指数函数的图象与性质

合集下载

指数函数的图像与性质

指数函数的图像与性质

指数函数的图像与性质指数函数是高中数学中常见的一种函数,它具有独特的图像与性质。

本文将从图像、定义、性质等方面进行讨论,以帮助读者更好地理解指数函数。

一、指数函数的定义与图像指数函数可以表示为f(x) = a^x,其中a为正实数且不等于1。

在定义域为实数集上,指数函数的图像呈现出特殊的增长趋势。

1. 当a>1时,指数函数呈现上升的趋势。

随着x的增大,f(x)的取值也呈现出逐渐增大的特点。

这是因为指数函数随着底数a的增大,幂次的增长速度加快。

2. 当0<a<1时,指数函数呈现下降的趋势。

随着x的增大,f(x)的取值逐渐减小。

这是因为指数函数随着底数a的减小,幂次的增长速度减慢。

以上两种情况都可以通过绘制函数图像来进行直观的展示。

在图像中,我们可以发现指数函数在x轴的正半轴方向具有渐近线,并且在x=0处经过点(0, 1)。

二、指数函数的性质除了图像外,指数函数还具有以下几个重要的性质。

1. 单调性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。

这是由指数函数的定义所决定的。

2. 定义域与值域:由于指数函数的定义域为实数集,且底数a不等于1,因此指数函数的值域也是正实数集(0, +∞)。

3. 奇偶性:当指数函数的底数a为负时,指数函数为奇函数,即f(x) = -a^x;当底数a为正时,则指数函数为偶函数,即f(x) = a^x。

4. 渐近线:指数函数在x轴的正半轴方向具有一条水平渐近线y=0,并且在x=0处有一个横坐标为1的纵坐标,即点(0, 1)。

5. 过点(1, a):指数函数在x=1处经过点(1, a)。

这是由指数函数的定义得出的。

通过对指数函数的图像与性质的讨论,我们可以更加全面地了解这一函数类型。

指数函数在实际问题中具有广泛的应用,例如在金融领域中的复利计算、人口增长的模型等。

因此,熟练掌握指数函数的图像与性质对于解决实际问题具有重要的意义。

指数函数图像及其性质

指数函数图像及其性质

0
-1
定义域 值域
R 0,
性 质
(1)过定点(0,1) (2)在R上是增函数
(2)在R上是减函数
探究:比较下列数的大小
1.71x 0.94
x
1.71 1.71
3.1 1
2.5
4 0.94 0.94 1.2
同底数幂比较大小 利用图象的单调性
如何 比较
1、指数函数图象和性质
a>1
6
0<a<1
6 5 4
图 像
-4 -2
5
4
3
3
(0,1)
1 0
2
y=1
2 4 6
2
(0,1)
2 4
y=1
6ቤተ መጻሕፍቲ ባይዱ
1
1
1
-4
-2
0
-1
-1
定义域
值域
0,
R
性 (1)过定点(0,1) 质 (2)在R上是增函数 (2)在R上是减函数
2、指数函数的大小比较
人教版高中数学必修1第二章第一节
2.1指数函数图象
及其性质
课前回顾
1、什么样的函数叫指数函数?
x y a (a 0且a 1) 叫做指数函数 一般地,函数 定义域为 R ,值域为(0,) 。
a 为何只
解析式的三 个特点!
能在此 范围内 取值?
指数函数的图象和性质
设问:得到函数图象一般的步骤是什么?研究函数一

8
x
4
2
1.4
1
0.71 0.5 0.25
0.13

11 x yy 22
y 3

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

高一数学人必修件指数函数的图象和性质

高一数学人必修件指数函数的图象和性质
生物繁殖
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。

指数函数及其图像与性质

指数函数及其图像与性质

y3
x
1 x (3 ) ( ) 3
1 x
a
1 1 3
,所以,
(3)因为 y 2 (2 ) ( 2 ) ,底 a 3 2 1.259 1 所以,函数 (,) 内是增函数.
例2:已知指数函数 f ( x) a x 的图像过

9 (2, ) 4
,求 f (3)的值.
解:
要使得根式有意义, 则需要被开方数非负, 故2 4 0 , 即2 4
x
x
考虑指数函数 y 2 为增函数,
x
且 4 22, 故有 x 2 即函数的定义域为 (2,)
课堂练习:
1.判断下列函数在 (,) 内的单调性:
x y 0 . 9 (1 ) (2)y ( 2 ) (3) y 3
x

Hale Waihona Puke x 22.已知指数函数 f ( x) a
x
满足条件 f (3)
8 27
时,求 f (2) 的值.
3.求下列函数的定义域:
(1 ) y
3 y ;( 2 ) x 2 1
3x 8
x
2x
y2 由此得到 x 这个函数中,指数 为自变量,底 2为常数.
指数函数:
一般地,形如 的函数叫做指数函数, a a 0且 a 1 其中底( )为常量. 指数函数的定义域为 R ,值域为 (0,) .
) , y 3x , y ( 1 ) , y 0.8 形如 y 2x , y ( 1 2 3 都是指数函数.
x
y ax
x
x
做一做
下列利用“描点法”作指数 函 y 2 x 和y ( 1 ) x 数 的图像. 指数函数的定义域为 R ,取 x 的一些值,求出各函数所对 应的函数值 y ,列表:

指数函数的图像和性质1

指数函数的图像和性质1
列表
x ... -2 -1 0 1 2 3 ... 10 ...
y=2x ... 0.25 0.5 1 2 4 8 ... 1 024 ...
y=3x ... 0.11 0.33 1 3 9 27 ... 59 049 ...
做一做
描点画出图像
y 3x
y 2x
(1)当x<0时,总有2x>3x;
指数函数 的图像和性质
观察,归纳
指数函数在底数a>1及0<a<1,两种情况的图象和性质如下:
a>1
0< a < 1
图 象
(1)定义域:R
性 (2)值域:( 0 ,+∞ )
(3)过点(0,1),即x=0时,
质 y(4=)当1 x>0时,y>1;x<0时0<y<1 (4)当x>0时,0<y<1;x<0时y>1
(2)当x>0时,总有2x<3x;
(3)当x>0时,y=3x比y=2x的函
数值增长得快.
a>b>1时,
(1)当x<0时,总有ax<bx<1;
(2)当x=0时,总有ax=bx=1;
(3)当x>0时,总有ax>bx>1;
(4)指数函数的底数越大,当x>0时,其函数值增
长得就越快.
y 3x
y 2x
(2)因为y=0.75x是R上的减函数,0.1>-0.1,所以 0.750.1<0.75-0.1.
练习:
比较下列各题中两个值的大小.
(1)1.7 2.5, 1.7 3 (2) 0.8 –0.1, 0.8 –0.2 (3) 1.7 0.3, 0.9 3.1

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是一类重要的数学函数,在数学和其他学科的研究中具有广泛的应用。

本文将介绍指数函数的图像和性质,帮助读者更好地理解和应用这一函数。

1. 定义指数函数是以指数为自变量,底数大于0且不等于1的函数。

一般形式为f(x) = a^x,其中a为底数,x为指数。

指数可以是实数,函数值则可以是正数、负数或零。

2. 指数函数的图像由于底数大于0且不等于1,指数函数的图像不会通过原点(0,0)。

当指数x为0时,函数值为1,因此图像会经过点(0,1)。

当指数x为正值时,函数值逐渐增大;当指数x为负值时,函数值逐渐减小。

图像可以根据底数的不同呈现不同的特点。

3. 底数大于1的指数函数当底数a大于1时,指数函数的图像呈现上升趋势,即从左至右逐渐增大。

随着指数x的增大,函数值也会变得越来越大。

当a越接近1时,曲线的增长速度会变得越来越缓慢。

例如,y = 2^x的图像在x轴的右侧逐渐升高,但增长速度逐渐减慢。

4. 底数介于0和1之间的指数函数当底数a介于0和1之间时,指数函数的图像呈现下降趋势,即从左至右逐渐减小。

随着指数x的增大,函数值会越来越接近于0。

当a越接近0时,曲线的下降速度会越来越慢。

例如,y = (1/2)^x的图像在x轴的右侧逐渐下降,但下降速度逐渐变缓。

5. 指数函数的水平位移指数函数的图像可以通过水平位移产生变化。

将指数函数右移h个单位,可以得到f(x-h)。

这样做会使整个图像向右平移h个单位。

同样,向左移动h个单位可以得到f(x+h),将整个图像向左平移h个单位。

6. 指数函数的垂直位移指数函数的图像也可以通过垂直位移产生变化。

将指数函数上移k个单位,可以得到f(x)+k。

这样做会使整个图像上移k个单位。

同样,向下移动k个单位可以得到f(x)-k),整个图像下移k个单位。

7. 指数函数的对称性对于底数a大于1的指数函数,以y轴为对称轴,具有对称性。

即f(x) = a^x的图像关于y轴对称。

2.1.2指数函数图象及性质(二)

2.1.2指数函数图象及性质(二)

若把函数 f ( x ) 的图象向左平移2 个单位, y=3(x+2)2 则得到函数 ____________ 的图象; 若把函数 f ( x ) 的图象向下平移 3 个单位, y=3x2-3 则得到函数 _________ 的图象; 若把函数 f ( x ) 的图象向上平移 4 个单位, y=3x2+4 则得到函数 _________ 的图象.
C. 0 a 1, 且 b 0 B. a 1, 且 b 0 D. a 1, 且 b 0
y
o
x
0 a 1, 1 b 1 0,
主页
§2.1.2指数函数及其性质(二) y ( 1 ) x 作出函数图象,求定义域、 例1. 已知函数 2 y ( 1 )| x| 的关系. 值域,并探讨与图象 2
y
2
o -2
- x 1
x
所以当x<0时, f ( x ) 2
主页
.
§2.1.2指数函数及其性质(二)
1.图像过定点问题
由于函数y=ax(a>0,且a≠1)恒经过定点 (0,1),因此指数函数与其它函数复合会产生一 些丰富多彩的定点问题
例2.函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点? (3, 3)
点评:函数y=ax-3+2的图象恒过定点(3,3),实 际上就是将定点(0,1)向右平移3个单位,向上平 移2个单位得到.
主页
§2.1.2指数函数及其性质(二)
【1】函数y=ax+5-1(a>0,且a≠1)必经 过哪个定点? ( 5, 0)
【2】函数 y a b=____. 1
x b
2 恒过定点(1,3)则
1 ) x12 2 x1 , f ( x ) ( 1 ) x22 2 x 2 , 则 f ( x1 ) ( 5 2 5

