主存储器与存储系统
存储的核心概念
存储的核心概念存储是计算机系统中的一个重要组成部分,用于存储和管理数据和程序。
它允许计算机在执行指令和处理数据时进行读写操作,并且可以长期保存数据以供以后使用。
存储的核心概念包括存储层次结构、存储器层次、主存储器和辅助存储器。
一、存储层次结构计算机中的存储层次结构是根据存取速度和容量来划分的,它分为多个层次,每个层次都有自己的特点和功能。
存储层次结构从上到下分为:寄存器、高速缓存、主存储器、辅助存储器。
下面我将逐一介绍这些层次。
1. 寄存器:寄存器是存储器层次结构中最接近CPU 的一层,也是最快的一层。
它用于存放CPU 需要立即访问的数据和指令。
寄存器的容量很小,一般只有几十个字节,但是它的读写速度非常快,能够满足CPU 对数据和指令的高速处理需求。
2. 高速缓存:高速缓存是位于CPU 和主存储器之间的一层存储器,作为主存储器和寄存器之间的缓冲区,用于加速CPU 对数据和指令的访问。
高速缓存的容量比寄存器大,但比主存储器小,一般几十到几百个千字节。
它的读写速度比主存储器快,但比寄存器慢。
它通过缓存一部分主存储器中的数据和指令,提高了CPU 对存储器的访问效率。
3. 主存储器:主存储器(也叫内存)是计算机系统中最重要的存储器,用于存放程序和数据。
它的容量比高速缓存大,一般几十到几百个千兆字节。
主存储器的读写速度比高速缓存慢,但比辅助存储器快。
它能够提供给CPU 进行读写操作。
4. 辅助存储器:辅助存储器(也叫外存)是计算机系统中最大的存储器,负责长期保存数据和程序。
它的容量比主存储器大,可以达到几百个千兆字节或者更大。
辅助存储器的读写速度比主存储器慢,但它具有永久存储的特点,即使计算机断电,数据也不会丢失。
以上是存储层次结构中的几个层次,不同层次的存储器在容量、读写速度、价格等方面都有所不同,通过合理地利用这些存储器,可以提高计算机系统的性能和效率。
二、存储器层次存储器层次是指存储器在层次结构中的位置和关系。
简述个人计算机中存储体系结构存储系统分类
简述个人计算机中存储体系结构存储系统分类计算机中存储体系结构指的是计算机内存和外存,以及两者之间的结构关系。
计算机中的存储体系结构可以分为两大类:内存存储体系结构和外部存储体系结构。
内存存储体系结构是指将计算机的内存单元组织成有效的结构,以便处理计算机中的信息。
它包括主存储器、辅助存储器、高速缓存存储器等。
主存储器是指将计算机中的信息暂时存储起来的主要设备,主存储器有多种类型,如RAM(随机存取存储器)、ROM(只读存储器)、SRAM(静态随机存取存储器)、DRAM(动态随机存取存储器)等。
辅助存储器是指在计算机中用于存储信息的一种存储器,它的容量远大于主存储器,通常用来存储大量的程序和数据,或者处理较长时间的运算,它可以是磁盘、磁带、光盘等。
高速缓存存储器是计算机中用来缓存主存储器中程序和数据的设备,它具有较高的存取速度,容量也较小,具有极高的速度,可以大大提高计算机的计算速度。
外部存储体系结构是指在内存存储体系结构和用户程序之间所连接的存储体系结构。
外部存储体系结构的主要设备有:磁盘系统、磁带系统、光盘系统、软盘系统等。
其中,磁盘系统是一种最主要的存储设备,它可以缓存大量的程序和数据,可以长时间的保存,它的容量大,存取速度也较快,是大多数用户更多使用的外存储设备。
磁带系统通常用来长期存储大量的信息,其优点是容量大,存取速度慢,而光盘系统则是一种快速存取、容量较小、适用范围较窄的存储体系结构,大多数用于存放小型文件、图片、音乐等,而软盘系统则是一种具有较小容量的存储体系结构,主要用于存储少量的指令和数据,一般用于较小型的计算机系统中。
计算机中存储体系结构对于计算机性能的提高和数据处理的准确性起着重要作用,它在计算机系统中占据着举足轻重的地位。
选择合适的存储体系结构类型,可以有效地提高计算机的效率,从而使计算机可以更加高效地处理大量的数据。
同时,正确地运用存储体系结构的知识也是对计算机系统管理的重要一环。
计算机中的存储系统的构成
计算机中的存储系统的构成计算机中的存储系统主要由以下几个部分构成:1.主存储器(Main Memory):主存储器是计算机硬件中最重要的部分之一,负责存储和检索程序运行所需的数据和指令。
它通常由DRAM(动态随机存取存储器)或SRAM(静态随机存取存储器)组成,容量从几GB到几十GB 不等。
2.辅助存储器(Secondary Memory):辅助存储器主要包括硬盘(HDD)和固态硬盘(SSD)。
这些设备存储大量的数据和程序,虽然存取速度比主存储器慢,但容量大且价格低。
硬盘的容量通常在几百GB到几TB之间,而固态硬盘则具有更高的读写速度和耐用性。
3.三级存储器(Tertiary Memory):这是更低一级的存储设备,通常包括光盘、U盘和SD卡等。
这些设备具有非常小的存储容量,通常用于存储小型的程序或数据文件。
4.高速缓存(Cache Memory):高速缓存是主存和CPU之间的临时存储器,它保存了CPU最经常访问的数据和指令。
高速缓存的存取速度非常快,通常使用SRAM实现。
5.寄存器(Registers):寄存器是CPU内部的高速存储部件,用于存储操作数和指令。
寄存器的存取速度比高速缓存还要快,但容量通常较小。
6.输入/输出设备(I/O Devices):这些设备包括键盘、鼠标、显示器、打印机等,用于在计算机和用户之间进行交互。
