假设检验概述

合集下载

假设检验概述

假设检验概述
设X 用简便方法测定的有害气体的含量 问题:有疑问" EX 23"?
H0 : 23 H1 : 23
例 2 用传统工艺加工的红果罐头 , 每瓶平均维生素 C 的含量为 19 毫克 . 现改进加工工艺 , 抽查 16 个罐头 , 测得 Vc 含量为 23,20.5,21, 22 ,20,22.5,19,20,23,20.5,18.8,20,19.5,22,18,23 (毫克)
拒绝原假设H0.
t / 2 t / 2
临界点
t
0
t x
2
2
(,2.306) (2.306,)
H0 : 0 H1 : 0 H0 : 0 H1 : 0 单侧(单边)检验 H0 : 0 H1 : 0
拒绝域在接受域的两侧,称之为双侧(或双边)检验,
四、假设检验的步骤
1. 提出原假设 H0 ;
23,21,19,24,18,18 (单位 : 十万分之一). 问用简便方法测量有害
气体的含量是否有系统偏差 ?
分析
提出待检验假设 H0 : 23 0
H1 : 23
用样本X1,X2,…,X6 来检验,构造与相关的r.v.,
与区间估计f (时x) 选用 的一样.
U
X
2
~ N (0,1)
,
2. 选择检验统计量,确定分布;
3.根据显著性水平 找出临界点,写出拒绝域;
4. 根据样本值计算确定拒绝or不能拒绝 H0 .
例2 某切割机在正常工作时, 切割每段金属棒的平均长度为 10.5cm, 标准差是0.15cm, 今从一批产品中随机的抽取15段进行 测量, 其结果如下:10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2

