.解:根据题意,有123S S S +=,即222111222222a b c πππ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.整理,得222a b c +=.故此三角形为直角三角形.4、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S = 解:由勾股定理,知222AC BC AB +=,即123S S S +=,所以3114S =. 5.如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,210AD BE ==,则斜边AB 之长为______. 解: AD 、BE 是中线,设,BC x AC y ==,由已知,图55,25AD BE ==,所以222240,25.22y x x y ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭两式相加,得()225654x y +=,所以2252213.AB x y =+==(三)勾股定理的应用1、在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个 直角三角形的面积是( )(A )30 (B )40 (C )50 (D )60解:由勾股定理知,另一条直角边的长为2213125-=,所以这个直角三角形的面积为1125302⨯⨯=.2、如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) (A)0.6米 (B)0.7米 (C)0.8米 (D)0.9米解:依题设11 2.5,0.7AB A B BC ===.在Rt ABC ∆中,由勾股定理,得 22222.50.7 2.4AC AB BC =-=-= 由12.4,0.4AC AA ==,得11 2.40.42AC AC AA =-=-=. 在11Rt A B C ∆中, 由勾股定理,得222211112.52 1.5B C A B AC =-=-= 所以11 1.50.70.8BB B C BC =-=-=故选(C)3、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.解:由勾股定理,知最短距离为()()222288210BD AC AB CD =+-=+-=.4、(四)直角三角形的判别图11、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是A 、a=2,b=3,c=4B 、a=7,b=24,c=25C 、a=6,b=8,c=10D 、a=3,b=4,c=52、如果一个三角形的一条边是另一边的2倍,并且有一个角是ο30,那么这个三角形的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定 3、4、如图,在等腰直角ABC ∆的斜边上取异于C B ,的两点F E ,,使,45ο=∠EAF 求证:以CF BE EF ,,为边的三角形是直角三角形。
(完整版)勾股定理知识点+对应类型
第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
勾股定理专题(含答案)
C DAB CFDE1、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
2、如图,公路上A,B两点相距25km,C,D为两村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系3、如图,△ABC中,D是AB的中点,AC=12,BC=5,CD=132。
求证:△ABC为直角三角形4、如图,直角三角形三条边的比是3:4:5.求这个三角形三条边上的高的比.5、如图,P是等边△ABC内一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,并说明理由.6、已知,△ABC中,AB中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明:△ABC是等腰三角形。
7、已知:如图正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,判断BE和EF的位置关系?并说明你的理由。
4cm5cm1、已知一个Rt △的两边长分别为3和4,则第三边长是 ;2、左边是一个正方形,则此正方形的面积是 ( )A. 1cm 2B. 3cm 2C. 6cm 2D. 9cm 23、一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是 . 4、在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,∠C=90°, 且c 2=2b 2,则这个三角形有一个锐角为 ;5、如图,已知AB⊥CD,△ABD,△BCE 都是等腰三角形,CD=8,BE=3,则AC 的长等于 ;6、直角三角形两直角边长为6cm 和8cm,7、旗杆顶端的绳子垂到地面还多1米,把绳子的下端拉开绳子下端刚好接触地面,旗杆的高度为 。
勾股定理专题复习课
详细描述
根据勾股定理,直角三角形的面积可以通过两条直角边的长度和斜边的高来计算。面积 = (1/2) × 直角边1 × 直角边2 = (1/2) × 斜边 × 高。
示例
在直角三角形ABC中,已知直角边a=3和b=4,斜边c=5,斜边上的高h可以通过面积公式计 算为h=12/5。
等。
05 勾股定理的易错点解析
勾股定理适用条件的误解
总结词
理解不准确
01
总结词
