指数函数的图象及性质

合集下载

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

高一数学人必修件指数函数的图象和性质

高一数学人必修件指数函数的图象和性质
生物繁殖
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

指数函数的图象和性质

指数函数的图象和性质

1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.

2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1

指数函数的图像与性质

指数函数的图像与性质
X
细胞分裂问题:
任何有机体都是由细胞作为基本单位组成 的,每个细胞每次分裂为2个,则1 个这样的 细胞第一次分裂后变为2个细胞,第2次分裂 后就得到4个细胞,第3次分裂后就得到8个细 胞,…。那么,一个这样的细胞分裂x次后, 得到的细胞个数y与x函数关系是什么?
观 察 细 胞 分 裂 过 程 图 :
0 0.1 1, y 0.1x 是减函数, 且-0.1 0.1,
0.10.1 0.10.1
巩固练习(P107习题第5题)
5、 比较下列各题中两个值的大小:
(1)30.8
30.7
(2)0.ห้องสมุดไป่ตู้50.2
0.750.2
(3)0.91
0.91.1
(4)1.12
y 1 ax
自变量(R)
大于0,不等于1的常数
y 1 ax
练习:下列哪些函数是指数函数?
√ (1)y=2x,
√ (2)y=(1/2)x, × (3)y=x3,
× (4)y=2·3x, × (5)y=(-10)x, × (6)y=3x+1.
例题解释
例1 已知指数函数f (x) 2x,求f (2), f (1), f (0), f (1)的值。
例题解释
例3 利用指数函数的单调性,比较下列各题中两个值的大小:
(1)1.60.1与1.60.2
(2)0.70.1与0.70.2
解:(1)考察函数y 1.6x
1.6 1, y 1.6x 是增函数, 且0.1 0.2,
1.60.1 1.60.2
(2)考察函数y 0.7x
解:f (2)
22

1 22

1 4

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

指数函数图象及其性质

指数函数图象及其性质

x 2 x
(0 y 2)
补充练习
1.下图是①y=ax ②y=bx ③y=cx ④y=dx的图像,则 a,b,c,d与1的大小关系是 (B) A. a<b<1<c<d C. 1<a<b<c<d


y③
B. b<a<1<d<c D. a<b<1<d<c

1
O 1
x
2.若函数f ( x) (2a 1) 是减函数, 则a的取值范围是 . 1 x 1 3.函数y ( ) 的定义域是 , 2 值域是 .
-2
0.25 0.11
-1
0.5 0.33
0 1 1
1 2 3
2 4 9
3 8 27
...
10
1 024 59 049
... ...
... ... ...
做一做
描点画出图像 (1)当x<0时,总有2x > 3x; (2)当x>0时,总有2x < 3x; (3)当x>0时,y=3x比y=2x的函 数值增长得快.
例题讲解
4 x 2由于 2 , 则y a 是减函数 , 所以 5 0 a 1.
(1) y 3 ; (2) y (0.25) (3) y 0.4
1 x 1
2
例2.求下列函数的定义域、值域: 1 x
2 x 1
;
; (4) y 2 1;
x
1 (5) y 2
y 3x
y 2x
例题讲解 例1 (1)求使不等式4x>32成立的x的集合;
已知a
x
4 5

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

指数函数图象及性质

指数函数图象及性质

mn
⑶比较下列各数的大小:
10 , 0.42.5 ,
2 0.2
1 0.42.5 0
2 0.2
例3在同一坐标系下作出下列函数的图象,并指出
它们与指数函数y= 2x 的图象的关系,
⑴ y 2x1 与 y 2x2
⑵ y 2x1 与 y 2x2
解:⑴列出函数数据表,作出图像
x -3 -2 -1 0 1 2 3
( 1 0,且 1 1)
a
a
探究2:判断下列函数,那些是指数函数?
(1) y=4x
(2) y=x4
(3) y=-4x
(4) y=(-3)x
(5) y=xx
(6) y=3×4x
(7) y=3x+1
点评:函数解析式三大特征为①指数是自变量 x ;②底数是非1正常数;③系数为1.
随堂练习:
函数y=(a2-3a+3)ax 是指数函数,求a的 值.
-0.5 0 0.6 1 1.7 1
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
由3x≥30.5,可得x≥0.5,即x的取值范围为 [0.5,+∞)。