统计学中的假设检验方法

统计学中的假设检验方法

统计学中的假设检验方法统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有着广泛的应用。

假设检验是统计学中的一种重要方法,用于验证关于总体参数的假设。

本文将介绍假设检验的基本概念、步骤以及一些常见的应用案例。

一、假设检验的基本概念假设检验是通过对样本数据进行分析,以判断总体参数是否符合某种假设。

在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1)。

原假设通常是我们要证伪的假设,而备择假设则是我们要验证的假设。

在假设检验中,我们需要选择一个适当的统计量作为检验统计量。

这个统计量的取值将决定我们对原假设的接受或拒绝。

通常,我们会根据样本数据计算出一个检验统计量的观察值,并将其与一个临界值进行比较,从而得出结论。

二、假设检验的步骤假设检验通常包含以下几个步骤:1. 提出假设:首先,我们需要明确原假设和备择假设。

原假设通常是一种默认的假设,而备择假设则是我们要验证的假设。

2. 选择显著性水平:显著性水平是我们对原假设拒绝的程度的度量。

通常,我们会选择一个显著性水平(通常为0.05或0.01),表示我们愿意犯错的概率。

3. 计算检验统计量:根据样本数据计算出一个适当的检验统计量。

这个统计量的取值将决定我们对原假设的接受或拒绝。

4. 确定拒绝域:根据显著性水平和检验统计量的分布,确定一个拒绝域。

如果检验统计量的观察值落在这个拒绝域内,我们将拒绝原假设。

5. 得出结论:根据样本数据计算出的检验统计量的观察值,以及拒绝域的判断,得出对原假设的接受或拒绝的结论。

三、假设检验的应用案例假设检验在各个领域都有广泛的应用。

下面将介绍一些常见的应用案例。

1. 医学研究:假设检验在医学研究中被广泛应用,用于验证新药物的疗效。

研究人员可以将患者分为实验组和对照组,然后通过对两组数据进行假设检验,来判断新药物是否具有显著的治疗效果。

2. 市场调研:在市场调研中,假设检验可以用于验证一种新产品的市场潜力。

统计学中的假设检验

统计学中的假设检验

统计学中的假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

在统计学中,假设检验是一种常用的方法,用于验证对于某一总体的某一假设是否成立。

假设检验在科学研究、商业决策以及社会调查等领域都有广泛的应用。

本文将介绍假设检验的基本概念、步骤和常见的统计方法。

一、假设检验的基本概念假设检验是基于样本数据对总体参数进行推断的一种方法。

在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据来判断是否拒绝原假设。

原假设通常是我们希望证伪的假设,而备择假设则是我们希望支持的假设。

二、假设检验的步骤假设检验一般包括以下步骤:1. 提出假设:根据研究问题和背景,提出原假设和备择假设。

2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

3. 收集样本数据:根据研究设计和样本容量要求,收集样本数据。

4. 计算统计量:根据样本数据计算出相应的统计量,如均值、标准差、相关系数等。

5. 判断拒绝域:根据显著性水平和统计量的分布,确定拒绝域。

拒绝域是指当统计量的取值落在该区域内时,我们拒绝原假设。

6. 做出决策:根据样本数据计算出的统计量与拒绝域的关系,判断是否拒绝原假设。

7. 得出结论:根据决策结果,得出对原假设的结论。

三、常见的统计方法在假设检验中,常见的统计方法包括:1. 单样本t检验:用于检验一个样本的均值是否等于某个给定值。

2. 双样本t检验:用于检验两个样本的均值是否相等。

3. 方差分析:用于检验两个或多个样本的均值是否有显著差异。

4. 相关分析:用于检验两个变量之间是否存在线性相关关系。

5. 卡方检验:用于检验观察频数与期望频数之间的差异是否显著。

四、假设检验的局限性假设检验作为一种统计方法,也存在一定的局限性。

首先,假设检验只能提供关于原假设的拒绝与否的结论,并不能确定备择假设的真实性。

第七章假设检验

第七章假设检验
5-2
引言
结论:企图肯定什么事情很难, 结论:企图肯定什么事情很难,而否定就容 易得多。 还记得上次那个例子吗? 易得多。 (还记得上次那个例子吗?两个人 住一起,其中有一个人病了, 住一起,其中有一个人病了,另一个人天天 给他熬药还端到他床前,三个月过去了, 给他熬药还端到他床前,三个月过去了,突 然有一天那个人忙得很, 然有一天那个人忙得很,把药熬好了就对卧 病在床的人说,你自己去喝吧, 病在床的人说,你自己去喝吧,卧病的人心 里想: 这个人怎么这么坏呢? 里想:“这个人怎么这么坏呢?”,他倒忘 了这个人对他的好, 了这个人对他的好,记住一个人的好总比记 住一个人的坏好,有时候想想, 住一个人的坏好,有时候想想,老师就像端 药的人,学生就是喝药的人,良药苦口, 药的人,学生就是喝药的人,良药苦口,我 也许一直是你们背后说你们的那个烂人, 也许一直是你们背后说你们的那个烂人,老 师也是弱势群体啊!!) 师也是弱势群体啊!!)
α
H 0 : µ ≤ 2% ↔ H 1 : µ > 2%
5-10
二、两种类型的错误
两类错误发生的概率 α与β之间是此消彼长的关系 接受
H0
拒绝
H0
H0
真实
判断正确 (1-α) ) 取伪错误( 取伪错误(第二类 错误或β 错误或 错误)
弃真错误( 弃真错误(第一 类错误或α 类错误或 错误 ) 判断正确 (1-β) )
第七章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 卡方检验
参数估计是利用样本信息推断未知的总体参数, 参数估计是利用样本信息推断未知的总体参数, 而假设检验是先对总体参数提出一个假设, 而假设检验是先对总体参数提出一个假设,然后利 用样本信息判断这一假设是否成立。 用样本信息判断这一假设是否成立。