应用范围限制
03
总结词
忽视前提条件
05
02
详细描述
勾股定理适用于直角三角形,但学生常常误 以为它适用于所有三角形,导致在解题时出 现错误。
04
详细描述
勾股定理只适用于直角三角形,对于 非直角三角形,需要使用其他定理和 公式进行计算。
06
详细描述
勾股定理的前提是三角形必须是直角三角形, 如果忽视这个前提,会导致计算结果不准确。
勾股定理计算中的常见错误
在此添加您的文本17字
总结词:计算错误
在此添加您的文本16字
详细描述:学生在使用勾股定理进行计算时,常常因为粗 心或对公式理解不准确而出现计算错误。
在此添加您的文本16字
总结词:单位不统一
勾股定理与三角函数的关系
总结词
勾股定理与三角函数之间存在密 切关系,可以通过三角函数来求 解相关问题。
详细描述
在解决与直角三角形相关的三角 函数问题时,勾股定理常常被用 来计算边长或角度。例如,在求 解三角函数的实际应用问题时, 可以使用勾股定理来计算相关物 体的长度或距离。
示例
在解决与航海、测量和几何学相 关的实际问题时,常常需要使用 勾股定理和三角函数来求解角度 和距离。
勾股定理专题(附问题详解,全面、精选)
勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解〔1〕直角三角形的两条直角边长分别为a, b,斜边长c,如此如下关于a,b,c的关系不成立的是〔〕A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、 a²+b²= c²〔2〕在直角三角形中,∠A=90°,如此如下各式中不成立的是〔〕A、BC²- AB²=AC²B、BC²- AC²=AB ²C、AB²+AC²= BC²D、AC²+BC²= AB ²2、应用勾股定理求边长〔3〕在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.〔4〕在直角△中,假如两直角边长为a、b,且满足,如此该直角三角形的斜边长为.3、利用勾股定理求面积〔5〕以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。
〔6〕如图〔1〕,图中的数字代表正方形的面积,如此正方形A的面积为。
〔7〕如图〔2〕,三角形中未知边x与y的长度分别是x= ,y=。
〔8〕在Rt△ABC中,∠C=90°,假如AC=6,BC=8,如此AB的长为〔〕A、6B、8C、10D、12〔9〕在直线l上依次摆放着七个正方形〔如图4所示〕。
斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进展推导。
专题01 勾股定理(考点清单)解析版
专题01讲 勾股定理(考点清单)【聚焦考点】题型一:用勾股定理解三角形题型二:勾股数问题题型三:以直角三角形三边为边长的图形面积题型四:勾股定理和网格问题题型五:勾股定理和折叠问题题型六:利用勾股定理求两条线段的平方和题型七:以炫图为背景的计算题题型八:勾股定理的应用题型九:勾股定理的证明题型十:勾股定理的综合问题【题型归纳】题型一:用勾股定理解三角形A .13【答案】A 【专训1-1】(2023下·河南新乡·八年级校考期末)如图,在Rt ABC △中,90B Ð=°,6AB =,10AC =,以边BC 为直径作一个半圆,则半圆(阴影部分)的面积为( )A .4πB .8πC .12πD .16π【专训1-2】(2023下·四川宜宾·八年级统考期末)如图,菱形OABC 的边长为2,45AOC Ð=°,则点B 的坐标是( ) A .()22,2B .(2【答案】D 【分析】过点B 作x 轴的垂线,可证OH BH 与就是点B 的横坐标与纵坐标.因为菱形OABC 的边长为2,∴2OA AB ==.由菱形的对边AB OC ∥可得:又90BHA Ð=°,题型二:勾股数问题,,是勾股数的是( )【专训2-1】(2023下·安徽合肥·八年级统考期末)下列各组a b c【专训2-2】(2023下·贵州铜仁·八年级统考期末)成书于大约公元前1世纪的《周髀算经》是中国现存最早的一部数学典籍,里面记载的勾股定理的公式与证明相传是在西周由商高发现,故又称之为商高定理.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1;古希腊哲学家m³,m为正整数),弦与股相差为2的一类勾股数,柏拉图(公元前427年—公元前347年)研究了勾为2m(3如:6,8,10;8,15,17;…,若此类勾股数的勾为12,则其股为()A .14B .16C .35D .37【答案】C 【分析】依题意,设斜边为x ,则股为2x -,根据勾股定理即可求出x 的值.【详解】解:依题意,设斜边为x ,则股为2x -,∴()222122x x +-=,解得:37x =,∴股为237235x -=-=,故选:C .题型三:以直角三角形三边为边长的图形面积【典例3】2023下·云南红河·八年级统考期末)如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为6和9,则b 的面积为( )A .9B .12C .15D .20【答案】C 【分析】先根据AAS 证明ABC CDE △△≌,由此得BC DE =,在Rt ABC △中,根据勾股定理可得222AC AB BC =+,等量代换可得222AC AB DE =+,即可求出b 的面积.【详解】如图,ABC QV 中90ABC Ð=°,90ACB BAC \Ð+Ð=°.90ACE Ð=°Q ,90ACB ECD \Ð+Ð=°,BAC ECD \Ð=Ð.