这些设备通常有自己的存储和处理能力,例如打印机的墨盒就包含了一种形式的内存,用于存储墨水浓度和打印质量等信息。
7.通信接口(Communication Interfaces):这些接口包括USB、HDMI、Ethernet等,用于计算机与其他计算机或设备之间进行数据交换。
这些接口通常也包含自己的内存,用于临时存储传输的数据。
在以上这些组成部分中,主存储器、辅助存储器和高速缓存是计算机存储系统中的核心部分。
它们之间的协作关系直接影响了计算机的性能和效率。
例如,当CPU需要访问的数据或指令不在高速缓存中时,它会从主存储器中读取数据或指令。
计算机组成原理知识点总结
计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。
1、存储器(主存)主要功能:保存原始数据和解题步骤。
包括:内存储器(CPU 直接访问),外存储器。
2、运算器主要功能:进行算术、逻辑运算。
3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
包括:计算程序和指令(指令由操作码和地址码组成)。
4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
注:1、冯诺依曼结构:存储程序并按地址顺序执行。
2、中央处理器(CPU):运算器和处理器的结合。
3、指令流:取指周期中从内存读出的信息流,流向控制器。
数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。
二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。
2、应用程序:用户利用计算机来解决某些问题而设计。
三、计算机的性能指标。
1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。
2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。
4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。
5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。
6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。
7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。
8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。
2024精选计算机原理存储系统教案
利用人工智能和机器学习技术,实现存储系统的智能化管 理,提高存储效率和数据安全性。
THANK YOU
感谢观看
存储器层次结构的组成
通常由高速缓冲存储器(Cache)、主存储器(Main Memory)和辅助存储器 (Auxiliary Memory)三级组成。
存储系统性能指标
存储容量
存取时间
存储器的存储容量是指它所能存储的二进制 信息的总量,通常以位(bit)或字节(Byte) 为单位表示。
存取时间是指从启动一次存储器操作到完成 该操作所经历的时间,分为读时间和写时间。
将一段时间内被访问次数最少 的数据块替换出去。考虑了数 据块的使用频率,但需要记录 每个数据块的访问次数,实现 相对复杂。
将未来最长时间内不会被访问 的数据块替换出去。理论上的 最优算法,但无法实现预测未 来的访问情况,仅作为评价其 他算法的标准。
06
虚拟存储器
虚拟存储器概述
定义
虚拟存储器是一种计算机存储管理技术,它允许程序使用比实际物 理内存更大的内存空间。
存储器接口
主存储器与CPU之间需要相应的接口电路来实现信号的转换和传输。接口电路通常包括地址 译码器、数据缓冲器、读写控制逻辑等部分。
访问时序
CPU访问主存储器的时序包括读操作和写操作。读操作时,CPU向主存发送读命令和地址, 主存将相应地址的数据发送给CPU;写操作时,CPU向主存发送写命令、地址和数据,主存 将数据写入相应地址。
按存储介质分类
半导体存储器、磁表面存储器、磁芯存储器、光盘存储器等。
03
按存取方式分类
随机存取存储器(RAM)、只读存储器(ROM)、顺序存取存储器
(SAM)、直接存取存储器(DAM)。
【计算机组成原理】存储系统
【计算机组成原理】存储系统存储器的层次和结构从不同⾓度对存储器进⾏分类:1.按在计算机中的作⽤(层次)分类 (1)主存储器。
简称主存,⼜称内存储器(内存),⽤来存放计算机运⾏期间所需的⼤量程序和数据,CPU 可以直接随机地对其进⾏访问,也可以和告诉缓冲存储器(Cache)及辅助存储器交换数据,其特点是容量较⼩、存取速度较快、单位价格较⾼。
(2)辅助存储器。
简称辅存,⼜称外存储器(外存),是主存储器的后援存储器,⽤来存放当前暂时不⽤的程序和数据,以及⼀些需要永久性保存的信息,它不能与CPU 直接交换信息。
其特点是容量极⼤、存取速度较慢、单位成本低。
(3)⾼速缓冲存储器。
简称 Cache,位于主存和 CPU 之间,⽤来存放正在执⾏的程序段和数据,以便 CPU 能⾼速地使⽤它们。
Cache 地存取速度可与 CPU 的速度匹配,但存储容量⼩、价格⾼。