假设检验的统计学名词解释

假设检验的统计学名词解释

假设检验的统计学名词解释统计学是一门研究收集、整理、分析和解释数据的科学。

而在统计学中,假设检验是一种重要的统计方法,用于检验研究中的假设是否符合实际情况。

本文将对假设检验进行详细解释,并探讨其在统计学中的应用。

一、假设检验的概念和基本原理假设检验是通过对样本数据进行统计分析来对某个总体参数的假设进行验证的方法。

在进行假设检验时,我们首先提出一个原假设(H0)和一个备选假设(H1),然后根据样本数据的结果来判断哪个假设更加可信。

原假设通常是对问题的一种默认或无效的假设,而备选假设是我们希望证明的假设。

通过比较样本数据与原假设之间的差异,我们可以得出结论,支持或拒绝原假设。

二、假设检验的步骤和方法进行假设检验通常需要遵循以下步骤:1. 根据问题的实际背景,确定原假设和备选假设。

2. 收集样本数据,并计算样本统计量,如均值、标准差等。

3. 确定检验统计量,如t值、F值等。

这些统计量可以帮助我们评估样本数据与原假设的一致性。

4. 设置显著性水平α,即检验的临界值。

这个值表示我们在拒绝原假设时所允许的错误的概率。

5. 根据计算出的检验统计量和显著性水平,得出检验结果。

如果p值小于显著性水平,我们可以拒绝原假设;否则,我们接受原假设。

在假设检验中,常用的方法包括:1. 单个总体均值检验:用于检验一个总体均值是否等于一个给定的值。

2. 两个总体均值检验:用于比较两个总体均值是否存在显著差异。

3. 方差分析:用于比较两个或多个总体均值是否存在显著差异。

4. 卡方检验:用于检验观察值与理论值之间的差异是否显著。

5. 相关分析:用于分析两个变量之间是否存在相关性。

三、假设检验的应用领域假设检验在各个领域中都有广泛的应用,以下是其中几个典型的应用领域:1. 医学研究:用于判断某种治疗方法的有效性,比如新药是否比现有药物更好。

2. 工程质量控制:用于判断生产过程的稳定性和统计规律性。

3. 金融风险评估:用于评估投资组合的风险和收益。

应用统计学 经管类 第7章 假设检验

应用统计学 经管类 第7章 假设检验
5-5
• • • • • •
二、假设检验的步骤 (一)提出原假设与备择假设 (二)构造检验统计量 (三)确定拒绝域 (四)计算检验统计量的样本观测值 (五)做出结论
1、提出原假设与备择假设
• 消费者协会实际要进行的是一项统计检验 H0 工作。检验总体平均 =250是否成立。这 就是一个原假设(null hypothesis),通常用 表示,即: H0 : =250
第三节 自由分布检验
一、自由分布检验概述 自由分布检验与限定分布检验不同, 它是指在假设检验时不对总体分布的形状和参数加 以限制的检验。与参数检验相对应,自由分布检验又称为非参数检验,但这里的非参数只是 指未对检验统计量服从的分布及其参数做出限制, 并不意味着在检验中 “不涉及参数” “不 或 对参数进行检验” 。
• 解:通过统计软件进行计算。
(二)配对样本的均值检验 设配对观察值为(x,y),其差值是 d = x-y。设 d 为差值的总体均值,要检验的是:
H 0 : d 0 , H1 : d 0
记d
d ,则其方差是: n
2
2 d d / n Sd n(n 1) n
t
X 1000 S/ n
第三步:确定显著性水平,确定拒绝域。 α=0.05,查 t-分布表(自由度为 8),得临界值是 t / 2, n 1 t0.025,8 =2.306, 拒绝域是(-,-2.306]∪[2.306,+)。在 Excel 中,可以使用函数 TINV(0.05,8) 得到临界值 t0.025,8 。 第四步:计算检验统计量的样本观测值。 将 X 986 ,n=9,S=24,代入 t 统计量得:
H1 • 与原假设对立的是备选假设(alternative hypothesis) ,备选假设是在原假设被否 定时另一种可能成立的结论。备选假设比 原假设还重要,这要由实际问题来确定, 一般把期望出现的结论作为备选假设。