高中数学必修1同步辅导课程——指数函数及其性质
例2:解下列不等式
(1)(1)x2 8 32x 3
(2) ax22x ( 1 )x2 (a 0且a 1) a
例2:指出下列函数的单调区间,并判断增减性;

指数函数的图象和性质

指数函数的图象和性质
yax与y1x图象关 y轴于对称 a
8
9
练习4、此图是①y=ax,②y=bx, ③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( )
A a<b <1 < c < d ① ②
③④
B b<a <1 < d < c
C 1<a <b< c < d
D a<b <1 <d < c
10
3.3 指数函数的图象及其性质
1
函数 y 2x 的性质:
1.定义域: R
2.值 域: 0,
3.x=0 时,y=1.即过点(0,1) 4.在 R 上是增函数 5.奇偶性:既不是奇函数也不是偶函数
2
函数 y 1 x 的性质:
2
1.定义域: R
2.值域: 0,
3.x=0 时,y=1.即过点(0,1) 4.在 R 上是减函数 5.奇偶性:既不是奇函数也不是偶函数
(1)定义域: R
(2)值域: (0, )
(3)奇偶性:非奇非偶函数 (4)单调性:在R上是减函数
质 (5)过点(0,1) 即 x=0 时,y=1 (5)过点(0,1) 即x=0时,y=1
(6)x>0时,y>1;x<0时,0<y<1 (6)x>0时,0<y<1;x<0时,y>1
6
7
四、yax与y1x图象间关系 a
3
二、作函数图象
y 2x
y
3
x
2
y 4x
y 5x
4
二、作函数图象
y
1
x
2
y
1
x
5
y 1 ห้องสมุดไป่ตู้x 4
y
4

指数函数的图象及性质

指数函数的图象及性质

指数函数一、根式与分数指数幂1. 根式定义根式:一般地,若x n=a(a为非负实数,n为正整数),则x叫做a的n次方根,记作或。

其中,n叫做根指数,a叫做被开方数。

2. 根式性质当n为奇数时,正数的n次方根为正数,负数的n次方根为负数。

当n为偶数时,正数的n次方根有两个,互为相反数;负数没有偶次方根。

0的任何次方根都是0。

3. 根式运算化简:通过因式分解、合并同类项等方法将复杂的根式化简为最简形式。

求值:将根号下的数按照因数分解的形式写出,然后求出完全平方数的平方根,最后相乘得到最终结果。

和(差):将根式化为最简形式后,合并同类项。

积(商):合并同类项,分解各个项,然后化简得到最终结果。

4. 分数指数幂定义分数指数幂:一个数的指数为分数,如(a>0,m,n∈N∗且n>1),其中a的次幂等于n次根号下a的m次方,即。

二、分数指数幂的运算性质1、同底数幂相乘:底数相同,指数相加2、同底数幂相除:底数相同,指数相减3、幂的乘方:指数相乘4、任何非零数的0次幂都等于15、负指数幂表示倒数三、实数指数幂的运算及其性质1、实数指数幂的基本概念实数指数幂指的是形如 a n 的数,其中 a 为实数(且 a≠0),n 为实数。

实数指数幂包括正整数指数幂、零指数幂、负整数指数幂、分数指数幂以及无理数指数幂。

2、运算性质同底数幂相乘:a m•a n=a m+n同底数幂相除:a m/a n=a m−n(a≠0)幂的乘方:(a m)n=a mn分数指数幂:(a>0,m,n 为正整数,n>1)负整数指数幂:(a≠0)零指数幂:a0=1(a≠0)四、无理数指数幂有理数指数幂逼近无理数指数幂的原理,基于数学中的极限思想和连续性概念。

由于无理数无法直接表示为两个整数的比,我们需要通过一系列越来越接近该无理数的有理数来逼近它,从而计算出对应的指数幂值。

这一过程体现了数学中的逼近和极限思想,是微积分等更高层次数学的基础。

课件6:4.1.2 指数函数的性质与图像

课件6:4.1.2 指数函数的性质与图像
∴ =在[-1,1]上单调递增,

1
0< ≤≤.