⽬前的⾼档计算机通常将它们制作在 CPU 中。
2.按存储介质分类 按存储介质,存储器可分为磁表⾯存储器(磁盘、磁带)、磁芯存储器、半导体存储器(MOS型存储器、双极型存储器)和光存储器(光盘)。
3.按存取⽅式分类 (1)随机存储器(RAM)。
存储器的任何⼀个存储单元的内容都可以随机存取,⽽且存取时间与存储单元的物理位置⽆关。
其优点是读写⽅便、使⽤灵活,主要⽤作主存或⾼速缓冲存储器。
RAM ⼜分为静态 RAM (以触发器原理寄存信息,SRAM)和动态 RAM(以电容充电原理寄存信息,DRAM)。
(2)只读存储器(ROM)。
存储器的内容只能随机读出⽽不能写⼊。
信息⼀旦写⼊存储器就固定不变,即使断电,内容也不会丢失。
因此,通常⽤它存放固定不变的程序、常数和汉字字库,甚⾄⽤于操作系统的固化。
它与随机存储器可共同作为主存的⼀部分,统⼀构成主存的地址域。
由ROM 派⽣出的存储器也包含可反复重写的类型,ROM 与RAM 的存取⽅式均为随机存取。
⼴义上的只读存储器已可已可通过电擦除等⽅式进⾏写⼊,其“只读”的概念没有保留,但仍然保留了断电内容保留、随机读取特性,但其写⼊速度⽐读取速度慢得多。
微型计算机原理与组成-第5章 储存系统
· 读取CMOS-SRAM中的设备配置,确 定硬件运行环境。
· 系统引导、启动。
· 基本的输入输出控制程序。 · 存储一些重要的数据参数。 · 部分机器还含有硬化的部分操作系统。
ROM-BIOS一般为几十KB的容量,并 有逐渐加大的趋势,常为掩膜式ROM。 目前高档PC机已采用快速擦写存储器, 使ROM BIOS 的功能由软盘软件支撑升级。
5.4.5 页式虚拟存储器 页式虚拟存储器中的基本信息传送单 位为定长的页。
5.4.6 段页式虚拟存储器简介
段式虚拟存储器和页式虚拟存储器各有 其优缺点,段页式管理综合了两者的优点, 将存储空间仍按程序的逻辑模块分成段, 以保证每个模块的独立性及便于用户公用; 每段又分成若干个页。 页面大小与实存页相同,虚存和实存之 间的信息调度以页为基本传送单位。
2.CMOS-RAM 用于记录设备配置参数,如内存容量, 显示器类型,软硬磁盘类型及时钟信息等。 CMOS-RAM采用CMOS工艺制成,功耗很 少。
3.ROM-BIOS
ROM-BIOS用于存放基本的输入输出 系统程序,是操作系统驻留在内存中的最 基本部分,其主要用于以下几个方面。
· 开机后的自检。检测对象涉及计算机 系统的各主要功能部件包括CPU、ROM、 RAM、系统接口电路和键盘、软、硬磁 盘等外设。
5.1.1存储器的分类
1. 按存储介质分 按存储介质可以将存储器分为三种:半 导体存储器、磁表面存储器和光存储器。
2. 按存取方式分
按照存储器的存取可方式分为随机存取 (读写)存储器、只读存储器、顺序存取存 储器和直接存取存储器等。
存储基础知识培训
存储基础知识培训一、存储概述存储是计算机系统中非常重要的组成部分,用于保持数据和程序的持久性。
在大数据时代的背景下,存储的重要性愈发凸显。
本文将介绍存储的基础知识,以帮助读者全面了解存储的相关概念和技术。
二、存储类型1.主存储器主存储器(Main Memory)是计算机系统中最直接与CPU交互的存储设备,也被称为内存。
主存储器的容量决定了系统同时存储的数据和程序大小。
2.辅助存储器辅助存储器(Secondary Storage)用于长期存储大量的数据和程序,例如硬盘、光盘、固态硬盘等。
辅助存储器的容量一般远大于主存储器,可用于大数据存储和备份。
三、存储技术1.磁盘存储磁盘存储是一种机械存储技术,通过将数据存储在旋转的磁盘上来实现数据的读写。
磁盘以扇区为单位进行数据的存储和访问,随机存取速度较慢,但容量较大。
2.固态存储固态存储(Solid State Storage)采用闪存芯片作为存储介质,相对于传统磁盘存储具有更快的读写速度和较好的耐用性。
固态硬盘(SSD)已逐渐取代传统机械硬盘成为存储系统的主力。
3.网络存储网络存储(Network Storage)指的是通过网络连接远程存储设备的存储技术。
常见的网络存储技术有网络附加存储(NAS)和存储区域网络(SAN),可实现数据的共享和备份。
四、存储管理1.存储器层次结构计算机系统的存储器层次结构由多级存储构成,层次结构越高,存取速度越快,成本越高。
常见的存储器层次结构包括高速缓存、主存储器和辅助存储器。
2.存储系统管理存储系统管理涉及存储资源的分配和管理,包括存储容量的规划、文件系统的设计与管理、数据备份与还原等。
合理的存储系统管理能够提高存储系统的效率和可靠性。
五、存储安全1.数据安全存储安全是指对存储中的数据进行保护和控制,以防止非法访问、损坏或泄露。
常见的数据安全措施包括数据加密、访问权限控制和备份恢复。
2.存储设备安全存储设备安全涉及到存储设备的管理和防护。
计算机组成原理:第三章 主存储器和存储系统1
芯片
芯片地址
片选信号
片选逻辑
1K
A9…A0
CS0
A11 A10
1KA9…A0Fra bibliotekCS1
A11 A10
1K
A9…A0
CS2
A11 A10
1K
A9…A0
CS3
A11A10
(6)连接方式:扩展位数,扩展单元数,连接控制线
A11
A10
A9
A8
片选
译码
CS0
CS1
CS2
RAM; 8K×8位RAM; 2K×8位ROM; 4K×8位ROM; 8K×8位ROM及74LS138译码器和