医学统计学-假设检验概述

医学统计学-假设检验概述

二、假设检验应注意的问题
假设检验利用小概率反证法思想,从问题对立面 (H0)出发间接判断要解决的问题(H1)是否成立。在H0 成立的条件下计算检验统计量,获得P值来判断。当P ≤,就是小概率事件。
小概率事件原理:小概率事件在一次抽样中发生 的可能性很小,如果它发生了,则有理由怀疑H0,认 为H1成立,该结论可能犯的错误。
当不拒绝H0时,没有拒绝实际上不成立的H0,这 类错误称为Ⅱ类错误(“存伪”),其概率大小用β 表示。
假设检验中的两类错误
客观实际
拒绝H0
不拒绝H0
H0成立 第Ⅰ类错误(α) 推断正确(1- α)
H0不成立 推断正确(1- β) 第Ⅱ类错误(β)
α与β的关系: 当样本量一定时, α愈小, 则β愈大,反之α愈大,
距法
理论上:
• 总体偏度系数1=0为对称,1>0为正偏态,1<0为负偏态; • 总体峰度系数2=0为正态峰,2>0为尖峭峰,2<0为平阔峰。 • 只有同时满足对称和正态峰两个条件时,才能认为资料服从
假设检验概述
第五章 假设检验概述
第一节 假设检验的分类、论证方法与步骤 一、假设检验的分类 二、假设检验的论证方法 三、假设检验的步骤
第二节 假设检验的两类错误和注意事项 一、Ⅰ型错误和Ⅱ型错误 二、应用假设检验的注意事项
第三节 正态性检验与数据转换 一、正态性检验 二、数据转换
第四节 例题和SPSS电脑实验
P>:不拒绝H0 ,还不能认为差异有统计学意义… P:拒绝H0,接受H1 ,差异有统计学意义…
第二节 假设检验的两类错 误和注意事项
一、Ⅰ型错误和Ⅱ型错误
1. Ⅰ型错误: 当拒绝H0时,可能拒绝了实际上成立的H0,这

假设检验

假设检验

产品检验: ■全数检验 ■抽样检验
能最真实、完整的反映所有产品的特性结果 GB/T2828.1-2003 存在抽样误差
总体与样本
判断
总体
随机抽取
样本
测量
数据
根据样本的信息推断总体
2. 假设检验的基本原理:小概率反证法 小概率原理:指小概率事件(通常概率 α≤0.05称为“小概率事件)在一次试 验中基本不会发生,反证法思想是先提 出某项假设(H0 ),用统计方法确定假 设的可能性(即检验假设是否正确): 可能性小,即假设不成立,应拒绝原假 设;如果可能性大,则接受假设,则假 设成立。
⑹根据显著性水平α 及统计量、样本自由 度查概率分布表。获取在此显著性水平α 下的置信区间,即临界值。 双侧检验:根据α/2或(1-α/2)确定临界值 单侧检验:根据α或(1 -α) 确定临界值
⑺做出判断:将计算出的统计量与查表得 出的临界值进行比较,作出拒绝或接受H0 的判断。
五、应用实例
1.单个正态总体的均值检验——t 检验
s12 0.0955 F 2 3.66 s2 0.0261 计算统计量:
n1=8,则样本的自由度 1 n1 1 7 n2=9,则样本的自由度 2 n2 1 8 α =0.05,查F检验临界值(F2)表,P(F >F2)= α 得到:F0.05(7、8)= 3.50 F在拒绝域内 结论:原假设H0不成立,即甲机床的精度比乙机床低。
因此,可用计算确定均值µ及1—α 置信区间的 方法来检验上述假设是否成立。 如果计算出来的置信区间包括µ 0 ,则接受H0 ; 如果计算出来的置信区间不包括µ 0 ,则拒绝H0
三、假设检验类型
• 参数假设:总体分布类型已知,对未知参数 的统计假设。检验参数假设问题称为参数假 设检验。当总体分布类型为正态分布时,则 为正态总体参数检验。 • 非参数假设:总体分布类型不明确,对参数 的各种统计假设。检验非参数假设问题称为 非参数假设检验,也称分布检验。参数假设 检验和非正态总体参数检验都比较复杂,在 QC小组活动中很少应用。

假设检验的概述

假设检验的概述

假设检验的概述作者:悦菁审稿:石鹏封面:吉江1假设检验简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,假设检验是用来判断样本与总体的差异是由抽样误差引起还是本质差别造成的。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

2基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为不假设成立。

假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合H0,称为原假设。

使命题A不成立的所有总体分布构成另一个集合H1,称为备择假设。

如果H0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设。

对一个假设H0进行检验,就是要制定一个规则,使得抽取样本以后,根据这一规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