由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],

2 −2−3

1
2
∴ y=

1 −4
=16.又∵
2
2 −2−3

1
2
2 −2−3

1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2

(2)


2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1

指数函数图像和性质_课件

指数函数图像和性质_课件

0.4
2.5
10 20.2
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
a>1

6
0<a<1
6
5
5
4
4
3
3

1
-4 -2
2
2
1
1
1
-4
-2
0
-1
2
4
6
0
-1
2
4
6
1.定义域:R

2.值域:(0,+∞) 3.过点(0,1),即x=0时,y=1
x
x
-2
-1
0 1
1 2
2 4
3 8
2
1 2 x
1 8 8 1 27 1 27
1 4
4
1 2 2 1 3 3
1
1 1
3
1 3
x
1 9 9
1 2 3 1 3
1 4 9 1 9
1 8 27 1 27
y
1 y 2
x
1 y 3
x
y 3x
x>0时,0<y<1 x<0时, y>1 在R上是减函数
比较下列各题中两个值的大小: ①
1 .7
2 .5

1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
5

因为1.7>1,所以函数y= 1.7 在R上是增函数, 而2.5<3,所以,

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。


数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。

其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。

以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列表:
x … -3
-2
-1
0
y=3x … 0.037 0.11
0.33
1
y=3-x …
27
9
3
1
1
2
3…
3
9
27 …
0.33
0.11 0.037 …
同坐标系中画出两函数图象,并观察图象的特点
y
y
1 3
x
y 3x
都过定 点(1,0)
1
0
1
关于y轴对称
x
y
y
1 3
x
y
1 2
x
都过定点 (1,0)
1
y 3x
y 2x
关于y轴对称
0
1
x
y
yy
y
1 2
x
y
1 3
x
y
y 3x y 2x
y=ax (a>1)
1
0
x
11
00
11
y=ax (0<a<1)
1
0 xx
x
图象共同特征:(1)图象可向左、右两方无限伸展 (2)图象都在x轴上方 (3)都经过坐标为(0,1)的点
y y ax
(a 1)
1.下列以x为自变量的函数中,是指数函数的是( B )
A.y (4)x
B.y x
C.y 2 4x D.y ax2 (a 0且a 1)
2.若函数y=(a2-3a+3)ax是指数函数,则( D)
A.a>1且a≠1
B.a=1
C.a=1或a=2
D.a=2
【解析】若函数y=(a2-3a+3)ax是指数函数,
则a2-3a+3=1, 解得a=2或a=1, 又因为指数函数的底数a>0且a≠1,
定义是考 查的重点
故a=2.
3.函数y=ax-3+2(a>0且a≠1)的图象一定经过点
P,则P点的坐标为( B )
A.(-2,-3)
B.(3,3)
C.(3,2)
D.(-3,-2)
【解析】因为y=ax-3+2(a>0且a≠1),
y a x (0 a 1)
y
1
0
x
图象自左至右逐渐上升
1
0
x
图象自左至右逐渐下降
探究点3 由函数图象可以得出函数的哪些性质呢?
0<a<1
y a x (0 a 1)yaຫໍສະໝຸດ 1y y ax (a 1)
图象
1
0
x
1
x
0
定义 域
R
值域
(0,+∞)
(1)过定点(0,1),即x=0时,y=1 性质
在实数范围内函数值无意义.
(n1 ∈N*)
2n
若a=1,y=1x=1是一个常量,因此对它就没有研
究的必要,
为了避免上述各种情况,所以规定a>0且a≠1.
例1 下列函数中是指数函数的函数序号是 (2) .
(1)y x2;(2)y 3x;(3)y 4x;
(4) y 3x ; (5) y x2x1.
(2)在R上是减函数 (2)在R上是增函数
a决定 单调