各种门电路,画出CPU与存储器的连接图,要求最小4K为系统程序区,相邻8K为用户程序
区。
(1)写出对应的二进制地址码
(2)确定芯片的数量及类型
(3)分配地址线
(4)确定片选信号
2. P86 — 4.6
A14
A15
MREQ
A0
…
…
A13
A12
A11
A10
A9
G1
G2A
G2B
C
B
A
&
Y4
…
PD/Progr
2K ×8位
ROM
…
…
…
D7
D4
D3
D0
Y5
WE
CPU与存储芯片的连接图
…
1K ×4位
RAM
…
…
1K ×4位
RAM
例2: 设CPU有16根地址线,8根数据线,并用MREQ作访存控制信号(低电平有效),用WE
简述计算机硬件系统的组成。
简述计算机硬件系统的组成。
计算机硬件系统是由多种硬件组件组成的,主要由中央处理器(CPU)、主存储器(内存)、输入/输出设备(I/O)、外存储器(存储器)、电源、机箱等组成。
1、中央处理器(CPU):是计算机的核心部件,它负责控制计算机的所有操作。
它的功能有数据处理、运算控制、程序控制、记录和存储等。
2、主存储器(内存):计算机的主存储器,又叫内存,是CPU在运行应用程序时所用到的记忆空间,可以在计算机的运行过程中,暂时存储和访问数据和指令。
3、输入/输出设备(I/O):指的是计算机中的所有外部设备,如键盘、鼠标、显示器、硬盘等等,是计算机进行输入和输出的接口。
4、外存储器(存储器):是计算机中存储数据和信息的介质,它可以在计算机系统的外部存储和访问大量的数据和信息,是计算机系统的重要组成部分。
5、电源:计算机电源是由变压器、稳压器、电池、电源开关等电力元件组成的电源系统,用于给计算机各部件提供电源,以保证计算机的正常运行。
6、机箱:机箱是由机壳、各种硬件部件和连接部件组成的系统。
机箱用于保护内部计算机组件,并给出各个组件的布局和安装,以及确保它们能够安全地与外部设备连接。
简述现代计算机常用的三级存储体系
简述现代计算机常用的三级存储体系现代计算机常用的三级存储体系是指计算机内存的三个层次,包括高速缓存(Cache)、主存储器(Main Memory)和辅助存储器(Auxiliary Storage),每个层次的存储器速度和容量不同,以及在计算机中的作用也不同。
下面将分别对这三个层次进行详细说明。
1. 高速缓存(Cache)高速缓存是位于中央处理器(CPU)和主存储器之间的一层存储器,其作用是临时存储处理器频繁使用的数据或指令,以提高处理器的访问速度。
高速缓存的特点是速度非常快,可以与CPU进行同步操作,并且容量较小。
高速缓存采用的是容量较小但速度非常快的SRAM(Static Random Access Memory)或DRAM(Dynamic Random Access Memory)来存储数据。
高速缓存采用了一种称为“局部性原理”的策略,根据程序访问数据和指令的局部性特征,预先将可能用到的数据和指令存储到高速缓存中,当CPU需要访问数据或指令时,首先在高速缓存中查找,如果找到则直接返回,从而避免了频繁访问主存储器的延迟。
2. 主存储器(Main Memory)主存储器是计算机中的主要存储器,通常是指随机存取存储器(Random Access Memory,RAM),它可以直接被CPU访问。
主存的特点是速度相对较快(相比辅助存储器),容量较大。
主存储器存储的是当前运行的程序和数据,存储的内容会随着程序的加载和运行而不断变化。
主存储器一般采用的是DRAM,其存储单元是由电容和晶体管构成的。
DRAM的数据是以电容的充放电状态表示的,因此对DRAM的访问速度受限于电容的充放电时间,相对较慢。
3. 辅助存储器(Auxiliary Storage)辅助存储器能够永久保存数据,即使计算机断电也不会丢失数据。
它通常用于存储操作系统、应用程序和用户数据等,在程序需要执行或大量数据需要读写时,会从辅助存储器中加载到主存储器中进行处理。
计算机体系结构存储系统的认识理解
计算机体系结构存储系统的认识理解计算机存储系统主要分为主存储器和辅助存储器两种类型。
主存储器是计算机体系结构中的核心部分,也是计算机系统中最接近中央处理器(CPU)的存储器。
主存储器通常由高速随机访问存储器(RAM)组成,是计算机进行数据读取和写入的地方。
它具有较快的访问速度和读写能力,可以直接被CPU访问。
主存储器中存储的数据是临时存储的,当计算机断电时,其中的数据会被清除。
辅助存储器是计算机体系结构中的非易失性存储器,主要用于长期存储和备份数据。
常见的辅助存储设备包括硬盘驱动器、固态硬盘、光盘和闪存驱动器等。
辅助存储器的容量比主存储器大,可以存储大量的数据,并且数据不会因为断电而丢失。
然而,辅助存储器的访问速度较慢,需要较长的时间来读取和写入数据。
在计算机体系结构中,主存储器和辅助存储器之间通过缓存来进行数据的传输和管理。
缓存是一种临时存储器,用于存储CPU需要频繁访问的数据和指令。
缓存位于CPU和主存储器之间,并且具有较快的访问速度和容量,可以提高计算机系统的性能。
计算机存储系统的设计需要考虑多个方面的因素,包括存储容量、访问速度、数据可靠性和成本等。
存储容量是指存储系统可以存储数据的总量,它需要根据计算机系统的需求进行合理的配置。
访问速度是指存储系统能够读取和写入数据的速度,它通常取决于存储器的性能和传输通道的带宽。