又90,ABC CDE AC CE Ð=Ð=°=Q ,AAS ()ABC CDE \≌V V ,BC DE \=.90,ABC ABC Ð=°QV ,222AC AB BC \=+,222AC AB DE \=+,即6915b a c S S S =+=+=.故选:C【专训3-1】(2023下·安徽马鞍山·八年级校考期末)ABC V 中,90ACB Ð=°,分别以ABC V 的三边作为边长向形外作正方形,并把各正方形的面积分别记作1S ,2S ,3S ,如图,若126S =,29S =,则3S 的值为( )A .13B .17C .20D .35【答案】B 【分析】由2=26AB ,29BC =,再根据勾股定理即可得到结论.【详解】解:∵126S =,29S =,∴2=26AB ,29BC =,∵90ACB Ð=°,∴22226917AC AB BC =-=-=,∴2317S AC ==.故选:B .【专训3-2】(2023下·广西柳州·八年级统考期末)如图,在Rt ABC △中,90ACB Ð=°,分别以AC 、BC 为边作正方形,若12AB =,则正方形ADEC 和正方形BCFG 的面积和为( )A .144B .120C .100D .无法计算【答案】A 【分析】根据勾股定理即可进行解答.【详解】解:∵四边形ADEC 和四边形BCFG 为正方形,∴2ADEC S AC =形正方,2BCFG S BC =形正方 ,∵在Rt ABC △中,90C Ð=°,∴222212144AC BC AB +===,∴22144ADEC BCFG S S BC AC +=+=正方正方形形,故选:A .题型四:勾股定理和网格问题【典例4】(2023下·河北保定·八年级统考期末)如图,在34´的正方形网格(每个小正方形的边长都是1)中,标记格点A ,B ,C ,D 的是( )A .线段ABB .线段BC C .线段ACD .线段BD【答案】B 【分析】根据勾股定理分别求解AB ,BC ,AC ,BD ,从而可得答案.【详解】解:由勾股定理可得:【专训4-1】(2023下·湖北武汉·八年级统考期中)如图,由单位长度为1的4个小正方形拼成的一个大正方形网格,连接三个小格点,可得ABCV,则AC边上的高是()A.32 2【答案】C【分析】设AC边上的高为【专训4-2】(2022上·山西运城·八年级统考期末)如图,ABCV的顶点A,B,C在边长为1的正方形网格的格点上,则BC边上的高为()题型五:勾股定理和折叠问题【典例5】(2023下·湖北荆州·八年级统考期末)如图,在Rt ABC △中,90,8,6A AB AC Ð=°==,将ABC V 沿CD 翻折,使点A 与BC 边上的点CDA .5【答案】D 【分析】利用勾股定理求得【专训5-1】(2023下·山东济宁·八年级统考期末)如图所示,有一块直角三角形纸片,90C Ð=°,2AC =,32BC =,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( ) A .1B .34【答案】C 【分析】根据勾股定理求出AB 【专训5-2】(2023下·天津和平·八年级天津市第五十五中学校考期末)如图,有一个直角三角形纸片,两直角边6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为( )题型六:利用勾股定理求两条线段的平方和【典例6】(2021上·江苏扬州·八年级统考期末)如图,在△ABC 中,AB =6,AC =9,AD⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .45【答案】D 【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【专训6-1】(2020上·浙江杭州·八年级统考期末)如图,在Rt ABC D 中, 90ACB °Ð=,以AB ,AC ,BC 为边作等边ABD D ,等边ACE D .等边CBF D .设AEH D 的面积为1S ,ABC D 的面积为2S ,BFG D 的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )【专训6-2】(2018上·辽宁沈阳·八年级校考期末)如图OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2,依此法继续作下去,得OP 2017等于( )题型七:以炫图为背景的计算题【典例7】(2023下·安徽·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若168ab =,大正方形的面积为625,则小正方形的边长为( )A .7B .24C .17D .25【答案】C 【分析】勾股定理得:22625a b +=,又222()26252168289a b a b ab -=+-=-´=,由此即可求出17()a b a b -=>,因此小正方形的边长为17.【详解】解:由题意知小正方形的边长是a b -,由勾股定理得:22625a b +=,222()26252168289a b a b ab -=+-=-´=Q ,17()a b a b \-=>,\小正方形的边长为17.故选:C .【专训7-1】(2023下·青海西宁·八年级统考期末)如图,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两直角边为a ,b .斜边为c ,若85ab c ==,,则小正方形的边长为( )A.3B【答案】A【分析】由题意可知:中间小正方形的边长为:边长.