这样,所有可能的样本所组成的空间(称样本空间)被划分为两部分H A和H R(H A的补集),当样本x∈H A时,接受假设H0;当x∈H R时,拒绝H0。

3意义用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。

通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。

这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显著差异。

从这个意义上,假设检验又称为显著性检验。

4注意的问题1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

假设检验(Hypothesis Testing)

假设检验(Hypothesis Testing)

假设检验(HypothesisTesting)假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。

当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。

假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。

在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。

假设检验的思想是,先假设两者相等,即:μ=μ0,然后用统计的方法来计算验证你的假设是否正确。

假设检验的基本思想1.小概率原理如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。

2.假设的形式H0——原假设,H1——备择假设双尾检验:H0:μ = μ0,单尾检验:,H1:μ < μ0,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。

第八章假设检验_0

第八章假设检验_0

第八章假设检验作为统计推断的重要组成部分,假设检验也称为显著性检验,就是对所估计的总体先提出一个假设,然后再根据样本信息来检验对总体所做的假设是否成立。

假设检验可分为参数检验和非参数检验,对总体分布中未知参数的假设检验称为参数检验,而对未知分布函数的类型或其某些特征提出的假设称为非参数检验。

第一节假设检验概述在实际生活中,许多事例都可以归结为假设检验问题。

为了便于理解,下面我们结合具体实例来说明假设检验的思想方法。

例8.1 某厂生产中药地黄丸,药丸的重量服从正态分布N( , 2),按规定每丸的标准重量为10克。

根据以往经验得知,生产药丸的标准差为 3.2克。

现从一批药丸中随机抽取100个,其平均重量为9.6克,试问这批药丸重量是否符合标准?从直观上来看,这批药丸重量不符合标准,两者差异显著。

但能否仅凭100个药丸的平均重量比标准重量小0.4克,而立即得出这批药丸不符合标准的结论呢?从统计学上来看,这样得出的结论是不可靠的。

这是因为,差异可能是这批药丸品质所造成的,也可能是由于抽样的随机性所造成的。

如果我们再随机抽取100个药丸进行检测重量,又可得到一个样本资料。

由于抽样误差的随机性,样本平均数(100个药丸的平均重量)就不一定是9.6克。

那么,我们对样本进行分析时,必须判断样本的差异是抽样误差造成的,还是因本质不同而引起的。

如何区分两类性质的差异?怎样通过样本来推断总体?这正是假设检验要解决的问题。

在假设检验中,先要根据问题的需要建立检验假设,假设有两种,一种是原假设或零假设,用H0表示,通常就是将要进行检验的假设;另一种是备择假设- 1 -或对立假设,用H1表示,是原假设H0相对立的假设。

例8.1中,如果将该批药丸的重量记作总体X,该问题就是检验总体X的均值 的变化情况。

那么,可以设原假设H0: 10( 0),即认为这批药丸重量是符合标准的;而备择假设,即认为这批药丸重量是符合标准的 10( 0),即认为这批药丸重量不H1:10( 0)符合标准的。

假设检验

假设检验

σ 22
n2
例:已知同年龄组男生50米跑成绩服从正态分 布。根据以往的资料得知A、B两校男生50 米跑成绩的标准差分别为0.4秒和0.2秒。今 从两校中分别抽测了25名和28名男生,其 50米跑平均成绩分别为8.1秒和7.9秒。问两 校男生50米跑水平是否相同?
练习: 练习 已知甲地某 年龄组男生身 高的 标准差为
西班牙队的比赛中发动93次进攻,成功率为53.8﹪。
是否可以认为该场比赛的进攻成功率高于以往?
练习:某排球队根据近期大量资料统计出比赛扣 球成功率为30%。该队今年参加排球联赛 6场,共扣球326次,成功112次,问今年 扣球成功率是否比以前有提高?
二、两样本率的差异显著性检验(π1=π2) 两样本率的差异显著性检验(
一、样本率与总体率差异显著性检验( P =π) 样本率与总体率差异显著性检验( ) 已知总体率为πo ,样本率为 P。要检验样本率P 所 属总体率π与已知总体率πo是否相同,当 n>30,且 n P>5,统计量为u =p −π π o (1 − π o ) n
例:中国男篮进攻成功率为46.3﹪,第12届世锦赛与
未知, (三)两总体为正态分布,σ1 、σ2 未知,且为小样本的假设检验 两总体为正态分布
当两总体服从正态分布, σ1 、σ2未知,但σ12 = σ22 (方差齐性,即方差间差异不具显著性),n1、 n2均小于 30,则统计量为
t= x1 − x2 (n1 − 1) S1 + (n2 − 1) S 2 1 1 ( + ) n1 + n2 − 2 n1 n2
例: 已知某县14岁女生50米跑成绩服从正态分布, 且 µ o = 8 .8 s。现从某中学随机抽取29名同龄女生 测验50米跑,其成绩 , = 8.5s x