数据可靠性是指数据在存储系统中的安全性和可靠程度,需要通过冗余备份和错误检测与纠正等技术来保证。
成本是指构建和维护存储系统所需的资源和费用,需要在满足其他需求的前提下尽量降低成本。
总之,计算机体系结构中的存储系统是计算机系统的重要组成部分,主要包括主存储器和辅助存储器。
主存储器用于临时存储和处理数据,具有较快的访问速度和读写能力;辅助存储器用于长期存储和备份数据,具有大容量和非易失性的特点。
存储系统的设计需要考虑存储容量、访问速度、数据可靠性和成本等多个方面的因素。
通过合理配置和管理存储系统,可以提高计算机系统的性能和可靠性。
西安电子科技大学_计算机组成与体系结构_第4章存储系统_课件PPT
存取方式 读写功能
随机读写:RAM 顺序(串行)访问:
顺序存取存储器 SAM 直接存取存储器 DAM
12
4.1 存储系统概述 4.1.2 存储器分类:不同的分类标准
存储信息的介质
在计算机中的用途
存放信息的易失(挥发)性
存取方式 读写功能
读写存储器 只读存储器
13
存储信息的介质
在计算机中的用途 存放信息的易失(挥发)性 存取方式 读写功能
易失:RAM 非易失:
ROM 磁盘
……
11
4.1 存储系统概述 4.1.2 存储器分类:不同的分类标准
存储信息的介质 在计算机中的用途 存放信息的易失(挥发)性
存储器的存取时间 与存储单元的物理 地址无关,随机读 写其任一单元所用
无
36
8086系统总线
D0~D7
A1~A13 MEMR MEMW
A0
D8~D15 A1~A13 MEMR MEMW
BHE
&
A19
A18
A17
&
A16 A15 A14
6264与8086系统总线的连接
6264
D0~D7
A0~A12
CS1
OE
WE
CS2
6264
D0~D7
A0~A12
CS1
OE
WE
CS2
74LS138
每次读出/写入的字节数 存取周期
价格
体积、重量、封装方式、工作电压、环境条件
14
4.1 存储系统概述 4.1.2 存储器的性能指标
容量 速度 可靠性
可维修部件的可靠性: 平均故障间隔时间(MTBF)
简述计算机存储器的分类
简述计算机存储器的分类
计算机存储器是计算机系统中用于存储数据和指令的设备。
根据功能和性质的不同,计算机存储器可以分为以下几类:
1. 主存储器(主存):也称为内存,是计算机中用于存储当前运行程序和数据的地方。
主存储器读写速度快,容量一般较大,但是断电即丢失数据。
2. 辅助存储器:辅助存储器是用来存储大量的永久性数据的设备。
常见的辅助存储器包括硬盘驱动器(HDD)、固态硬盘(SSD)、光盘、磁带等。
辅助存储器容量大,断电不丢失数据,但是读写速度较主存慢。
3. 高速缓存(缓存):高速缓存是位于主存和中央处理器(CPU)之间的一个存储器层级,用于提高存取速度。
它存储最常用的数据和指令,以减少对主存的访问次数。
高速缓存容量较小,读写速度比主存快。
4. 高速寄存器:高速寄存器位于CPU内部,是最快的存储器
类型。
它用来存储最经常使用的数据和指令,供CPU直接访问。
高速寄存器容量非常有限。
这些存储器类型在计算机系统中共同协作,实现数据的存储和处理。
不同存储器类型的组合,可以根据计算机系统的需求来设计,以达到最佳的性能和成本效益。
计算机体系结构存储系统的认识与理解
计算机体系结构存储系统的认识与理解计算机体系结构是计算机科学中的一个重要概念,涉及到计算机硬件和软件之间的关系、计算机的逻辑结构和功能等方面。
存储系统是计算机体系结构中的重要组成部分,负责存储和管理系统的数据和程序。
本文将介绍计算机体系结构存储系统的认识与理解,并探讨其重要性和实现方法。
一、计算机体系结构存储系统的认识与理解计算机存储系统是指为计算机提供存储数据和程序的地方,通常包括主存储器、辅助存储器和输入输出设备等组成部分。
其中,主存储器是计算机中最重要的存储系统之一,用于存储计算机程序和数据。
主存储器通常分为三种类型:随机访问存储器(RAM)、只读存储器(ROM)和闪存。
RAM是随机访问的存储器,可以在任何时候进行读写操作,但是其容量有限。
ROM是一种只读存储器,只能读取其编程内容,因此其容量非常大,但不可修改。
闪存是一种非易失性存储器,具有快速读写速度和大容量等优点,但是较为昂贵。
辅助存储器包括外置存储器和内置存储器。
外置存储器通常包括硬盘、软盘、USB存储器等,用于存储临时数据和文件。
内置存储器则包括内存、EEPROM、FRAM等,用于存储系统配置文件、程序代码等。
输入输出设备用于将数据和程序传输到计算机外部,例如显示器、键盘、鼠标等。
计算机存储系统的重要性不言而喻。
存储系统的配置和优化对计算机的性能、可靠性和安全性都有着重要的影响。
合理的存储系统可以提高计算机的运行效率,减少存储空间的占用,提高数据传输速度,降低系统出错率。
二、计算机体系结构存储系统的实现方法计算机体系结构存储系统的实现方法可以分为以下几种:1. 基于硬件的存储系统:这种存储系统直接将存储芯片嵌入到计算机系统中,通过硬件连接实现数据的存储和读取。
2. 基于软件的存储系统:这种存储系统使用操作系统提供的软件存储功能,通过操作系统的存储管理功能实现数据的存储和读取。
3. 基于网络的存储系统:这种存储系统通过网络进行数据存储和传输,可以通过分布式存储技术实现数据的大容量存储和高效性访问。