【详解】解:由题意可知:中间小正方形的边长为:【专训7-2】(2023下·北京房山·八年级统考期末)如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,如果图中勾3a=,弦c=,则小正方形的面积为()5A.1B.2【答案】A【分析】首先根据勾股定理求出c=,【详解】∵勾3a=,弦5∴224=-=b c a2()(题型八:勾股定理的应用【典例8】(2023下·辽宁葫芦岛·八年级统考期末)如图是楼梯的一部分,若2AD =,1BE =,3AE =,一只蚂蚁在A 处发现C 处有一块糖,则这只蚂蚁吃到糖所走的最短路程为( ) A .25B .【答案】A 【分析】将台阶展开得到的是一个矩形,蚂蚁要从【专训8-1】(2023下·广东广州·八年级统考期末)如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A .0.4B .0.6C .0.7D .0.8【专训8-2】(2023下·北京怀柔·八年级统考期末)如图,在我军某次海上演习中,两艘航母护卫舰从同一港口O 同时出发,1号舰沿东偏南60°方向以9节(1节=1海里/小时)的速度航行,2号舰沿南偏西60°方向以12节的速度航行,离开港口2小时后它们分别到达A ,B 两点,此时两舰的距离是( )A .9海里B .12海里C .15海里D .30海里【答案】D 【分析】由60EOA Ð=°,60BOM Ð=°,求得30MOA Ð=°,90AOB Ð=°,再利用勾股定理的逆定理计算求解.【详解】解:由题意可得:60EOA Ð=°,60BOM Ð=°∴30MOA Ð=°,90AOB Ð=°又∵9218AO =´=(海里),12224BO =´=(海里),题型九:勾股定理的证明【典例9】(2023下·四川绵阳·八年级统考期末)如图,是2002年8月在北京召开的第24届国际数学家大会会标,创作的灵感来源于我国三国时代东吴数学家赵爽所注的著作《周髀算经》中的一个数学知识,这个数学知识是( )A .黄金分割【答案】D 【分析】如图,边长为为()b a -的小正方形的面积,即可求解.由题意得:边长为c 的大正方形的面积的小正方形的面积,即:214(2c ab b =´+-整理得:222c a b =+,【专训9-1】(2023下·河北廊坊·八年级统考期末)勾股定理是数学定理中证明方法最多的定理之一,也是用代数思想解决几何问题最重要的工具之一.下列图形中可以证明勾股定理的有( )A .①③B .②③C .②④D .①④【答案】D 【分析】利用同一个图形的面积的不同表示方法进行验证即可.【详解】解:①()()22211222S a b a ab b =+=++梯形,(2111122222S ab ab c ab c =++=+梯形【专训9-2】(2023上·河北保定·八年级统考期末)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的, 90610BAC AB BC Ð=°==,,,点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( )A .420B .440C .430D .410【答案】B 【分析】延长AB 交KL 于P ,延长AC 交LM 于Q ,可得ABC PFB QCG V V V 、、全等,根据全等三角形对应边相等可得PB AC CQ AB ==,,然后求出IP 和DQ 的长,再根据长方形的面积公式列式计算即可得解.【详解】解:如图,延长AB 交KL 于P ,延长AC 交LM 于Q ,由题意得,90BAC BPF FBC BC BF ===°=∠∠∠,,∴90ABC ACB PBF ABC +=°=+∠∠∠∠,∴ACB PBF =∠∠,∴()AAS ABC PFB △≌△,同理可证()AAS ABC QCG △≌△,∴86PB AC CQ AB ====,,∵图2是由图1放入长方形内得到,∴86822IP =++=,68620DQ =++=,∴长方形KLMJ 的面积2220440=´=.故选:B .题型十:勾股定理的综合问题【典例10】(2023下·内蒙古呼伦贝尔·八年级校考期末)如图,某自动感应门的正上方A 处装着一个感应器,离地的高度AB 为2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD 正对门,缓慢走到离门1.2米的地方时( 1.2BC =米),感应门自动打开,AD 为多少米?【答案】2.5米【分析】过点D 作DE 【详解】解:如图,过点2.5AB =Q 米,BE =答:AD为2.5米.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.【专训10-1】.(2023上·河南周口·八年级校考期末)图1为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.根据该图,赵爽用两种不同的方法计算正方形的面积,通过正方形面积相等,从而证明了勾股定理.现有4个全等的直角三角形(图2中灰色部分),直角边长分别为a,b,斜边长为c,将它们拼合为图2的形状.(1)小诚同学在图2中加了相应的虚线,从而轻松证明了勾股定理,请你根据小诚同学的思路写出证明过程;b=时,求图2中空白部分的面积.(2)当3a=,4【答案】(1)见解析(2)13【分析】(1)根据图形可得,图2中图形的总面积可以表示为:以【专训10-2】(2023上·河北承德·八年级统考期末)如图,已知在ABC V 中,90ACB Ð=°,8AC =,16BC =,点D 在线段AC 上,且3CD =,点P 从点B 出发沿射线BC 方向以每秒2个单位长度的速度向右运动.设点P 的运动时间为t 秒,连接AP . (1)当3t =时,求AP 的长度;(2)当ABP V 是以BP 为腰的等腰三角形时,求t 的值;(3)连接PD ,在点P 的运动过程中,当PD 平分APC Ð时,直接写出【答案】(1)241则90AED PED Ð=Ð=°.90PED ACB \Ð=Ð=°.PD Q 平分APC Ð,DE AP ^3ED CD \==,PE PC ==同①得3ED CD ==,PE PC =835AD AC CD \=-=-=,AE \=2225AD DE -=-。
