指数函数的图像和性质

合集下载

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

指数函数及其图像与性质

指数函数及其图像与性质

y3
x
1 x (3 ) ( ) 3
1 x
a
1 1 3
,所以,
(3)因为 y 2 (2 ) ( 2 ) ,底 a 3 2 1.259 1 所以,函数 (,) 内是增函数.
例2:已知指数函数 f ( x) a x 的图像过

9 (2, ) 4
,求 f (3)的值.
解:
要使得根式有意义, 则需要被开方数非负, 故2 4 0 , 即2 4
x
x
考虑指数函数 y 2 为增函数,
x
且 4 22, 故有 x 2 即函数的定义域为 (2,)
课堂练习:
1.判断下列函数在 (,) 内的单调性:
x y 0 . 9 (1 ) (2)y ( 2 ) (3) y 3
x

Hale Waihona Puke x 22.已知指数函数 f ( x) a
x
满足条件 f (3)
8 27
时,求 f (2) 的值.
3.求下列函数的定义域:
(1 ) y
3 y ;( 2 ) x 2 1
3x 8
x
2x
y2 由此得到 x 这个函数中,指数 为自变量,底 2为常数.
指数函数:
一般地,形如 的函数叫做指数函数, a a 0且 a 1 其中底( )为常量. 指数函数的定义域为 R ,值域为 (0,) .
) , y 3x , y ( 1 ) , y 0.8 形如 y 2x , y ( 1 2 3 都是指数函数.
x
y ax
x
x
做一做
下列利用“描点法”作指数 函 y 2 x 和y ( 1 ) x 数 的图像. 指数函数的定义域为 R ,取 x 的一些值,求出各函数所对 应的函数值 y ,列表:

指数函数的图像和性质1

指数函数的图像和性质1
列表
x ... -2 -1 0 1 2 3 ... 10 ...
y=2x ... 0.25 0.5 1 2 4 8 ... 1 024 ...
y=3x ... 0.11 0.33 1 3 9 27 ... 59 049 ...
做一做
描点画出图像
y 3x
y 2x
(1)当x<0时,总有2x>3x;
指数函数 的图像和性质
观察,归纳
指数函数在底数a>1及0<a<1,两种情况的图象和性质如下:
a>1
0< a < 1
图 象
(1)定义域:R
性 (2)值域:( 0 ,+∞ )
(3)过点(0,1),即x=0时,
质 y(4=)当1 x>0时,y>1;x<0时0<y<1 (4)当x>0时,0<y<1;x<0时y>1
(2)当x>0时,总有2x<3x;
(3)当x>0时,y=3x比y=2x的函
数值增长得快.
a>b>1时,
(1)当x<0时,总有ax<bx<1;
(2)当x=0时,总有ax=bx=1;
(3)当x>0时,总有ax>bx>1;
(4)指数函数的底数越大,当x>0时,其函数值增
长得就越快.
y 3x
y 2x
(2)因为y=0.75x是R上的减函数,0.1>-0.1,所以 0.750.1<0.75-0.1.
练习:
比较下列各题中两个值的大小.
(1)1.7 2.5, 1.7 3 (2) 0.8 –0.1, 0.8 –0.2 (3) 1.7 0.3, 0.9 3.1

指数函数图像及性质

指数函数图像及性质

指数函数图像及性质
指数函数图像的特征就是“J”形的曲线,它可用来表示水平和垂直运动的加速度和内能释放。

指数函数可以表示非常多种物理或生物学现象。

指数函数图像具有以下性质:
1. 指数函数图像以指数增长和指数衰减。

即曲线是从左向右张开的,以及从右向左收缩的。

2. 一般情况下,指数函数图像会通过坐标原点(0,0),如果不是,则说明指数函数图像是一条平行曲线。

3. 在每一个定义域,指数函数图像的斜率最大值为1,但是随着x的增加,它的斜率越来越小,趋近于0。

4. 在不同的定义域,指数函数图像的形状也有所不同,一般数学家会把它们分成“快速增长函数”和“减速函数”,其中前者的最大斜率大于1而后者的最大斜率小于1。

5. 对于指数函数图像,从右向左看斜率是负值,而从左向右看又会变成正值。

6. 有时候,指数函数图像会拐到右上或者右下方,这时候说明指数函数正在发挥它的作用。

7. 指数函数的绝对值有三种情况,即增加,减少和突然增加,这种情况受到外部因素的影响。

8. 指数函数图像在平行于y轴的负半轴上,其值会无限接近0,而在平行于y轴的正半轴上,其值会无限增长。

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是一类重要的数学函数,在数学和其他学科的研究中具有广泛的应用。