计算机组成原理(第三版)第 3 章 存储器及存储系统
16
3.2 主存储器
• 主存储器按其功能可分为RAM和 ROM。
一 二 随机存取存储器RAM 只读存储器ROM
INFO DEPT@ZUFE HANGZHOU.CHINA
17
一、随机存取存储器RAM
MM
Y0
Bm-1
Y1
……
B0
An-1…A0
M A R
M A D
…
Y2n-2
Y2n-1
…
CS
WE
R/W读写 控制电路
INFO DEPT@ZUFE HANGZHOU.CHINA
9
三、存储器的层次结构
1.分级原理: 根据程序执行的集中性和局部性原理而构建的分层结构。信 息流动分规律为从低速、大容量层次向高速、小容量层次流动 ,解决速度、价格、价格这三者之间的矛盾,层次间信息块的 调度由硬件和软件自动完成,其过程对用户透明。 2.三级存储管理系统: • Cache: • ·采用TTL工艺的SRAM,哈佛结构; • ·采用MOS工艺的SRAM,指令与数据混存,其与内存之间信息块 的调度(几十字节)全由Cache控制器硬件完成。 • 主存: • ·ROM常用FROM,E2PROM等构成; • ·RAM常用DRAM构成,RAM和ROM采用统一编码。 • 虚存: • 采用磁盘存储器,主存+OS中的存储器管理软件联合构成,其 信息块常用页、段表示,其间的信息块调度由管理软件完成。
字线
数 据 线 Cd
T
C
单管MOS动态存储器结构
INFO DEPT@ZUFE HANGZHOU.CHINA
29
(2)DRAM存储器
RAS CAS WE OE 定时和控制
4M×4位的DRAM
存储器和存储系统
连,从000~111变化,从而可以选择8片芯片。
可以将A19、A18、A17连接到一个与非门上,与非门的输出和
2 为了使译码器进行工作,G1位高电平,G2A、G2B位低电平,
G2A、G2B输入端相连。A16可以和一个非门电路相连,输
出和G1的输入端相连。
数据线
A0~A12
D0~D7
A0~A12
D0~D7
数据线
表示方式:D0,D1,…………,Dm 存储器的容量通常为字节
*也可以用字(16位)、4位或1位来进行表示
1K*8 表示有1K的存储容量,每个存储单元输出8位数据 16K * 1 表示有16K的存储容量,每个存储单元输出1位 的数据
芯片选择线(片选线)
存储器芯片上有一个或一个以上允许存储器芯片 工作的控制线
…………
A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 0 0 0 …… 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …… …… 1
1 1 1 1 1 1 1 1 1 1 1 1
1
1 1
0
0 0 0
0
0 0 0
1
1 1 1
1
1 1 1
0
0 1 1
0
1 0 0
1
1 1 1
1
1 1 1
1
1 1 1
1
1 1 1
0
1 1 1
1
0 1 1
1
1 0 1
1
1 1 0
例:假设微处理器系统中从0E0000H开始的64K存储 区 无存储器,已知某一类RAM是8K*8的存储芯片, 如何进行扩充?
计算机组成原理_第三章
第三章 存储器及存储系统3.1 存储器概述3.1.1存储器分类半导体存储器 集成度高 体积小 价格便宜 易维护 速度快 容量大 体积大 速度慢 比半导体容量大 数据不易丢失按照 存储 介质 分类磁表面存储器激光存储器随机存储器 主要为高速缓冲存储器和主存储器 存取时间与存储元的物理位置无关 (RAM)按照 存取 方式 分类串行访问存 储器 SAS 只读存储器 (ROM)存取时间与存储元的物理位置有关 顺序存取器 磁带 直接存储器 磁盘 只能读 不能写 掩模ROM: 生产厂家写可编程ROM(PROM): 用户自己写 可擦除可编程ROM EPROM :易失性半导体读/写存储器按照 可保 存性 分类存储器非易失性 存储器包括磁性材料半导体ROM半导体EEPROM主存储器按照 作用 分类辅助存储器缓冲存储器 控制存储器3.1.23级结构存储器的分级结构Cache 高速缓冲 存储器 主 存 主机 外 存1 高速缓 冲存储器 2 主存 3 外存CPU 寄 存 器3.2主存储器3.2.1 主存储器的技术指标1 存储容量 字存储单元 字节存储单元 2 存取时间 字地址 字节地址访问 写操作/读操作从存储器接收到访问命令后到从存 储器读出/写 入所需的时间 用TA表示 取决于介质的物理特性 和访问类型 3 存取周期 完成一次完整的存取所需要的时间用TM表示 TM > TA, 控制线路的稳定需要时间 有时还需要重写3.2.2 主存储器的基本结构地 址 译 码 器地址 CPUn位2n位存储体 主存 m位 数据寄存器 m位 CPUR/W CPU 控制线路3.2.3 主存储器的基本操作地址总线k位MAR数据总线n位主存容量 2K字 字长n位MDRCPUread write MAC 控制总线主存3.3半导体存储芯片工 艺速度很快 功耗大 容量小 PMOS 功耗小 容量大 电路结构 NMOS 静态MOS除外 MOS型 CMOS 静态MOS 工作方式 动态MOS 静态存储器SRAM 双极型 静态MOS型 双极型依靠双稳态电路内部交叉反馈的机制存储信息TTL型 ECL型存储 信息 原理动态存储器DRAM 动态MOS型功耗较小,容量大,速度较快,作主存3.3.1 静态MOS存储单元与存储芯片1.