专题:勾股定理的十种证明方法
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2
证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2 由此得,面积 I + 面积 II = 面积 III 因此,a2 + b2 =的面积该怎样表示?
证明三
c2
a2 b2
对比两个图形,你能直接观察验 证出勾股定理吗?
a2
a2 c2
b2
a2 + b2 = c2
证明六 印度婆什迦羅的 證明
c b a
c2 = b2 + a2
美国总统的证明
• 加菲尔德 (James A.
Garfield; 1831 1881)
证明八
证明八
证明九 a2 b2
证明九
证明九
证明九
证明九
a2 + b2 = c2 c2
证明九
证明九
证明九
拼 图 游 戏
拼图游戏
无字证明
青出
青方
青 出
青 入
朱
朱方 出
朱入 青入
青出
⑤
④
b
c
③
a
①②
无字证明
青朱出入图(刘徽)
青出
青方
青 出
青 入
朱朱
朱方 出出
朱朱入入 青入
青出
证明十
II I
III
注意:
面积 I :面积II :面积III = a2 : b2 : c2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT △中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是() A、c²- a²=b² B、c²- b²=a²C、a²- c²=b²D、 a²+b²= c²(2)在直角三角形中,∠A=90°,则下列各式中不成立的是()A、BC²- AB²=AC²B、BC²- AC²=AB²C、AB²+AC²= BC²D、AC²+BC²= AB²2、应用勾股定理求边长(3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.(4)在直角△中,若两直角边长为a、b,且满足,则该直角三角形的斜边长为.3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。
(6)如图(1),图中的数字代表正方形的面积,则正方形A的面积为。
(7)如图(2),三角形中未知边x与y的长度分别是x= ,y= 。
(8)在Rt△ABC中,∠C=90°,若AC=6,BC=8,则AB的长为()A、6B、8C、10D、12(9)在直线l上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。
(等积法)拼图法推导一般步骤:拼出图形---找出图形面积的表达式---恒等变形—推出勾股定理。
(10)用四个相同的直角三角形(直角边为a、b,斜边为c)按图拼法。
问题:你能用两种方法表示下图的面积吗?对比两种不同的表示方法,你发现了什么?(11)用两个完全相同的直角三角形(直角边为a、b,斜边为c)按下图拼法,论证勾股定理:222cba=+3、运用勾股定理进行计算(重难点)(12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?(13)两棵之间的距离为8m ,两棵树的高度分别为8m 、2m ,一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至少要飞多少米?【基础检测】1、在Rt △ABC 中,∠C =90°,若AB =13,BC =5,则AC 的长为( )2、已知Rt △ABC 中,∠C =90°,若14=+ba cm ,10=c cm ,则Rt △ABC 的面积为()A . 24cm 2B. 36cm 2C. 48cm 2D. 60cm 23、若△ABC 中,∠C=90°,(1)若a = 5,b =12,则c = ; (2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4,c =10,则a = ,b = 。
4、如图,阴影部分是一个半圆,则阴影部分的面积为 。
(π不取近似值)5、一个直角三角形的斜边为20cm ,且两直角边长度比为3 : 4,求两直角边的长。
6、一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端向外滑动了多少米?【培优突破】 1、折叠问题(1)如图是一张直角三角形的纸片,两直角边AC=6cm 、BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A 、4cmB 、5cmC 、6cmD 、10cm(2) 如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求线段EC 的值2、运用勾股定理解决生活中的实际问题(3)如图,为了测得小水坑两边A 点和B 点之间的距离,一个观测者在C 点设桩,使∠ABC=90°,并测得AC=20m ,BC=16m,则A 、B 两点之间的距离是对少?3、分类讨论(已知直角△的两边,求第三边)(4)在△ABC中,AB=15,AC=20,BC边上的高AD=12,则BC的值为()A、25B、7C、25或7D、不能确定(5)已知3, 4,a是一个三角形的三边长,若三角形a的值是多少?为直角三角形,则2(6)在直角△ABC中,AB=15, AC=20,BC边上的高AD=12,则BC的值为多少?4、利用方程解题(7)如图,△ABC中,∠C=90°,D是BC上的一点,已知BD=7,AB=20,AD=15,求AC的长.(8)如图,已知△ABC中,AB=AC=20,BC=32,D是BC 上一点,且AD⊥AC,求BD的长。