指数函数的定义图象及性质_图文

指数函数的定义图象及性质_图文

一张报纸折叠39次,其高度可到达月球
对折次数 1
2
3
所得纸 的层数
2
4=
8=
函数关系是
在以下关系中:
底为常数
指数为自变量
形如 的函数叫做指数函数.
幂为函数
其中 为自变量,定义域为
探究:为什么要规定
探讨:若不满足上述条件
会怎么样?
(1)若 则当x > 0时,
当x≤0时, 无意义.
(2)若
则对于x的某些数值,可使
在同一坐标系中分别作出如下函数的图像:
x
… -3 -2 -1 -0.5 0 0.5 1 2 3 …
… 0.13 0.25 0.5 0.71 1 1.4 2 4 8 …
…8 4 2
1.4 1 0.71 0.5 0.25 0.13 …
x
… -2.5 -2 -1
-0.5 0
0.5 1 2
2.5 …
… 0.06 0.1 0.3 0.6 1 1.7 1 0.6 0.3 0.1 0.06 …
()
1
0
1
1
1
1
0
0
1
0
1
1
0
0
性质
一般地,函数 y =a x (a >0,a ≠ 1, x ∈R) 具有如下的性质
(1)定义域是实数集R, 值域是正实数集;
y
y = ( )x y = ( )x
y = 3x y = 2x
(2)函数的图象都通过点( 0, 1 ).
(3)当a > 1时,这个函数是增 函数,当x > 0 ,y > 1 ,当x < 0 时 , 0 < y <1 ;

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

课件6:4.1.2 指数函数的性质与图像

课件6:4.1.2 指数函数的性质与图像
∴ =在[-1,1]上单调递增,

1
0< ≤≤.

由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],

2 −2−3

1
2
∴ y=

1 −4
=16.又∵
2
2 −2−3

1
2
2 −2−3

1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2

(2)


2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1

4.2(1)指数函数的图像与性质

4.2(1)指数函数的图像与性质

(1)y=4x (2)y=2.5x (3)y=0.4x (4)y=0.25x
y=0.25x
指数函数图像性质: y=4x 1.指数函数y=ax的图像恒
y=0.4x
过定点(0,1); y=2.5x 2.指数函数y=ax的图像恒
在x轴上方,即值域
y(0,+);
3.指数函数y=ax的图像当 a>1时,是增函数; 当
3… 8…
y 2x … 8
4
2
1.4 1 0.71 0.5 0.25 0.13 …
9
y 2 y 2Hale Waihona Puke x8 7x6
5 4
3 2
1
-6-5-4-3-2-10 1 2 3 4 5 6
x
y
y 1 x 2
y
1 3
x
y 3x
y 2x
3
2
1
x
0
1
x=-1
x=1
练习:在同一直角坐标系中,画下列指数函数的图像
x
二.描点法画指数函数的图像
例1.在同一坐标系中分别作出函数的图像.
(1)
y
2x
与y
1 2
x
(2)
y
3x
与y
1 3
x
作图的基本步骤: 列表、描点、连线.
在同一坐标系中分别作出如下函数的图像:
y
2x与
y
(
1 2
)
x
y 2x
x … -3 -2 -1 -0.5 0 0.5 1 2
y
y 2x … 0.13 0.25 0.5 0.71 1 1.4 2 4
0<a<1时,时减函数;
1

指数函数图像和性质_课件

指数函数图像和性质_课件

0.4
2.5
10 20.2
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
a>1

6
0<a<1
6
5
5
4
4
3
3

1
-4 -2
2
2
1
1
1
-4
-2
0
-1
2
4
6
0
-1
2
4
6
1.定义域:R

2.值域:(0,+∞) 3.过点(0,1),即x=0时,y=1
x
x
-2
-1
0 1
1 2
2 4
3 8
2
1 2 x
1 8 8 1 27 1 27
1 4
4
1 2 2 1 3 3
1
1 1
3
1 3
x
1 9 9
1 2 3 1 3
1 4 9 1 9
1 8 27 1 27
y
1 y 2
x
1 y 3
x
y 3x
x>0时,0<y<1 x<0时, y>1 在R上是减函数
比较下列各题中两个值的大小: ①
1 .7
2 .5

1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
5

因为1.7>1,所以函数y= 1.7 在R上是增函数, 而2.5<3,所以,

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。


数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。

其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。

以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。

指数函数的图像及性质 PPT

指数函数的图像及性质 PPT
面积是多少?(用y 表示面积)
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档