本文将介绍指数函数的图像和性质,帮助读者更好地理解和应用这一函数。

1. 定义指数函数是以指数为自变量,底数大于0且不等于1的函数。

一般形式为f(x) = a^x,其中a为底数,x为指数。

指数可以是实数,函数值则可以是正数、负数或零。

2. 指数函数的图像由于底数大于0且不等于1,指数函数的图像不会通过原点(0,0)。

当指数x为0时,函数值为1,因此图像会经过点(0,1)。

当指数x为正值时,函数值逐渐增大;当指数x为负值时,函数值逐渐减小。

图像可以根据底数的不同呈现不同的特点。

3. 底数大于1的指数函数当底数a大于1时,指数函数的图像呈现上升趋势,即从左至右逐渐增大。

随着指数x的增大,函数值也会变得越来越大。

当a越接近1时,曲线的增长速度会变得越来越缓慢。

例如,y = 2^x的图像在x轴的右侧逐渐升高,但增长速度逐渐减慢。

4. 底数介于0和1之间的指数函数当底数a介于0和1之间时,指数函数的图像呈现下降趋势,即从左至右逐渐减小。

随着指数x的增大,函数值会越来越接近于0。

当a越接近0时,曲线的下降速度会越来越慢。

例如,y = (1/2)^x的图像在x轴的右侧逐渐下降,但下降速度逐渐变缓。

5. 指数函数的水平位移指数函数的图像可以通过水平位移产生变化。

将指数函数右移h个单位,可以得到f(x-h)。

这样做会使整个图像向右平移h个单位。

同样,向左移动h个单位可以得到f(x+h),将整个图像向左平移h个单位。

6. 指数函数的垂直位移指数函数的图像也可以通过垂直位移产生变化。

将指数函数上移k个单位,可以得到f(x)+k。

这样做会使整个图像上移k个单位。

同样,向下移动k个单位可以得到f(x)-k),整个图像下移k个单位。

7. 指数函数的对称性对于底数a大于1的指数函数,以y轴为对称轴,具有对称性。

即f(x) = a^x的图像关于y轴对称。

2.1.2指数函数图象及性质(二)

2.1.2指数函数图象及性质(二)

若把函数 f ( x ) 的图象向左平移2 个单位, y=3(x+2)2 则得到函数 ____________ 的图象; 若把函数 f ( x ) 的图象向下平移 3 个单位, y=3x2-3 则得到函数 _________ 的图象; 若把函数 f ( x ) 的图象向上平移 4 个单位, y=3x2+4 则得到函数 _________ 的图象.
C. 0 a 1, 且 b 0 B. a 1, 且 b 0 D. a 1, 且 b 0
y
o
x
0 a 1, 1 b 1 0,
主页
§2.1.2指数函数及其性质(二) y ( 1 ) x 作出函数图象,求定义域、 例1. 已知函数 2 y ( 1 )| x| 的关系. 值域,并探讨与图象 2
y
2
o -2
- x 1
x
所以当x<0时, f ( x ) 2
主页
.
§2.1.2指数函数及其性质(二)
1.图像过定点问题
由于函数y=ax(a>0,且a≠1)恒经过定点 (0,1),因此指数函数与其它函数复合会产生一 些丰富多彩的定点问题
例2.函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点? (3, 3)
点评:函数y=ax-3+2的图象恒过定点(3,3),实 际上就是将定点(0,1)向右平移3个单位,向上平 移2个单位得到.
主页
§2.1.2指数函数及其性质(二)
【1】函数y=ax+5-1(a>0,且a≠1)必经 过哪个定点? ( 5, 0)
【2】函数 y a b=____. 1
x b
2 恒过定点(1,3)则
1 ) x12 2 x1 , f ( x ) ( 1 ) x22 2 x 2 , 则 f ( x1 ) ( 5 2 5

指数函数的图象和性质

指数函数的图象和性质

1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.

2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

指数函数图象及性质

指数函数图象及性质

mn
⑶比较下列各数的大小:
10 , 0.42.5 ,
2 0.2
1 0.42.5 0
2 0.2
例3在同一坐标系下作出下列函数的图象,并指出
它们与指数函数y= 2x 的图象的关系,
⑴ y 2x1 与 y 2x2
⑵ y 2x1 与 y 2x2
解:⑴列出函数数据表,作出图像
x -3 -2 -1 0 1 2 3
( 1 0,且 1 1)
a
a
探究2:判断下列函数,那些是指数函数?
(1) y=4x
(2) y=x4
(3) y=-4x
(4) y=(-3)x
(5) y=xx
(6) y=3×4x
(7) y=3x+1
点评:函数解析式三大特征为①指数是自变量 x ;②底数是非1正常数;③系数为1.
随堂练习:
函数y=(a2-3a+3)ax 是指数函数,求a的 值.
-0.5 0 0.6 1 1.7 1
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
由3x≥30.5,可得x≥0.5,即x的取值范围为 [0.5,+∞)。

高中数学必修1同步辅导课程——指数函数及其性质
例2:解下列不等式
(1)(1)x2 8 32x 3
(2) ax22x ( 1 )x2 (a 0且a 1) a
例2:指出下列函数的单调区间,并判断增减性;