【培优训练】一、选择题1.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A 、B 、C 、D 、2.若三角形ABC中,∠A:∠B:∠C=2:1:1,a,b,c 分别是∠A,∠B,∠C的对边,则下列等式中,成立的是()A.a2+b2=c2B.a2=2c2C.c2=2a2D.c2=2b2 3.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A、 5B、6C、 7D、84.如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE 是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A、 16B、15C、 14D、135.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A、 1B、34C、23D、26.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A、 21B、15C、 6D、以上答案都不对7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知BC=8,AC=6,则斜边AB上的高是()A、 10B、5C、524D、5128.如图,阴影部分是一个矩形,它的面积是()A、25cmB、23cmC、24cm D、25cm9.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为()mA.30 B.40 C.50D.7010.如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为()A、18B、32C、28D、2411.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y = 2,③2xy+4=49,④x+y=9.其中说法正确的是()A、①②B、①②③C、①②④D、①②③④二.填空题(共2小题)12.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= _____ cm.13.如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_________ .14、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE ⊥DF,若BE=12,CF=5.求线段EF的长。
二、勾股定理的逆定理【知识点3】勾股定理的逆定理(1)如果△的三边满足关系满足,则该△为直角三角形。
(2)△的三边,假设c为最长边①,则该△为三角形②,则该△为三角形(3)勾股定理逆定理的用途典型题(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是()A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17(2)若线段a,b,c组成直角三角形,则它们的比为()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶7(3)下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有()个.A.1 B.2 C.3 D.4(4)若三角形的三边之比为,则这个三角形一定是()A. 等腰三角形B. 直角三角形C .等腰直角三角形 D. 不等边三角形(5)已知a,b,c为△ABC三边,且满足A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形(6)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A.钝角三角形 B. 锐角三角形C. 直角三角形D. 等腰三角形(7)若△ABC的三边长分别长a,b,c,且满足,试判断△ABC的形状。
(8)△ABC的两边分别为5, 12,另一边为奇数,且a+b+c 是3的倍数,则c应为,此三角形为。
(9)求:①若三角形三条边的长分别是7, 24, 25,则这个三角形的最大内角是度。
②已知三角形三边的比为1:3:2,则其最小角为。
【知识点4】勾股数(1)勾股数是正整数(2)满足的关系条件(3)勾股数的n倍(n≠0),仍然满足(4)常见勾股数三、勾股定理的应用1、与图形展开的有关计算(注意展开方式)(1)某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .(2)如图,在棱长为1的正方体ABCD —A ’B ’C ’D ’的表面上,求从顶点A 到顶点C ’的最短距离.(3)如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cmABAB(4)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.2、航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过小时后,它们相距________海里(2)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。