六管单元 1 组成T1 T2 工作管 T2 T4 负载管 T5 T6 T7 T8 控制管 XY字线 选择存储单元 T7 WY地址译码线 X地址 译码线Vcc T3 T4 A T1 T2 T8 W B T6T5WW 位线完成读/写操作2 定义 “0” T1导通 T2截止“1” T1截止 T2导通X地址 译码线Vcc T3 T4 A T1 T7 T2 T8Y地址译码线3 工作 XY 加高电平 T5 T6 T7 T8 导通 选中该 单元T5T6 BWW写入 在W W上分别读出 根据W W上有 加高 低电平 写1/0 无电流 读1/04保持XY 加低电平 只要电源正常 保证向导通管提供电流 便能维 持一管导通 另一管截止的状态不变 称静态2.静态MOS存储器的组成1 存储体 2 地址译码器 3 驱动器 4 片选/读写控制电路存储器外部信号引线D0 A0传送存储单元内容 根数与单元数据位数相同 9地址线 选择芯片内部一个存储单元 根数由存储器容量决定7数据线CS片选线 选择存储器芯片 当CS信号无效 其他信号线不起作用 R/W(OE/WE)读写允许线 打开数据通道 决定数据的传送方向和传 送时刻例.SRAM芯片2114 1K 4位Vcc A7 A8 A9 D0 D1 D2 D3 WE1外特性18 12114 1K 410 9地址端 数据端A9 A0 入 D3 D0 入/出 片选CS = 0 选中芯片 控制端 = 1 未选中芯片 写使能WE = 0 写 = 1 读 电源 地线A6 A5 A4 A3 A0 A1 A2 CS GND2内部寻址逻辑寻址空间1K 存储矩阵分为4个位平面 每面1K 1位 每面矩阵排成64行 16列 64 16 64 16 6 行 位 行 译 X0 地 1K 1K 码址 X63 X63 Y0 Y1564 161K64 161K列译码 4位列地址两 级 译 码一级 地址译码 选择字线 位线 二级 一根字线和一组位线交叉 选 择一位单元W W W WXi读/写线路 Yi存储器内部为双向地址译码 以节省内部 引线和驱动器 如 1K容量存储器 有10根地址线 单向译码需要1024根译码输出线和驱动器双向译码 X Y方向各为32根译码输出线和 驱动器 总共需要64根译码线和64个驱动器3.3.2 动态MOS存储单元与存储芯片1.四管单元 1 组成T1 T2 记忆管 C1 C2 柵极电容 T3 T4 控制门管W T3 T1C1 C2W A B T2 T4字线 W W 位线 Z 2 定义 “0” T1导通 T2截止 C1有电荷 C2无电荷 “1” T1截止 T2导通 C1无电荷 C2有电荷 3 工作 Z 加高电平 T3 T4导通 选中该单元Z写入 在W W上分别加高 低电平 写1/0 读出 W W先预 充电至高电平 断开充电回路 再根据W W上有 无电流 读1/0 W T3 T1C1 C2T4 T2W4保持Z 加低电平 需定期向电容补充电荷 动态刷新 称动态 四管单元是非破坏性读出 读出过程即实现刷新Z2.单管单元 C 记忆单元 T 控制门管 1 组成Z 字线 W 位线 W T Z C2定义“0” C无电荷 电平V0 低 “1” C有电荷 电平V1 高3工作写入 Z加高电平 T导通 读出 W先预充电 断开充电回路 Z加高电平 T导通 根据W线电位的变化 读1/0 4 保持 Z 加低电平 单管单元是破坏性读出 读出后需重写3.存储芯片例.DRAM芯片2164 64K 1位 外特性GND CAS Do A6 16 1 A3 A4 A5 A7 9 82164 64K 1空闲/刷新 Di WE RAS A0 A2 A1 VccA7—A0 入 分时复用 提供16位地址 数据端 Di 入 Do 出 = 0 写 写使能WE 高8位地址 = 1 读 控制端 行地址选通RAS =0时A7—A0为行地址 片选 列地址选通CAS =0时A7—A0为列地址 电源 地线 低8位地址 1脚未用 或在新型号中用于片内自动刷新 地址端动态存储器的刷新1.刷新定义和原因 定期向电容补充电荷 刷新动态存储器依靠电容电荷存储信息 平时无电源 供电 时间一长电容电荷会泄放 需定期向电容 补充电荷 以保持信息不变 注意刷新与重写的区别 破坏性读出后重写 以恢复原来的信息 非破坏性读出的动态M 需补充电荷以保持原来的 信息2.最大刷新间隔 2ms 3.刷新方法各动态芯片可同时刷新 片内按行刷新 刷新一行所用的时间 刷新周期 存取周期4.刷新周期的安排方式 1 集中刷新 2ms内集中安排所有刷新周期R/W R/W50ns刷新 刷新 2ms 死区用在实时要 求不高的场 合2分散刷新用在低速系 统中各刷新周期分散安排在存取周期中 R/W 刷新 R/W 刷新100ns3异步刷新 各刷新周期分散安排在2ms内 每隔一段时间刷新一行每隔15.6微秒提一次刷新请求 刷新一行 2毫秒内刷新完所有 15.6 微秒 行例. 2ms 128行R/W R/W 刷新 R/W R/W 刷新 R/W 15.6 微秒 15.6 微秒 15.6 微秒 刷新请求 刷新请求 DMA请求 DMA请求用在大多数计算机中3.3 只读存储器1掩模式只读存储器 MROM采用MOS管的1024 8位的结构图 UDDA0 A1 A90 地 址 译 1 码 驱 动 1023 器读出放大器读出放大器cs D7D0D12可编程读存储器 PROM用户可进行一次编程 存储单元电路由熔丝 相连 当加入写脉冲 某些存储单元熔丝熔 断 信息永久写入 不可再次改写3.EPROM 可擦除PROM用户可以多次编程 编程加写脉冲后 某些存 储单元的PN结表面形成浮动栅 阻挡通路 实 现信息写入 用紫外线照射可驱散浮动栅 原 有信息全部擦除 便可再次改写4.EEPROM 可电擦除PROM 既可全片擦除也可字节擦除 可在线擦除信息 又能失电保存信息 具备RAM ROM的优点 但写 入时间较长 .NOVRAM 不挥发随机存取存储器 实时性好 可以组成固态大容量存储装置 Flash Memor 闪存 集成度和价格接近EPROM,按块进行擦除 比普 通硬盘快的多3.4 主存储器组织存储器与微型机三总线的连接 1 数据线D0 2 地址线A0 3.