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。


数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。

其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。

以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。

指数函数的图像及性质 PPT

指数函数的图像及性质 PPT
面积是多少?(用y 表示面积)
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:对于比较大小的问题,若是底数相同, 则用指数函数的性质——单调性
解:(1)考察函数y=1.7x,它在区间(-∞,+∞) 上是增函数。因为2.5<3,所以1.72.5<1.73.
(2)考察函数y=0.8x,它在区间(-∞,+∞)上 是减函数。因为-0.1>-0.2,所以0.8-0.1<0.8-0.5.
(1) y=x2 (2) y=2x (3) y=2 ·3x (4) y=23x (5) y=3x+1
指数函数的解析式 y a x中 ,
a x 的系数是1 ;
指数必须是单个x ; 底数a0,且a1.
动手操作, 画出图像
2.指数函数的图象:
在同一坐标系中画出函数
y 2x与y 1 x
的图象.
2
描点法作图 列表
思考:为何规定a0,且a1 ?
0
1
a
当a 0时, 例如y (4)x , x 1 , 1 , 1 ,值时没有意义
248
当a 0时, 当x 0, a x 0;
当x 0时,a x没有意义
当a=1时,a x =1,没有研究的必要.
概念剖析
思考2: 指数函数解析式有什么特点? 下列哪些是指数函数?
1
所以函数 y 3x的定义域是{x | x 0};
(2)要使已知函数有意义 , 必须 x 1有意义, 即x 1, 所以函数 y 5 x1的定义域是 [1, )
3、 求下列函数的定义域
(1) y 3 2x1
{x | x 1} 2
1
(2) y 0.7 x
{x | x 0}
感悟收获,巩固拓展
在 R 上是减函数
运用所学知识回答
(1)指数函数y=5x的底数是多少?这个函数的
单调性如何? 1
(2)一个指数函数的底数是 5 ,则它的解析式 是什么?它的定义域、值域各是多少?
应用新知
例1. 比较下列各题中两个值的大小:
(1)1.72.5 , 1.73 ; (2)0.8-0.1 ,0.8 -0.2
y 3x
y2x
观察以上四个函数的图象,你发现了什么特征?有何异同?
观察图像, 得出性质
a>1
0<a<1

y
y=ax
(a>1)
y=1
y=ax
y
Hale Waihona Puke (0<a<1)
(0,1)
y=1
(0,1)

0
x
0
x
定义域: R

值 域: (0,+ ∞ )
过定点:( 0 , 1 ) ,即 x = 0 时, y = 1 .
质 在 R 上是增函数
应用新知
利用指数函数的性质,比较下列各题中两个值的 大小:
> (1)30.8与30.7
< (2)1.1-2.1与1.1-2
< > (3)0.70.1与0.7-0.1 (4)0.6181.8与0.6181.9
例2、求下列函数的定义域:
1
(1)y=3 x
(2)y=5 x 1
解(: 1) 要使已知函数有意义 ,必须 1 有意义,即x 0, x
描点
作图
x … -2 -1 0 1 2x … 0.25 0.5 1 2
2… 4…
x … -2 -1 0 1 2 …
(1)x … 4 2
2 1 0.5 0.25 …
动手操作, 画出图像
y
y (1)x
2
4
y=2x
3
2
1
-3 -2 -1
01
23
x
-1
动手操作, 画出图像
y
1 2
x
y
1 3
x
总结反思
我学到了哪些数学知识?
我掌握了哪些数学方法? 我还有哪些问题是感到困惑的?
知识运用

练习4-2 T2、T3

以上有不当之处,请大家给与批评指正,谢 谢大家!
20
指 数 函 数
1、掌握指数函数的概念、图像和 性质。 2、会运用指数函数的图像和性质 解决有关问题。
学习目标
创设情景
引例1.某种细胞分裂时,由1个分裂成2个,2个分裂 成4个,……. 1个这样的细胞分裂 x 次后,得到的细 胞个数 y 与 x 的函数表达式是什么?
次数
细胞分裂过程
细胞个数
第一次
2=21
1 2
1
,
1 2
2
,
1 2
2
;
y
1 2
x
函数值?? 什么函数?
引入概念
我们从两列指数式和一个实例抽象得到两个函数:
y
2x
与y
1 2
x
这两个函数有 何特点?
1.指数函数的定义:
形如y = ax(a0,且a 1)的函数叫做指数函数, 其中x是自变量 .函数的定义域是R .
概念剖析
第二次
表达式
4=22
第三次
……y …=…2x
8=23
第x次
……
2x
细胞个数y关于分裂次数x的表达式为:
创设情景
引例2 .比较下列指数式的异同, 能不能把它们看成函数值?
11
①、 23 , 22 , 20 , 21, 2 2 , 22;
y 2x
②、
1
1 3 2
1
,
1 2
2
,
1 2
0
,
相关文档
最新文档