计量经济学假设检验

计量经济学假设检验
第Ⅱ类错误 犯第Ⅱ类错误 概率=β
否定 H 0
第Ⅰ类错误 犯第Ⅰ类错误 概率=α 正确决策 把握度=1 –β
第二节 平均数的假设检验
一、样本平均数与总体平均数的比较 ( 0 的假设检验) (一)总体服从正态分布,σ已知 适用条件:某总体服从正态分布,其总体平均 数 0 、标准差 0 已知,现抽取一个含量为n的
( x1, x2,, xn ),经计算得到样本平均数 x 、s。
检验目的:样本所属的总体平均数与已知的 总体平均数是否相同。 统计假设 H 0 : 0
统计量
t x 0
s n
统计表 附表2 t值表
n n 1
确定概率判定
t t0.05(n) P>0.05 接受 差异无显著性意义. H 0
t t0.05(n) P≤0.05 否定 t t0.01(n) P≤0.01 否定
H1 或 H A
㈡选择假设检验用的统计量并计算统计量的值
根据假设检验的目的及已知条件选用适当
的统计量,然后将观测数据代入求出统计量的
值。
㈢确定显著性水平,查表求出临界值
显著性水平α 一般取0.05 或0.01,α确
定后,根据统计量的分布,按自由度 查不同的
分布表求临界值。
(四)确定概率,作出统计结论 H0 P>0.05 接受 差异无显著性意义 H0 P≤0.05 否定 差异有显著性意义 H0 P≤0.01 否定 差异有高度显著性意义
㈠ 产生差异的两种可能原因 1、可能主要是由抽样误差造成的
由抽样而引起的样本与总体、样本与样本 之间的差异叫抽样误差。 2 、差异可能主要是由条件误差造成的
由实验条件的不同或施加的处理的不同而 引起的差异叫条件误差。
㈡ 小概率原理及实际推理方法 1、小概率事件