例3.比较下列各题中两个值的大小
11.72.5 ,1.73; 2 0.80.1, 0.80.2; 31.70.3 , 0.93.1.
根据指数 函数的性

解:(1)根据函数y=1.7x的性质,1.72.5<1.73.
(2)根据函数y=0.8x的性质,0.8-0.1<0.8-0.2.
(3)根据函数y=1.7x的性质,1.70.3>1.70=1,
根据函数y=0.9x的性质,0.93.1<0.90=1,
所以1.70.3>0.93.1
不同底的要找中间值
【变式练习】
用“>”或“<”填空:

1
3
)5 <

1
)0
4
4
7
5.06 4

5.060

4
5
)6
>(
4
)0
3
3
0.19
2 3

0.190
CD
H四点,由函数解析式易知E(1,
c),
F(1,d),G(1, a),H(1,b),
O1
x
由图象可直观看出
c结>论d>:1当>aa>>1b时,图象越靠近y轴,底数越大; 当0<a<1时,图象越靠近y轴,底数越小.
2.指数函数的图象和性质
底数
0 a 1
图象
a 1
定义域 值域
性质
R
(0, )
(1)过定点(0,1),即x=0时,y=1 (2)在R上是减函数 (2)在R上是增函数
2
么,指数函数是怎样定义的呢?
指数函数的概念:
一般地,函数_y_=_a_x(a>0,且a≠1)叫做指数函 数,其中x是自变量,函数的定义域是_R_.
思考:在指数函数y=ax中,为什么要规定a>0,且
a≠1呢?
提示:若a=0,当当xx><00时时,,aa
x恒等于0, x无意义
若a<0,比如y=(-4)x,这时对于x=
次,剩余长度y与x的关系是
y
(1)x(x 2
N)
.
这个式子是 怎么得出来 的呢?
截取
次数 1次 2次 3次 4次
x次
y (1)x(x N*) 2
木棒 剩余
1尺 1尺 1尺 1 尺
2
4
8
16
(1)x尺 2
实例1和实例2涉及的函数有什么共同特点呢?
接下来我们一起来探究这个问题.
探究点1 形如y=2x, y (1)x 的函数是指数函数.那
探究点2 研究函数都会研究函数图象,如何画出
指数函数的图象呢?
描点法是作
用 描点法 作出下列两组函数的图象, 函数图象的
然后写出其一些性质:
通用方法哦
(1)y 2x
y
y 2x
1
0
1
x
y (1 )x 2
y
y
1 2
x
y
1 2
x
1
0
1
x
(2) y 3x 与 y (1)x 的图象. 3
y 1ax
幂系数为1
自变量仅有 这一种形式
底数为正数且 不为1的常数
关键条件 例2 已知指数函数 f(x)=ax(a>0,且a≠1) 的图象
经过点(3,π),求f(0) 的值.
解析:指数函数的图象经过点(3,π),有f(3)=π,
1
即 a3=π, 解得 a 3
x
于是 f x 3
所以 f (0) 0 1
所以当x-3=0,即x=3时,y=3,
所以函数y=ax-3+2(a>0且a≠1)的图象过定点
P(3,3).
4.如图,指数函数:A. y=ax B.y=bx C.y=cx D. y=dx
的图象,则a,b,c,d与1的大小关系是b__<__a_<__1__<__d_<__c__.
如图,作直线x=1,与这4个 A B y 函数图象分别交于E、F、G、
指数函数的图象及性质
实例1 某种细胞分裂时,由1个分裂成2个,2个 分裂成4个,…
......
一个细胞分裂x次,得到的细胞的个数y与x 的函数关系式是: y 2x(x N ) .
实例2 《庄子·逍遥游》记载:一尺之椎,日取其
半,万世不竭.意思是一尺长的木棒,一天截取一
半,很长时间也截取不完.这样的一个木棒截取x
相关文档
最新文档