片选线CS 连接地址总线高位ABN+1 4 读写线OE WE(R/W) 连接读写控制线RD WR微型机n nDB0 AB0Nn连接数据总线DB0ND0 A0 CSnNN连接地址总线低位AB0ABN+1 R/ WR/ W 存储器1存储器芯片的扩充用多片存储器芯片组成微型计算机系统所要求的存储器系统 要求扩充后的存储器系统引出线符合微型计算机 机的总线结构要求 一.扩充存储器位数 例1用2K 1位存储器芯片组成 2K 8位存储器系统 例2用2K 8位存储器芯片组成2K 16位存储器系统例1用2K 1位存储器芯片组成 2K 8位存储器系统当地址片选和读写信号有效 可并行存取8位信息例2用2K 8位存储器芯片组成2K 16位存储器系统D0D8715D0 R/W CE A0107R/W CE A010D0 R/W CE A0107地址片选和读写引线并联后引出 数据线并列引出二.扩充存储器容量字扩展法例用1K 4位存储器芯片组成4K 8位存储器系统存储器与单片机的连接存储器与微型机三总线 的一般连接方法和存储器 读写时序 1.数据总线与地址总线 为两组独立总线AB0 DB0NDB0 AB0n ND0 A0 CSn NABN+1 R/ W 微型机 地址输出 数据有效采 样 数 据R/ W 存储器nR/W2.微型机复用总线结构 数据与地址分时共用一 组总线AD0nD0Di Qi G 地址 锁存器nA0nALE R/W 单片机R/W 存储器ALE锁 存地 址 数据 有效 采 样 数 据 地址 输出 存锁 址地AD0n地址 输出数据 有效 采 样数 据R/W半导体存储器逻辑设计需解决 芯片的选用 地址分配与片选逻辑 信号线的连接例1.用2114 1K 4 SRAM芯片组成容量为4K 8的存储 器 地址总线A15 A0 低 ,双向数据总线D7 D0 低 ,读/写信号线R/W 1.计算芯片数 1 先扩展位数 再扩展单元数 2片1K 4 1K 8 8片 4组1K 8 4K 82 先扩展单元数 再扩展位数4片1K 4 4K 4 4K 8 2组4K 4 2.地址分配与片选逻辑存储器寻址逻辑8片芯片内的寻址系统(二级译码) 芯片外的地址分配与片选逻辑 由哪几位地址形成芯 片选择逻辑 以便寻 找芯片为芯片分配哪几位地址 以便寻找片内的存储单元 存储空间分配4KB存储器在16位地址空间 64KB 中占据 任意连续区间芯片地址 任意值 片选 A15…A12A11A10A9……A0 0 0 0 …… 0 0 0 1 …… 1 0 1 0 …… 0 0 1 1 …… 1 1 0 0 …… 0 1 0 1 …… 1 1 1 0 …… 0 1 1 1 …… 164KB1K 1K 1K 1K 4 4 4 4 1K 1K 1K 1K 4 4 4 44KB需12位地址 寻址 A11— A0低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 1K A9 A0 CS0 A11A10 A11A10 1K A9 A0 CS1 A11A10 1K A9 A0 CS2 1K A9 A0 CS3 A11A103.连接方式1 扩展位数 2 扩展单元数 4 形成片选逻辑电路D7~D4 D3~D0 4 4 4 1K 4 4 R/W 1K 4 4 4 1K 4 4 4 1K 4 43 连接控制线1K 4 A9~A0 CS0 10 CS11K 4 10 CS21K 4 10 CS31K 4 10A11A10A11A10A11A10A11A10例2.某半导体存储器 按字节编址 其中 0000H 07FFH为ROM区 选用EPROM芯片 2KB/片 0800H 13FFH为RAM区 选用RAM芯片 2KB/片和1KB/片 地址总线A1 A0 低 给出地址分配和片选逻辑1.计算容量和芯片数ROM区 2KBRAM区 3KB2.地址分配与片选逻辑 存储空间分配 先安排大容量芯片 放地址低端 再安排小容量芯片便于拟定片选逻辑64KBA15A14A13A12A11A10A9…A00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 …… 0 …… 1 …… 0 …… 1 0 … 0 1 … 12K 2K 1KROM 5KB 需13 位地 RAM 址寻 址低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 2K A10 A0 CS0 A12A11 2K A10 A0 CS1 A12A11 1K A9 A0 CS2 A12A11 A10 A15A14A13为全03.4.2 高速缓冲存储器。