统计学——假设检验概念和方法

统计学——假设检验概念和方法

统计学——假设检验概念和方法假设检验是统计学中的一种常用方法,用于判断对于给定的样本数据,是否可以拒绝一些关于总体参数的假设。

假设检验可以帮助我们进行统计推断,即通过样本数据对总体参数的假设进行检验和推断。

在进行假设检验时,我们通常会对原假设进行假设设置,并基于样本数据进行计算,得到样本统计量,最后通过与临界值的比较来判断是否拒绝原假设。

假设检验方法主要包括以下几个步骤:1.假设设置:在进行假设检验之前,需要对原假设和备择假设进行设置。

原假设(H0)通常是一种无关或无差异的假设,而备择假设(H1)通常是一种有关或有差异的假设。

例如,在检验一些药物对病情的治疗效果时,原假设可以是“该药物对病情的治疗效果没有显著影响”,备择假设可以是“该药物对病情的治疗效果有显著影响”。

2.选择检验方法:根据实际问题和数据类型的不同,选择合适的统计检验方法。

常用的假设检验方法包括:t检验、Z检验、卡方检验、方差分析等。

对于不同的问题,需要根据数据类型和常用假设检验方法的前提条件进行选择。

3.计算统计量:根据选择的检验方法,通过对样本数据的计算,得到相应的统计量。

统计量的计算方式因检验方法的不同而有所不同。

4.设置显著性水平:显著性水平(α)是指拒绝原假设的最小可接受的错误概率。

常用的显著性水平有0.05和0.01、通常情况下,可以根据实际问题的要求和样本数据的特点进行选择。

5.做出决策:将计算得到的统计量与对应的临界值进行比较,根据比较结果来决定是否拒绝原假设。

如果统计量小于临界值,则接受原假设;如果统计量大于临界值,则拒绝原假设。

6.得出结论:根据以上步骤得出的决策结果,对检验的结论进行解释。

如果拒绝了原假设,则证明样本数据对总体参数的假设是有足够证据支持的;如果接受了原假设,则说明样本数据不足以拒绝原假设,未找到充分的证据来支持备择假设。

在进行假设检验时,需要注意以下几点:1.样本的选择:样本应该是从总体中随机选择的,并且需要具有代表性。

假设检验的基本概念及其应用

假设检验的基本概念及其应用

假设检验的基本概念及其应用假设检验是统计学中的一种重要方法,广泛应用于各个学科领域。

它主要用于判断某一假设是否成立,为研究人员提供决策依据。

本文将从基本概念、原理和步骤、常见假设检验方法等方面,系统性地介绍假设检验的基本知识,并探讨其在实际应用中的具体运用。

一、假设检验的基本概念假设检验是指根据样本信息,对总体参数或分布特征提出的假设进行检验的过程。

它包括两个关键要素:原假设和备择假设。

原假设(Null Hypothesis, H0)是待检验的命题,表示某一特征或参数的值等于某个预设值;备择假设(Alternative Hypothesis, H1)则是对原假设的否定命题,表示该特征或参数的值不等于预设值。

假设检验的基本原理是,通过对样本数据进行统计分析,计算出某个统计量的观测值,并根据该统计量的理论分布,判断原假设是否成立。

如果观测值落在原假设成立的概率很小的区域内,则可以认为原假设不成立,接受备择假设;反之,如果观测值落在原假设成立的概率较大的区域内,则无法否定原假设,应该接受原假设。

二、假设检验的基本步骤假设检验一般包括以下基本步骤:1. 提出原假设和备择假设。

根据研究目的和已有知识,合理地提出原假设和备择假设。

2. 选择检验统计量。

根据研究假设和样本信息,选择合适的检验统计量。

常见的检验统计量有t检验、卡方检验、F检验等。

3. 确定显著性水平。

一般将显著性水平(α)设置为0.05或0.01,表示在原假设成立的情况下,错误拒绝原假设的概率不超过该水平。

4. 计算检验统计量的观测值。

根据样本数据计算出检验统计量的观测值。

5. 确定临界值。

根据所选检验统计量的理论分布,查表确定在显著性水平α下的临界值。

6. 做出判断。

将检验统计量的观测值与临界值进行比较,如果观测值落在拒绝域(小于下临界值或大于上临界值),则拒绝原假设,接受备择假设;否则,接受原假设。

7. 得出结论。

根据前述判断结果,得出最终的研究结论。

统计推断中的假设检验一致性理论

统计推断中的假设检验一致性理论

统计推断中的假设检验一致性理论统计推断是指通过对样本数据的分析和推理,从中获得关于总体特征的信息。

其中,假设检验是统计推断中的一种重要方法,用于判断样本数据是否支持某个假设。

假设检验的一致性理论是确保假设检验结果准确可靠的基础。

一、假设检验概述假设检验是统计学的基本方法之一,用于对总体参数、总体分布、总体关系等进行推断和判断。

它包括两个假设,即零假设和备择假设。

零假设通常表示无效或无差异,备择假设则表示有效或有差异。

假设检验通过计算样本数据在假设条件下的概率,得出是否拒绝零假设的结论。

二、假设检验一致性理论的概念在进行假设检验时,我们关心的是假设检验方法的错误率,即在给定的显著性水平下,做出错误决策的概率。

一致性理论就是要确保假设检验的结果在理论上能够正确反映总体的真实情况,并保证一致性错误的概率趋近于零。

三、一致性理论的要求1. 渐近一致性:随着样本容量的增大,假设检验结果逐渐趋于稳定,不会发生剧烈变化。

2. 相合性:在样本无穷大的情况下,假设检验结果能够完全准确地反映总体的真实情况。

3. 渐近正态性:样本容量足够大时,假设检验的统计量服从正态分布,这样才能够进行显著性检验。

四、一致性理论的实现方法1. 构造适当的假设检验方法:根据不同的研究问题和总体特征,选择合适的假设检验方法,确保其在一定条件下具有一致性。

2. 分析样本容量和效应大小:合理确定样本容量,确保能够满足一致性理论的要求。

同时,根据研究问题的重要性和实际可行性,评估样本容量是否足够。

3. 确定显著性水平:显著性水平是进行假设检验时事先设定的一个边界值,一般取0.05或0.01。

通过控制显著性水平,可以减小一致性错误的概率。

4. 进行模拟和实验验证:通过模拟和实验验证,检验所选假设检验方法的一致性,确保其在实际应用中的可靠性和准确性。

五、一致性理论的应用领域一致性理论在各个领域的统计推断中都有广泛的应用。

例如,在医学研究中,针对治疗效果和疾病进展速度的假设检验需要保证一致性,以确保得出的结论可信度高。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验
4.4.1什么是假设检验
假设检验是在给定的风险等及的条件下确定一组数据(典型地来自于样本)是否于给定的假设相一致的统计方法。

该假设可能同一个特定的统计分布或样式有关或与一个分布的参数有关(如均值),假设检验的程序包括评估证据(以数据的方式),以决定一个关于统计模型或参数的给定的假设是否可以被拒绝。

在本技术报告中,很多统计技术都直接或间接地引用了假设检验,例如抽样、SPC 图、实验设计、回归分析和测量分析。

4.4.2假设检验的用途
假设检验广泛地应用于判断在给定的置信水平以内一个总体(从样本中推断)的某个参数的假设是否真实,这个方法可能因此应用于检验一个总体的某个参数是否符合某个标准或者它被用于检验两个或两个以上总体之间的差异,这在决策中是很有用下的。

假设检验也用于对假定的模型的判断,例如判断某个分布是否是正常的或某个样本数据是否是随机的。

假设检验也用于判定变量的范围(即置信区间),也就是在给定的置信水平上包含被研究对象参数的范围。

4.4.3 假设检验的益处
假设检验可以在一给定的置信水平的条件下对某一总体参数进行的推断。

据此,对于那些基于此参数而进行的决策过程中,假设检验可以提供很大的帮助。

假设检验可以简单地对某个总体的分布属性进行判断正如它对样本的属性进行的判断一样。

4.4.4 局限性和注意事项
为了确保假设检验所得出的结论的有效性,一些统计上的假定需要被充分地满足,特别是样本应当是被独立和随机地被抽取。

还有,样本的大小还将决定对于假设检验的结论有重要影响的置信水平。

在理论界,目前就假设检验如何作出有效的判断这方面还有一些争议。

4.4.5 应用举例
假设检验一般应用于对某个参数、有一个或多个总体的分布(从样本上进行推断)或评价样本数据本身。

例如,假设检验的方法可以用于如下的方面:
--- 检验一个总体的均值(或标准差)是否符合一个给定的值、比如目标值或标
准;
--- 检验两个或两个以上的总体的均值(或标准差)是否不同,比如在比较不同批次产品的时候;
--- 检验一个总体的不合格品率是否超过一个给定的数值;
--- 检验两个过程的输出的不合格品率是否相同;
--- 检验样品是否是被随机地从单一的总体所抽取;
--- 检验总体的分布是否服从正态分布;
--- 检验一个样本的数据是否是“异常值”,例如,一个被研究的变量的极端的数值;--- 检验对于一些产品或过程特性的改进是否有成效;
--- 确定在给定的置信水平条件下,接受或拒绝某一假设所需的样本大小;
--- 利用样本数据确定可能包含总体真实均值的置信区间。

相关文档
最新文档